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Optimized Input-to-State Stabilization of

Discrete-time Nonlinear Systems with Bounded Inputs

M. Lazar, Member, IEEE W.P.M.H. Heemels, Member, IEEE

Abstract— In the problem of input-to-state stabilization of
nonlinear systems, synthesis of input-to-state stabilizing feed-
back laws is usually carried out off-line. This results in a
constant input-to-state stability (ISS) gain, which is guaranteed
for the closed-loop system. As an alternative, we propose a
finite dimensional optimization problem that allows for the
simultaneous on-line computation of an ISS control action, and
minimization of the ISS gain of the closed-loop system. The ad-
vantages of the developed controller are: ISS is guaranteed for
any (feasible) solution of the optimization problem, constraints
can be explicitly accounted for and feedback to disturbances is
provided actively, on-line. The control scheme also has favorable
computational properties for nonlinear systems affine in control.
In this case the optimization problem can be formulated as a
single quadratic or linear program.

I. INTRODUCTION

A significant part of the literature on nonlinear control

systems is dedicated to input-to-state stability (ISS), starting

with the seminal works [1], [2]. Control Lyapunov functions

(CLFs) [3], [4], [5] and ISS-CLFs, see [2], [6], [7], [8] and

the references therein, represent a powerful tool for providing

control laws achieving ISS. The usual approach is based on

the design of an explicit feedback law off-line, which renders

the derivative of the CLF (ISS-CLF) negative (to satisfy ISS

conditions). An alternative to this approach is to construct an

optimization problem such that any feasible solution renders

the derivative of a candidate CLF negative. This method can

be traced back to the early results presented in [9]. Synthesis

of CLFs via on-line optimization has been the focus of the

more recent articles [10], [11], where the usage of CLFs is

elegantly combined with receding horizon control (RHC).

All of the above works mainly deal with continuous-time

nonlinear systems and it is known that these results also

hold for sampled-data systems, for small enough sampling

intervals. In the discrete-time setting, it is worth to mention

the result on sub-optimal receding horizon control presented

in [12], where the finite horizon cost function of the RHC

problem is employed as a discrete-time CLF for the closed-

loop system.

In this paper we consider discrete-time constrained non-

linear systems subject to bounded inputs. Given a continu-

ous and convex ISS-CLF we are interested to find among

the corresponding ISS controllers one that has favorable

properties in terms of a trade-off between performance
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and robustness. Based on the sufficient conditions for ISS

presented in [13], [14] (and a natural extension to difference

inclusions), we formulate a constrained optimization problem

such that all its (feasible) solutions yield input-to-state sta-

bilizing control actions. For bounded inputs, the proposed

set-up leads to a finite dimensional optimization problem

and more importantly, it leads to on-line optimization of

the ISS gain of the resulting closed-loop system. This is

achieved via additional optimization variables, which can be

related to the closed-loop ISS gain via an explicit relation.

By solving the developed optimization problem on-line,

in a receding horizon fashion, feedback to disturbances is

provided actively, as will be demonstrated by the example in

Section IV. From a numerical point of view, for nonlinear

systems affine in control and ISS-CLFs based on norms (e.g.,

V (x) = ‖Px‖∞), the control algorithm can be implemented

as a single linear or quadratic program. This is achievable

by formulating the constraints enforced on the ISS-CLF as

a finite number of linear inequalities.

A performance oriented finite horizon cost can be added

to the optimization problem defined in this paper, leading to

a combination of ISS-CLF synthesis and RHC. Furthermore,

as continuity of the system dynamics is not necessary in the

discrete-time setting [13], [14], the proposed control law can

also be employed to achieve ISS of discrete-time discontin-

uous nonlinear and hybrid systems, including discontinuous

piecewise affine systems [15].

II. PRELIMINARIES

A. Basic notions and definitions

Let R, R+, Z and Z+ denote the field of real numbers,
the set of non-negative reals, the set of integers and the set
of non-negative integers, respectively. We use the notation
Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z+ | k ≥ c1} and
{k ∈ Z+ | c1 < k ≤ c2}, respectively, for some c1, c2 ∈ Z+.
For a set S ⊆ R

n, we denote by ∂S the boundary, by int(S)
the interior and by cl(S) the closure of S. For two arbitrary
sets S ⊆ R

n and P ⊆ R
n, let S ∼ P := {x ∈ R

n | x+P ⊆
S} denote their Pontryagin difference. A polyhedron (or a
polyhedral set) in R

n is a set obtained as the intersection
of a finite number of open and/or closed half-spaces. Given
(n + 1) affinely independent points (θ0, . . . , θn) of R

n, i.e.
(1 θ⊤0 )⊤, . . . , (1 θ⊤n )⊤ are linearly independent in R

n+1, we
define a simplex S as

S := Co(θ0, . . . , θn) :=

{

x ∈ R
n

∣

∣

∣

∣

x =

n
∑

l=0

µlθl,

n
∑

l=0

µl = 1

µl ∈ R+ for l = 0, 1, . . . , n

}

,

where Co(·) denotes the convex hull.
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The Hölder p-norm of a vector x ∈ R
n is defined as

‖x‖p := (|[x]1|
p

+ . . . + |[x]n|
p
)

1
p for p ∈ Z[1,∞) and

‖x‖∞ := maxi=1,...,n |[x]i|, where [x]i, i = 1, . . . , n, is

the i-th component of x and | · | is the absolute value.

For brevity, let ‖ · ‖ denote an arbitrary p-norm. For a

matrix Z ∈ R
m×n let ‖Z‖ := supx6=0

‖Zx‖
‖x‖ denote its

corresponding induced matrix norm. It is well known that

‖Z‖∞ = max1≤i≤m

∑n
j=1 |Z

{ij}|, where Z{ij} is the ij-

th entry of Z. Let z := {z(l)}l∈Z+
with z(l) ∈ R

o for

all l ∈ Z+ denote an arbitrary sequence. Define ‖z‖ :=
sup{‖z(l)‖ | l ∈ Z+} and z[k] := {z(l)}l∈Z[0,k]

.

A function ϕ : R+ → R+ belongs to class K if it is

continuous, strictly increasing and ϕ(0) = 0. A function

β : R+ × R+ → R+ belongs to class KL if for each fixed

k ∈ R+, β(·, k) ∈ K and for each fixed s ∈ R+, β(s, ·) is

decreasing and limk→∞ β(s, k) = 0.

B. Input-to-state stability

Consider the discrete-time nonlinear system

x(k + 1) ∈ Φ(x(k), w(k)), k ∈ Z+, (1)

where x(k) ∈ R
n is the state and w(k) ∈ R

l is an unknown

disturbance input at the discrete-time instant k. The mapping

Φ : R
n × R

l →֒ R
n is an arbitrary nonlinear, possibly

discontinuous, set-valued function. For zero input in (1) we

assume that Φ(0, 0) = {0}. Suppose w(k) takes a value in

a bounded set W ⊂ R
l for all k ∈ Z+.

Definition II.1 We call a set P ⊆ R
n robustly positively

invariant (RPI) for system (1) with respect to W if for all

x ∈ P it holds that Φ(x,w) ⊆ P for all w ∈ W.

Definition II.2 Let X with 0 ∈ int(X) and W be subsets

of R
n and R

l, respectively. We call system (1) ISS in X

for inputs in W if there exist a KL-function β(·, ·) and a

K-function γ(·) such that, for each x(0) ∈ X and all w =
{w(l)}l∈Z+ with w(l) ∈ W for all l ∈ Z+, it holds that

all corresponding state trajectories of (1) satisfy ‖x(k)‖ ≤
β(‖x(0)‖, k) + γ(‖w[k−1]‖), ∀k ∈ Z≥1.

We call γ(·) an ISS gain of system (1).

Theorem II.3 Let W be a subset of R
l and let X be a RPI

set for (1) with respect to W, with 0 ∈ int(X). Furthermore,

let α1(s) := asδ , α2(s) := bsδ , α3(s) := csδ for some

a, b, c, δ ∈ R>0, σ ∈ K and let V : R
n → R+ be a function

such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (2a)

V (x+) − V (x) ≤ −α3(‖x‖) + σ(‖w‖) (2b)

for all x ∈ X, w ∈ W and all x+ ∈ Φ(x,w). Then the system

(1) is ISS in X for inputs in W with

β(s, k) := α−1
1 (2ρkα2(s)), γ(s) := α−1

1

(

2σ(s)

1 − ρ

)

,

ρ := 1 −
c

b
∈ [0, 1). (3)

If inequality (2b) holds for w = 0, then the 0-input system

x(k+1) ∈ Φ(x(k), 0), k ∈ Z+, is asymptotically stable in X.

The proof of Theorem II.3 is similar in nature to the proof

given in [13], [14] by replacing the difference equation with

the difference inclusion as in (1) and is omitted here for

brevity. We call a function V (·) that satisfies the hypothesis

of Theorem II.3 an ISS Lyapunov function.

III. OPTIMIZED INPUT-TO-STATE

STABILIZATION

Consider the discrete-time constrained nonlinear system

x(k + 1) = φ(x(k), u(k), w(k))

:= f(x(k), u(k)) + g(x(k))w(k), k ∈ Z+, (4)

where x(k) ∈ X ⊆ R
n is the state, u(k) ∈ U ⊆ R

m is

the control action and w(k) ∈ W ⊂ R
l is an unknown

disturbance input at the discrete-time instant k. φ : R
n ×

R
m×R

l → R
n, f : R

n×R
m → R

n and g : R
n → R

n×l are

arbitrary nonlinear functions, possibly discontinuous, with

φ(0, 0, 0) = 0 and f(0, 0) = 0. Note that we allow that

g(0) 6= 0. Naturally, we assume that 0 ∈ int(X) and

0 ∈ int(U). Next, let α1, α2, α3 ∈ K∞ and let σ ∈ K.

Definition III.1 A function V : R
n → R+ that satisfies (2a)

and for which there exists a control input u ∈ U such that

V (f(x, u)) − V (x) ≤ −α3(‖x‖), ∀x ∈ X,

is called a Control Lyapunov Function (CLF) for system

x(k + 1) = f(x(k), u(k)), k ∈ Z+.

Definition III.2 A function V : R
n → R+ that satisfies (2a)

and for which there exists a control input u ∈ U such that

V (φ(x, u, w)) − V (x) ≤

− α3(‖x‖) + σ(‖w‖), ∀w ∈ W, ∀x ∈ X,

is called an Input-to-State Stability Control Lyapunov Func-

tion (ISS-CLF) for system (4).

Based on Definition III.1 we can formulate the following

optimization problem.

Problem III.3 Let a CLF V (·) be given. At time k ∈ Z+

measure the state x(k) and calculate a control action u(k)
that satisfies:

u(k) ∈ U, φ(x(k), u(k), 0) ∈ X, (5a)

V (φ(x(k), u(k), 0)) − V (x(k)) + α3(‖x(k)‖) ≤ 0. (5b)

2

Let π0(x(k)) := {u(k) ∈ R
m | (5) holds}. Let x(k + 1) ∈

φ0(x(k), π0(x(k))) := {f(x(k), u) | u ∈ π0(x(k))} denote

the difference inclusion corresponding to system (4) with

0-input in “closed-loop” with the set of feasible solutions

obtained by solving Problem III.3 at each instant k ∈ Z+.
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Theorem III.4 Let α1, α2, α3 ∈ K∞ of the form specified

in Theorem II.3 and a CLF V (·) be given. Suppose that

Problem III.3 is feasible for all states x in X. Then the

difference inclusion

x(k + 1) ∈ φ0(x(k), π0(x(k))), k ∈ Z+, (6)

is asymptotically stable in X.

Proof: Let x(k) ∈ X for some k ∈ Z+. Then, feasibility of

Problem III.3 ensures that x(k +1) ∈ φ0(x(k), π0(x(k))) ⊆
X due to constraint (5a). Hence, Problem III.3 remains

feasible and thus, X is a positively invariant set for system

(6). The result then follows directly from Theorem II.3. 2

The above theorem establishes that feasible solutions of

Problem III.3 are stabilizing feedback laws. In fact, if the

set X is compact and the CLF V (·) is continuous on X for

all u ∈ U, it can be shown that by solving Problem III.3 one

actually obtains an ISS feedback law. For simplicity, consider

the case when g(x) is bounded in norm, i.e. ∃M ∈ R>0 such

that ‖g(x)‖ ≤ M for all x ∈ X. Then, there exists σ ∈ K
such that |V (φ(x, u, w)) − V (φ(x, u, 0))| = |V (f(x, u) +
g(x)w)− V (f(x, u))| ≤ σ(M‖w‖) for all x ∈ X and all w.

From this property, together with inequality (5b) we have that

inequality (2b) holds. Thus, ISS of the perturbed difference

inclusion x(k + 1) ∈ φ0(x(k), π0(x(k))) + g(x(k))w(k),
k ∈ Z+, follows from Theorem II.3 in this case.

However, this inherent ISS property of a feedback law

calculated by solving Problem III.3 relies on a fixed, possibly

large gain of the function σ, which depends on V (·). Note

that this gain is related to the ISS gain of the closed-loop

system via (3). To optimize the robustness of the closed-loop

system it would be desirable to simultaneously find a control

action u(k) ∈ U such that for all w(k) ∈ W

V (φ(x(k), u(k), w(k))) − V (x(k))

+ α3(‖x‖) − σ(‖w(k)‖) ≤ 0, (7)

and minimize the gain of the function σ. Unfortunately, an

optimization problem based directly on the constraint (7) is

not finite dimensional in w(k).
In what follows we demonstrate that by considering con-

tinuous and convex1 CLFs and bounded polyhedral sets

X, U, W (with non-empty interiors containing the origin) a

solution to inequality (7) can be obtained via a finite set of

inequalities that only depend on the vertices of W.

Let we, e = 1, ..., E, be the vertices of W (notice

that E > l, with l the dimension of the disturbance,

as W is assumed to have a non-empty interior). Next,

consider a finite set of simplices S1, . . . , SM with each

simplex Si equal to the convex hull of a subset of the

vertices of W and the origin, and such that ∪M
i=1Si =

W. More precisely, Si = Co{0, wei,1 , . . . , wei,l} and

{wei,1 , . . . , wei,l} ⊆ {w1, . . . , wE} (i.e. {ei,1, . . . , ei,l} ⊆
{1, . . . , E}) with wei,1 , . . . , wei,l linearly independent. For

an illustrative example see Figure 1: the polyhedron W

1This includes quadratic functions, V (x) = x⊤Px with P ≻ 0, and
functions based on norms, V (x) = ‖Px‖ with P a full-column rank matrix.

Fig. 1. An example of the set W.

consists of S1, S2, . . . , S5, where, for instance, the simplex

S3 is generated by 0, we3,1 , we3,2 , with e3,1 = 2 and

e3,2 = 3. For each simplex Si we define the matrix Wi :=
[wei,1 . . . wei,l ] ∈ R

l×l, which is invertible.

Let λe(k), k ∈ Z+, be optimization variables associated

with each vertex we. Let α3 ∈ K∞, suppose that x(k) at time

k ∈ Z+ is given and consider the following set of constraints

depending on u(k) and λ1(k), . . . , λE(k):

V (φ(x(k), u(k), 0)) − V (x(k)) + α3(‖x(k)‖) ≤ 0, (8a)

V (φ(x(k), u(k), we)) − V (x(k))

+ α3(‖x(k)‖) − λe(k) ≤ 0 (8b)

for all e = 1, . . . , E.

Theorem III.5 Let V (·) be a continuous and convex CLF. If

for α3 ∈ K∞ and x(k) at time k ∈ Z+ there exist u(k) and

λe(k), e = 1, . . . , E, such that (8a) and (8b) hold, then (7)

holds for the same u(k), with σ(s) := η(k)s and

η(k) := max
i=1,...,M

‖λ̄i(k)W−1
i ‖, (9)

where λ̄i(k) := [λei,1
(k) . . . λei,l

(k)] ∈ R
1×l and ‖·‖ is the

corresponding induced matrix norm.

Proof: Let α3 ∈ K∞ and x(k) be given and suppose (8b)

holds for some λe(k), e = 1, . . . , E. Let w ∈ W =
⋃M

i=1 Si. Hence, there exists an i such that w ∈ Si =
Co{0, wei,1 , . . . , wei,l}, which means that there exist non-

negative numbers µ0, µ1, . . . , µl with
∑

j=0,1,...,l µj = 1
such that

w =
∑

j=1,...,l

µjw
ei,j + µ00 =

∑

j=1,...,l

µjw
ei,j .

In matrix notation we have that w = Wi[µ1 . . . µl]
⊤ and

thus [µ1 . . . µl]
⊤ = W−1

i w. By multiplying each inequality

in (8b) corresponding to the index ei,j and the inequality

(8a) with µj ≥ 0, j = 0, 1, . . . , l, summing up and using
∑

j=0,1,...,l µj = 1 yields:

µ0V (φ(x(k), u(k), 0)) +
∑

j=1,...,l

µjV (φ(x(k), u(k), wei,j ))

− V (x(k)) + α3(‖x(k)‖) −
∑

j=1,...,l

µjλei,j
(k) ≤ 0.
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Furthermore, using φ(x(k), u(k), wei,j ) = f(x(k), u(k)) +
g(x(k))wei,j ,

∑

j=0,1,...,l µj = 1 and convexity of V (·)
yields

V (φ(x(k), u(k),
∑

j=1,...,l

µjw
ei,j )) − V (x(k))

+ α3(‖x(k)‖) −
∑

j=1,...,l

µjλei,j
(k) ≤ 0,

or equivalently

V (φ(x(k), u(k), w)) − V (x(k))

+ α3(‖x(k)‖) − λ̄i(k)[µ1 . . . µl]
⊤ ≤ 0.

Using that [µ1 . . . µl]
⊤ = W−1

i w we obtain (7) for σ(s) =
η(k)s and η(k) ≥ 0 as in (9). 2

Based on the result of Theorem III.5 we are now able to

formulate a finite dimensional optimization problem that re-

sults in optimization of the closed-loop ISS gain, as follows.

For any x ∈ X let Wx := {g(x)w | w ∈ W} ⊂ R
n

(note that 0 ∈ Wx) and assume that X ∼ Wx 6= ∅. Let

λ̄ := [λ1, . . . , λE ]⊤ and let J(λ1, . . . , λE) : R
E → R+ be a

function that satisfies α4(‖λ̄‖) ≤ J(λ1, . . . , λE) ≤ α5(‖λ̄‖)
for some α4, α5 ∈ K∞. This implies J(λ1, . . . , λE) → 0 ⇒
λe → 0 for all e = 1, . . . , E and J(0, . . . , 0) = 0.

Problem III.6 Let α3 ∈ K∞, a cost J(·) and a CLF V (·) be

given. At time k ∈ Z+ measure the state x(k) and minimize

the cost J(λ1(k), . . . , λE(k)) over u(k), λ1(k), . . . , λE(k),
subject to the constraints

u(k) ∈ U, λe(k) ≥ 0, f(x(k), u(k)) ∈ X ∼ Wx(k), (10a)

V (φ(x(k), u(k), 0)) − V (x(k)) + α3(‖x(k)‖) ≤ 0, (10b)

V (φ(x(k), u(k), we)) − V (x(k))

+ α3(‖x(k)‖) − λe(k) ≤ 0 (10c)

for all e = 1, . . . , E. 2

Let π(x(k)) := {u(k) ∈ R
m | (10) holds} and let x(k +

1) ∈ φcl(x(k), π(x(k)), w(k)) := {φ(x(k), u, w(k)) | u ∈
π(x(k))} denote the difference inclusion corresponding to

system (4) in “closed-loop” with the set of feasible solutions

obtained by solving Problem III.6 at each k ∈ Z+.

Theorem III.7 Let, α1, α2, α3 ∈ K∞ of the form specified

in Theorem II.3, a continuous and convex CLF V (·) and a

cost J(·) be given. Suppose that Problem III.6 is feasible for

all states x in X. Then the difference inclusion

x(k + 1) ∈ φcl(x(k), π(x(k)), w(k)), k ∈ Z+ (11)

is ISS in X for inputs in W.

Proof: Let x(k) ∈ X for some k ∈ Z+. Then, feasibility of

Problem III.6 ensures that

x(k + 1) ∈ φcl(x(k), π(x(k)), w(k)) ⊆ X

for all w(k) ∈ W, due to g(x(k))w(k) ∈ Wx(k) and
constraint (10a). Hence, Problem III.6 remains feasible and
thus, X is a RPI set with respect to W for system (11).

From Theorem III.5 we also have that V (·) satisfies (2b)
with σ(s) := η(k)s and η(k) as in (9). Let

λ
∗ :=

max
x∈cl(X),u∈cl(U),e=1,...,E

{V (φ(x, u, w
e)) − V (x) + α3(‖x‖)}.

Since X and U are assumed to be bounded sets, λ∗ exists,

and inequality (10c) is always satisfied for λe(k) = λ∗ for

all e = 1, . . . , E, k ∈ Z+, irrespective of x and u. This in

turn, via (9) ensures the existence of a positive η∗ such that

η(k) ≤ η∗ for all k ∈ Z+. Hence, we proved that inequality

(7) holds, and thus, the continuous and convex CLF V (·) is

an ISS-CLF. Then, due to RPI of X, ISS in X for inputs in

W follows directly from Theorem II.3. 2

Note that in the above theorem we used a worst case

evaluation of λe(k) to prove ISS. However, in reality the

gain η(k) of the function σ can be much smaller for k ≥ k0,

for some k0 ∈ Z+. This is achieved via the minimization

of the cost J(·), which produces small values of λe(k),
e = 1, . . . , E. This in turn, via (9), will result in a small

η(k). Furthermore, this will ultimately yield a smaller ISS

gain for the closed-loop system, due to the relation (3).

Hence, Problem III.6, although it inherently guarantees a

constant ISS gain, it provides freedom to optimize the ISS

gain of the closed-loop system, by minimizing the variables

λ1(k), . . . , λE(k) via the cost J(·).
The result of Theorem III.7 holds for all inputs u(k)

for which Problem III.6 is feasible. In order to select on-

line one particular control input from the set π(x(k)) and

to improve closed-loop performance (in terms of settling

time) it is useful to also penalize the state and the input.

Let F : R
n → R+ and L : R

n × R
m → R+ with

F (0) = L(0, 0) = 0 be arbitrary, possibly discontinuous,

nonlinear functions. For N ∈ Z≥1 let ū(k) := (ū(k), ū(k +
1), . . . , ū(k + N − 1)) ∈ U

N = U × . . . × U and

let JRHC(x(k), ū(k), λ1(k), . . . , λE(k)) := F (x̄(k + N)) +
∑N−1

i=0 L(x̄(k + i), ū(k + i)) + J(λ1(k), . . . , λE(k)), where

x̄(k + i + 1) := f(x̄(k + i), ū(k + i)) for i = 0, . . . , N − 1
and x̄(k) := x(k).

Algorithm III.8

Step 1: Let α3 ∈ K∞, J(·), L(·), F (·), N ∈ Z≥1

and a CLF V (·) be given. At time k ∈ Z+ measure the

state x(k) and minimize JRHC(ū(k), λ1(k), . . . , λE(k)) over

ū(k), λ1(k), . . . , λE(k), subject to the constraints

ū(k) ∈ U
N , x̄(k + i) ∈ X, i = 2, . . . , N, (12a)

λe(k) ≥ 0, f(x(k), ū(k)) ∈ X ∼ Wx(k), (12b)

V (φ(x(k), ū(k), 0)) − V (x(k)) + α3(‖x(k)‖) ≤ 0, (12c)

V (φ(x(k), ū(k), we)) − V (x(k))

+ α3(‖x(k)‖) − λe(k) ≤ 0 (12d)

for all e = 1, . . . , E. Let

Π(x(k)) := {ū(k) ∈ {R
m}N | ū(k) satisfies (12)}

and let πRHC(x(k)) := {ū(k) ∈ R
m | ū(k) ∈ Π(x(k))}.
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Step 2: Select a feasible sequence of inputs ū(k) :=
(ū(k), ū(k +1), . . . , ū(k +N − 1)) ∈ Π(x(k)) and apply the

input u(k) = ū(k) ∈ πRHC(x(k)) to system (4), increment k

by one and go to Step 1. 2

Corollary III.9 Let α1, α2, α3 ∈ K∞ of the form specified

in Theorem II.3, a continuous and convex CLF V (·) and J(·),
L(·), F (·), N ∈ Z≥1 be given. Suppose that the optimization

problem in Step 1 of Algorithm III.8 is feasible for all states

x in X. Then the closed-loop system

x(k + 1) = φclx(k), πRHC(x(k)), w(k)), k ∈ Z+ (13)

is ISS in X for inputs in W.

Remark III.10 In Algorithm III.8 we make a tradeoff be-

tween robustness (suppressing disturbances adequately) via

a small η(k) on one hand and performance on the other. Be-

sides enhancing robustness, the constraints (12c)-(12d) also

ensure that Algorithm III.8 recovers performance in terms

of convergence when the state of the closed-loop system

approaches the origin. Loosely speaking, when x(k) ≈ 0,

Algorithm III.8 will produce a control action u(k) ≈ 0
(because of constraint (12c) and minimization of the cost

JRHC(·)). This in turn yields V (φ(0, 0, we))−λe(k) ≤ 0, e =
1, . . . , E, due to constraint (12d). Thus, Algorithm III.8 will

not optimize each variable λe(k) below the corresponding

value V (φ(0, 0, we)), e = 1, . . . , E, when the state reaches

the equilibrium. This property is desirable, since it is known

from min-max predictive control [16] that considering a

worst case disturbance scenario leads to poor performance

(convergence) when the real disturbance is small or vanishes.

A. Implementation issues

Next, we briefly discuss the ingredients which make it

possible to implement Algorithm III.8 as a single linear or

quadratic program. Firstly, we consider nonlinear systems of

the form (4) that are affine in control. For this it is sufficient

to assume that there exist functions f1 : R
n → R

n with

f1(0) = 0 and f2 : R
n → R

n×m such that:

x(k + 1) = φ(x(k), u(k), w(k))

= f(x(k), u(k)) + g(x(k))w(k)

= f1(x(k)) + f2(x(k))u(k) + g(x(k))w(k).
(14)

Secondly, we restrict our attention to CLFs defined using the

∞-norm, i.e. V (x) := ‖Px‖∞, where P ∈ R
p×n is a matrix

(to be determined) with full-column rank. We refer to [17],

[14] for techniques to compute CLFs based on norms.
Then, the first step is to show that the ISS inequalities

(12c)-(12d) can be specified, without introducing conser-
vatism, via a finite number of linear inequalities. Recall
that for any vector x ∈ R

n, [x]i denotes the i-th element
of x. Since by definition ‖x‖∞ = maxi∈Z[1,n]

|[x]i|, for

a constraint ‖x‖∞ ≤ c with c > 0 to be satisfied, it is
necessary and sufficient to require that ±[x]i ≤ c for all
i ∈ Z[1,n] (in total, these are 2n linear inequalities in x).
Therefore, as x(k) in (12) is just the measured state, which

is known at every k ∈ Z+, for (12c)-(12d) to be satisfied it
is necessary and sufficient to require that:

± [P (f1(x(k)) + f2(x(k))u(k))]i − V (x(k)) + α3(‖x(k)‖) ≤ 0

± [P (f1(x(k)) + f2(x(k))u(k) + g(x(k))we)]i

− V (x(k)) + α3(‖x(k)‖) − λe(k) ≤ 0,

∀i ∈ Z[1,p], e = 1, . . . , E,

which yields 2p(E+1) linear inequalities in the optimization

variables u(k), λ1(k), . . . , λE(k). If the sets X, U and Wx(k)

are polyhedra, which is a reasonable assumption, and for

a unitary prediction horizon, then clearly the inequalities

in (12a)-(12b) are also linear in the optimization variables

u(k), λ1(k), . . . , λE(k). Thus, a solution to the problem in

Step 1 of Algorithm III.8 can be obtained by solving a

nonlinear optimization problem subject to linear constraints.

Furthermore, for N = 1 and quadratic or ∞-norm based

costs, the optimization problem in Step 1 of Algorithm III.8

can be formulated as a single quadratic or linear program

(see [14] for more details). Furthermore, notice that for a

cost J(λ1, . . . , λE) defined using quadratic forms or infinity

norms, Problem III.6 can also be implemented as a single

quadratic or linear program, respectively.

IV. ILLUSTRATIVE EXAMPLE

Consider the nonlinear system (14) where x(k) ∈ X =
{ξ ∈ R

2 | ‖ξ‖∞ ≤ 5}, u(k) ∈ U = {ξ ∈ R | |ξ| ≤ 1}
and w(k) ∈ W = {ξ ∈ R

2 | ‖ξ‖1 ≤ 0.2}, k ∈ Z+. The
dynamics are given by:

f1(x) =

(

[x]1 + 0.7[x]2 + ([x]2)
2

[x]2

)

,

f2(x) =

(

0.245 + sin([x]2)
0.7

)

, g(x) =

(

1 0
0 1

)

.

The technique of [17] was used to compute the weight P ∈
R

2×2 of the CLF V (x) = ‖Px‖∞ for α3(s) := 0.01s and
the linearization of (14) around the origin, in closed-loop
with u(k) := Kx(k), K ∈ R

2×1, yielding

P =

[

2.7429 0.7121
0.1989 4.0173

]

, K =
[

−0.4379 −1.5508
]

.

To optimize robustness, 4 optimization variables

λ1(k), . . . , λ4(k) were introduced, each one assigned

to a vertex of the set W. The RHC cost was

chosen as JRHC(x(k), u(k), λi(k)) = ‖Q1(f1(x(k)) +
f2(x(k))u(k))‖∞ + ‖Qx(k)‖∞ + ‖Ru(k)‖∞ +
∑4

i=1 ‖λi(k)‖∞, where Q1 = 4I2, Q = 0.1I2 and

R = 0.4. The resulting linear program has 11 optimization

variables and 42 constraints. During the simulations, the

worst case computational time required by the CPU over

4000 runs was 0.02 seconds, which shows the potential for

controlling fast nonlinear systems.

In the simulation scenario we tested the closed-loop sys-

tem response for x(0) = [3, −1]⊤ and for the following

disturbance scenarios: w(k) = [0, 0]⊤ for k ∈ Z[0,40]

(nominal stabilization), w(k) takes random values in W for

k ∈ Z[41,80] (robustness to random inputs), w(k) = [0, 0.1]⊤

for k ∈ Z[81,120] (robustness to constant inputs) and w(k) =
[0, 0]⊤ for k ∈ Z[121,160] (to show that asymptotic stability

is recovered for zero inputs).
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Fig. 2. Evolution of the closed-loop system state (top figure: red and blue
lines) and of the control input (bottom figure: blue line).
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Fig. 3. Evolution of the optimization variables λ1(k), . . . , λ4(k).

In Figure 2 the time history of the states and control

input is depicted. The dashed horizontal lines give an ap-

proximation of the bounded region in which the system’s

states remain despite disturbances, i.e. approximately within

the interval [−0.2, 0.2]. The dashed vertical lines delimit

the time intervals during which one of the four disturbance

scenarios is active. One can observe that the feedback to

disturbances is provided actively, resulting in good robust

performance, while state and input constraints are satisfied

at all times. In Figure 3 the time history of the optimization

variables λ1(k), . . . , λ4(k) is presented. One can see that

whenever the disturbance is acting on the system, or when

the state is far from the origin (in the first disturbance

scenario), these variables act so as to optimize the decrease of

V (·). Whenever the equilibrium is reached, the optimization

variables satisfy the constraint V (φ(0, 0, we)) ≤ λe(k), e =
1, . . . , 4, as explained in Remark III.10. In Figure 3 the

values of V (φ(0, 0, we) for each vertex (0.5486 and 0.8432
for w1 = [0.2, 0]⊤, w3 = [−0.2, 0]⊤ and w2 = [0, −0.2]⊤,

w4 = [0, 0.2]⊤, respectively) are depicted with dashed

horizontal lines.

V. CONCLUSIONS

In this paper we studied the problem of input-to-state

stabilization of discrete-time constrained nonlinear systems

subject to bounded inputs. We presented a finite dimensional

optimization problem that allows for the simultaneous on-

line computation of an ISS control action, and minimization

of the ISS gain of the resulting closed-loop system. ISS

is guaranteed for the closed-loop system for any (feasible)

solution of the optimization problem, while state and input

constraints can be explicitly accounted for. A distinguishing,

advantageous feature of the proposed controller is that it can

provide feedback to disturbances actively, on-line, leading

to improved robust performance. Furthermore, the controller

can be implemented as a single linear or quadratic program

for nonlinear systems affine in control, which brings the

application to fast nonlinear systems within reach.
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