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Abstract

We study efficient query processing in distributed web
search engines with global index organization. The main
performance bottleneck in this case is due to the large
amount of index data that is exchanged between nodes dur-
ing the processing of a query, and previous work has pro-
posed several techniques for significantly reducing this cost.
We describe an approach that provides substantial addi-
tional improvement over previous techniques. In particular,
we analyze search engine query traces in order to optimize
the assignment of index data to the nodes in the system, such
that terms frequently occurring together in queries are also
often collocated on the same node. Our experiments show
that in return for a modest factor increase in storage space,
we can achieve a reduction in communication cost of an or-
der of magnitude over the previous best techniques.

1 Introduction

A number of researchers have recently studied the prob-
lem of implementing scalable search engines based on
highly distributed or peer-to-peer (P2P) architectures. How-
ever, current large-scale web search engines are based on a
fairly centralized architecture; while these engines consist
of machines at a number of locations around the world, each
location is typically a fairly large data center that forms its
own self-contained index and query processing engine. It is
still an open question to what degree this architecture could
be replaced by a highly distributed or peer-to-peer design,
where each participating machine is in a separate location
and each query involves cooperation between a number of
such machines over the internet. Such a design would be
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useful not only for the purpose of trying to compete with
the current more centralized engines on web search tasks,
but also for probably more realistic challenges such as the
efficient indexing and search of textual data residing in P2P
systems.

One of the main bottlenecks in such a highly distributed
design is the efficiency of search engine query processing,
i.e., the problem of determining the highest-scoring, say,
10 or 100 documents for a given set of query terms under
some appropriate scoring function. This problem has been
extensively studied in the Information Retrieval and Web
Search communities. Query processing consumes a signifi-
cant amount of resources even in the current centralized en-
gines, but additional challenges arise in a highly distributed
environment with bandwidth and latency constraints.

In this paper, we focus on the problem of efficiently pro-
cessing such queries on textual collections up to multiple
terabytes in size. On such collections, each of the terms
in a typical user query has hundreds of thousands or even
hundreds of millions of occurrences in the collection; this
results in very long inverted list index structures that slow
down query processing. As a result, this scenario is quite
different from search in smaller textual collections, or in
multimedia collections where each large multimedia object
(video, audio) is accompanied by a much smaller amount
of textual meta data (such as titles, descriptions, or tags).
In the latter scenarios, the main focus is usually on how to
locate the fairly small index structures that can be used to
retrieve possible matches for the query (often in very dy-
namic environments), while in our case the main challenge
is to compute the top-k results on many millions of possible
matches (a hard problem even in relatively stable wide-area
environments) once the index data has been located.

We now state a few assumptions. We consider the case of
a highly distributed system, where each machine is likely to
be located in a different local network, and where communi-
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cation occurs over fairly slow wide-area connections (e.g.,
the public internet). We do not directly address challenges
that are particular to P2P systems, where nodes can join and
leave the network at any time; our approach is largely or-
thogonal to these issues, and can be implemented on top of
standard P2P substrates such as [33, 41, 30] and many oth-
ers. Several different ways to organize a text index (inverted
index) structure in a distributed environment have been pro-
posed, in particular local index organization, global index
organization, and several hybrids. We focus on the case
of a global index organization, and consider a very general
class of ranking functions that includes common variants of
the widely used Cosine and Okapi measures (among many
others). The main bottleneck in this case is the amount of
communication (bandwidth) required during query evalua-
tion, and we will show gains by almost an order of magni-
tude over previous results.

In the next section, we provide some technical back-
ground. Section 3 describes related work, and Section 4
summarizes our contribution. In Section 5, we formally de-
fine the problem of assigning inverted lists to machines and
describe possible algorithms, while Section 6 provides an
experimental evaluation.

2 Technical Background

Text Index Structures: Search engines use a text index
structure called inverted index, which allows efficient re-
trieval of documents containing a particular set of words (or
terms). We assume that each document (e.g., web page in
the case of a web search engine) is identified by a unique
document ID (docID) assigned, e.g., through hashing or
enumeration. An inverted index consists of many inverted
lists, where each inverted list Iw contains the IDs of all doc-
uments in the collection that contain the word w. More pre-
cisely, each list Iw is a sequence of postings, where each
posting consists of the docID of a document D containing
w, its frequency (how often w occurs in D), and sometimes
also the position and context of each occurrence. The post-
ings in each inverted list are often sorted by docID. Inverted
indexes are usually stored in highly compressed form on
disk, and many compression techniques have been studied
[39, 31].

Term-Based Ranking: We assume that each query con-
sists of a set of words (query terms). The most basic form
of ranking involves simply comparing the words contained
in the document and in the query. More precisely, doc-
uments are modeled as unordered bags of words, and a
ranking function assigns a score to each document with re-
spect to the current query, based on the frequency of each
query word in the document and in the overall collection,
the length of the document, and maybe the context of the
occurrence (e.g., higher score if in title or bold face) or the

proximity between terms (e.g., higher score if two search
terms appear close to each other in the query or document).
Formally, given a query q = {t0, t1, . . . td−1} with d terms,
a ranking function F assigns to each document D a score
F (D, q). The system then determines the docIDs of the k
documents with the highest scores; this is usually done by
fetching and traversing the inverted lists for all query terms.

There are many different classes of ranking functions
in the literature, including the well-known Cosine Measure
and Okapi families of functions. Our approach here can be
applied to many different ranking functions, including func-
tions that include global scores such as Pagerank or mea-
sures based on user feedback (clicks), or the use of contexts
or term proximities in the queries and documents, with two
limiting assumptions. First, we assume that a query can be
efficiently evaluated on the collection by traversing the in-
verted lists of all the query terms, and maybe also accessing
additional smaller data structures containing term or docu-
ment statistics. Second, we assume intersection semantics,
i.e., that only documents containing all query terms are re-
turned. However, our techniques would also be useful in
cases where almost all terms have to occur in a document
[11]. Both of these assumptions appear to be largely true
for current large-scale web search engines as well as many
other IR search tools.

Index Partitioning: In a parallel or distributed search
engine, the inverted index structure is partitioned over a
number of machines. There are two basic distributed in-
verted index organizations, called local and global index
organization, shown in Figure 2.1.
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Figure 2.1. Query processing with a local (left)
and global (right) index organization.

In a local index organization, each node is assigned a
subset of the document collection and creates its own in-
verted index on these documents only. Thus, every node
has its own (shorter) inverted list for words such as “chair”
or “table”, and a query “chair, table” is first broadcast by
a frontend called query integrator to all nodes; then the top-
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k results from each node are merged into a global top-k
list at the frontend. In a global index organization, each
node holds the complete inverted lists for a subset of the
words as determined, e.g., by hashing. Thus, every node
has a smaller number of (longer) lists, and under the most
basic query execution strategy a query “chair, table” is
first routed to the node holding the shorter list, say “chair”,
which then sends its complete list to the node holding the
list for “table”. Hybrids between the two organizations are
also known, and performance comparisons of local, global,
and hybrid organizations on centralized parallel systems ap-
pear, e.g., in [2, 13, 38].

In a nutshell, the main challenge in a local index is that
many nodes need to be contacted for each query, resulting in
a large number of small messages. On other hand, a global
index may require an amount of data proportional to the
length of the shortest inverted list in the query to be trans-
mitted, resulting in a few very large messages. Thus, at
least under the naive execution strategies outlined above, a
local index is unlikely to scale beyond a few hundred nodes,
and a global index is unlikely to scale beyond a few million
documents.

To show the magnitude of this challenge, we provide
some rough cost estimates for a collection of 4 billion web
pages.1 The average page contains about 750 words, includ-
ing about 250 distinct words. Using state-of-the-art index
compression techniques we might get an inverted index size
of about 0.4 KB per page if only docIDs and frequencies are
stored in each posting, or 1.3 KB if positions are stored as
well. Thus, the total index size is on the order of several TB.
In a centralized engine, such an index might be distributed
over, say, a hundred machines. In a P2P environment, where
each machine contributes only part of its CPU and disk re-
sources and the machine configuration is not optimized to-
wards search, a thousand or more machines may be needed.
Thus, in a local index organization it would be infeasible to
require results from all nodes. Moreover, the inverted lists
accessed by a single search query would have an average
size of about 1.2 GB (docID and frequency) to 3.9 GB (in-
cluding positions). In fact, just the shortest list in each query
would still have an average size of about 40 MB (docID and
frequency) to 100 MB (including positions), making trans-
mission of the list during query processing in a global index
organization infeasible.

Query Processing Optimizations: A number of re-
searchers have proposed techniques for reducing the high
costs of distributed query processing, and thus the picture
is not quite as bleak as suggested by the above numbers.
Several approaches for local index organizations return re-
sults by contacting only a carefully chosen subset of the
nodes, see, e.g., [14, 21, 32, 36, 24, 5]. For global index

1This is not as large as the leading engines, but probably large enough
to give decent results for most queries.

organizations, a series of techniques in [28, 18, 22, 34, 40]
have resulted in very substantial reductions in the total com-
munication cost through the use of Bloom Filters and top-
k pruning techniques, though the remaining costs are still
high. Techniques for a hybrid index organization were re-
cently proposed in [35], while [42] contains a comparative
study of some of the known algorithms for different index
organizations.

In this paper we assume a global index organization, and
we propose a new technique that achieves additional sub-
stantial improvements in the communication cost of query
processing. Our approach is orthogonal to the techniques in
[28, 18, 22, 34, 40], and can be easily combined with these
for best results. Note that we are not trying to advocate any
particular index organization, and there are many scenarios
where a local organization may be preferable. We believe
that both organizations merit further study, and that in some
cases hybrid organizations that combine ideas from both di-
rections may turn out to be the best choice.

3 Discussion of Related Work

We now give a more detailed discussion of related work.
First, for background on indexing and query execution in
search engines, we refer to [1, 3, 9, 39], and for parallel
search engine architecture we refer to [8, 4, 29]. Discus-
sions of local and global index partitioning schemes and
the resulting query performance on parallel architectures are
given, e.g., in [2, 13, 19, 25, 38].

As mentioned, there has been a significant amount of re-
cent work on query processing in P2P search engines with
local index organizations, such as [14, 21, 32, 37, 36, 24, 5]
and others. Much of this work is concerned with the prob-
lem of finding good results without broadcasting each query
to all peers in the network, by selecting a subset of nodes
that are particularly promising for the given query (or in
some cases, nodes in the local neighborhood of the over-
lay structure). This is often done using approaches similar
to the database selection problem studied in the context of
distributed databases and meta search engines; see [26] for
a survey of some techniques.

One potential problem with this approach is that its per-
formance relies on the collection being nicely clustered and
the queries being well-behaved with respect to this cluster-
ing. Given the very diverse types of information needs ev-
ident in real search engine query traces, it could be argued
that there may be no way to cluster collections of billions
of pages over a few thousand nodes such that good results
can be obtained by contacting only a small subset of the
nodes. We are not aware of any experimental results for
such data sizes. However, the proposed approaches appear
to perform well on more limited data sizes, and there are
sometimes significant advantages to local index organiza-
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tions that create and maintain index structures at the node
where the content resides.

Several authors have studied P2P query processing under
a global index organization [28, 22, 18, 34, 40]. In particu-
lar, [28, 22] investigate the use of Bloom Filters [7, 12, 27]
for efficient intersection of inverted lists located on different
machines, influenced by earlier work on distributed joins in
databases. A Bloom Filter is a data structure that supports
membership test queries on a set of elements (i.e., “Is this
element in the represented set?”). A Bloom Filter uses sig-
nificantly less space than a dictionary or hash table, but at
the cost of a small false positive rate that can be traded off
against space. Thus, we can compute the intersection be-
tween two lists by first sending a small Bloom Filter repre-
senting the docIDs in the shorter list to the other machine,
which can then eliminate from its own list most of the post-
ings that do not match. As shown in [22], Bloom Filters can
reduce communication costs by an order of magnitude over
the naive approach. Of course, this assumes that only docu-
ments containing all query terms are returned as results.

A second approach, proposed in [34], uses a top-k prun-
ing technique from [15, 16] during query processing. This
approach can also give significant reductions in communi-
cation costs, but is limited to certain classes of ranking func-
tions. In particular, it is necessary that the score F (D, q) of
a document D with respect to query q = {t0, . . . , td−1} is
a monotone combination (e.g., the sum) of scores f(D, ti)
for some function f(). This is true for the Cosine Mea-
sure and many popular cases of Okapi, but not for certain
other functions. Under this approach, only a subset of the
shortest inverted list has to be communicated over the net-
work. Hybrid algorithms that combine Bloom Filters and
top-k pruning are studied in [40], which shows further cost
reductions in this case. One observation from [40] is that
top-k pruning performs best for short queries but degrades
for queries with 4 or more terms, while Bloom Filters are
better for longer queries. Thus, the two techniques comple-
ment each other well.

Our approach in this paper is complementary to both
techniques. The basic idea is very simple. Consider the
naive algorithm for query processing in a global index or-
ganization, i.e., ignoring the optimizations based on Bloom
Filters and top-k pruning. The communication cost of this
algorithm is roughly proportional to the length of the short-
est inverted list involved in the query, since the data size
typically decreases significantly after the first intersection.
However, if it so happens that two of the inverted lists are lo-
cated on the same machine, then we could locally intersect
these two lists and the result might be much smaller than
the shortest list. Thus, the idea is to make this happen more
often, through a careful assignment of inverted lists to ma-
chines. This idea was inspired by an observation mentioned
to us by Andrei Broder [10] that, given enough machines

and storage space, one could replicate inverted lists such
that for any pair of keywords there is a machine containing
both corresponding lists.

A naive implementation of this idea could result in a
very large amount of extra machines and storage space. Our
main insight here is that by analyzing search engine query
traces, we are able to allocate inverted lists with only a small
amount of space overhead such that for many (though not
all) queries, there is at least one pair of lists that is on the
same machine. This idea is also related to two other previ-
ous works. In [6], Bhattacharjee et al. propose to temporar-
ily cache intermediate results of intersections at the receiv-
ing node in order to reduce communication costs. Also, [23]
studies the caching of previously computed intersections of
pairs of lists in a centralized search engine architecture.

4 Contributions of this Paper

We study the problem of search engine query process-
ing in highly distributed or P2P-based architectures with
global index organization, and describe a new technique
that results in significant bandwidth savings over previous
approaches. In particular, our contributions are:

(1) We motivate and study the problem of assign-
ing/replicating inverted lists over a set of nodes in a
way that minimizes communication costs during query
processing, for a given distribution of queries.

(2) We describe and implement heuristic algorithms for
this problem that result in a good assignment of lists.

(3) We evaluate the performance of the algorithms on large
data sets consisting of real web pages and associated
query traces. Our results show substantial decreases in
communication cost with moderate space overhead.

5 The Inverted List Assignment Problem

In this section, we define and discuss the problem of as-
signing inverted lists to machines, and then describe some
simple algorithms for the problem.

5.1 Problem Definition

Recall from our informal discussion that our goal is to
distribute and replicate inverted lists over nodes so that for
many queries, there exists some node that contains two or
more of the inverted lists for the query terms. For simplicity,
assume that we are using the naive query processing algo-
rithm for global index organization, where the smallest list
is sent over the network in the first step, and that this first
step dominates the total cost of a query. We also assume
that the size of a list is given by the number of postings.
We now add a preprocessing phase to this algorithm where
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any lists that are located on the same node are first inter-
sected locally (with zero communication cost), and then the
naive algorithm is applied to the resulting reduced query
with fewer and shorter inverted lists.

For example, given a query “armadillo, alligator, dog”
such that there exists a node containing both lists Ialligator

and Idog, we would first intersect these two lists into a tem-
porary list Ialligator∩dog . Then the cost of the naive algo-
rithm on the reduced query would be given by the size of the
smallest remaining list, which might be either Ialligator∩dog

or Iarmadillo. As a special case, the communication cost is
zero if all lists in the query are on the same node; this in-
cludes all single-keyword queries. Based on this, we can
now define a simplified version of the problem:

Definition 5.1 Inverted List Assignment Problem: As-
sume that we are given a set of n terms W =
{w0, . . . , wn−1} and associated inverted lists (modeled as
sets) Iw0 , . . . , Iwn−1 of total size S =

∑n
i=0 |Iwi |. We are

also given m nodes N0, . . . , Nm−1 with storage capacity C
each such that m·C ≥ S, and a set of queries Q where each
query q ∈ Q is a subset of W . Then our goal is to assign to
each node Ni a set of terms Ti ⊂ W such that

(1) each term is assigned to one or more nodes,

(2) for each node Ni, we have
∑

w∈Ti
|Iw | ≤ C, and

(3) the assignment minimizes the total cost of the set of
queries Q,

∑
q∈Q c(q), where the cost c(q) of a query

is:

(a) c(q) = 0 if q ⊆ Ti for some i, or

(b) c(q) = min{q′⊆q | q′ �=∅ ∧ ∃i:q′⊆Ti}
(∣∣∣⋂w∈q′ Iw

∣∣∣
)

otherwise.

We now discuss some of the assumptions in this defini-
tion. First, we note that to achieve good performance in
practice, it is important to combine our approach with the
optimizations based on Bloom Filters and top-k pruning in
[28, 22, 34, 40]. As a result, the cost of the reduced query
becomes significantly more difficult to estimate and is not
really linear in the size of the shortest list anymore. For ex-
ample, given a query “armadillo, alligator, dog” such that
Ialligator and Idog are together on one node and Iarmadillo

and Idog on another, we could further decrease communica-
tion costs by first performing both local intersections even if
we already know which one will result in the smallest inter-
section. The reason is that when we use Bloom Filters and
top-k pruning, the cost depends (in a non-trivial way) on
the lengths of both the sending and the receiving list. This
also leads to possible trade-offs between local computation
and communication costs, and raises the question of which
copies of the inverted lists to select in case there are several
copies. As we discovered in our experiments, however, our

simple assumption that the cost is proportional to the num-
ber of postings in the shortest list appears to perform quite
well for the purpose of assigning lists to nodes.

Second, in reality we do not know the set of queries
ahead of time. Instead, we would have as input a probabil-
ity distribution over all possible queries, which itself would
be derived from a sufficiently large query trace. This is also
the approach we will take in our experiments: We divide
a query trace into two parts, a training set that is used to
derive a probability distribution (possibly using appropriate
smoothing and density estimation techniques) that is used
for the list assignment, and a smaller testing set that is used
to evaluate the quality of the resulting assignment.

5.2 Algorithmic Approach

Having defined the basic problem, we now consider pos-
sible solutions. First, we observe that, not surprisingly, it is
NP-Complete to find an optimal solution to the list assign-
ment problem. In fact, this is true even if all lists before in-
tersection have the same length, all machines can hold only
two lists, and no query has more than 3 terms. The proof is
by a fairly straightforward reduction from the Vertex Cover
problem [17]. Given a graph G = (V, E), we create one
list Iv for each v ∈ V , plus one extra list Iα, and create
for each (u, v) ∈ E a query {u, v, α}. If we assume that
all lists are of the same (sufficienctly large) size s, and that
|Iu ∩ Iv| ≥ (1− ε) · s and |Iu ∩ Iα| ≤ ε · s for all u, v ∈ V
and some small ε, then there exists an assigment with cost
less than (1− ε) · s onto x machines that can each hold two
lists if and only if there exists a Vertex Cover of size x.

Thus, a precise solution is probably out of our reach.
We decided to attack the problem through two different ap-
proaches: through greedy algorithms that assign inverted
lists to nodes until the available space is exhausted, and as
a partitioning problem on a suitably constructed graph. We
will use the latter approach to assign the first copy of each
list to the nodes, while additional replicas are then assigned
using the greedy approach.

Greedy Approach: List-Driven and Node-Driven Al-
gorithms We first describe the greedy algorithms. A first
very naive idea was to replicate each inverted list a fixed
number k of times, as determined by the available space in
the system. Typical values for k are 2 or 3, i.e, the total
amount of space needed is 2 or 3 times the amount needed
for a single copy of the index without replication. In this
first algorithm, called List-Driven, we round-robin over the
lists, and for each list we pick the node that should receive
the list. More precisely, we determine which node would
provide the largest overall reduction in communication cost
on the given query trace if we add a copy of the list to that
node. As we will see later, this approach has several short-
comings, though.
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A second approach, called node-driven, selects in each
round the node with the most available space. This node
now adds to its index a copy of the inverted list that gives
the most benefit, i.e., that gives the greatest overall reduc-
tion in communication cost. A variant called node-driven
ratio considers the ratio between the overall reduction in
cost and the size of the list. In a naive implementation, this
means that to choose a list, we have to iterate over all terms
in the query trace, and compute for each query containing
this term the sizes of various list intersections and the re-
sulting savings. However, there are ways to make this more
efficient by using a suitable priority queue data structure.

Graph Approach: An alternative approach is to try to
reduce the list assignment problem to that of determining
a good (overlapping) partitioning of a suitably constructed
weighted graph. In particular, we create a vertex for ev-
ery term w, with weight |Iw|. We also create an undirected
weighted edge (w, w′) between all w, w′ ∈ W , where the
weight c(w, w′) is proportional to the benefit of having w
and w′ on the same node. Then the problem is how to par-
tition the vertices into possibly overlapping neighborhoods,
where each neighborhood corresponds to a node, such that
(i) the total vertex weight on each node is less than its capac-
ity, and (ii) we minimize the total weight of those edges that
are “completely cut”, i.e., where there is no node containing
both endpoints.

There are two issues with this approach. First, it is not
obvious what the right edge weights are. Not all benefits are
pairwise in nature, e.g., when a single node contains three
inverted lists used in the same query. In a first naive ap-
proach, we initialize all weights to 0, and then iterate over
all edges and assign to each edge as weight the difference
between the size of the shorter of the two corresponding
lists and their intersection. In another approach, we iter-
ate over the queries instead. Whenever a pair (u, v) has the
smallest intersection among all pairs of terms in the current
query, we increase the weight c(u, v) by the benefit, de-
fined as the difference between the size of the shortest list
in the entire query and this intersection (if positive). Or al-
ternatively, we can assign to each edge that is contained in
the query an appropriate weight. Note that none of the re-
sulting three graph partitioning problems is strictly equiva-
lent to the original instance of the Inverted List Assignment
Problem, but merely a heuristic approximation.

Second, for the case where we only have a single copy
of each list, the problem is equivalent to a standard graph
partitioning problem studied, e.g., in parallel computation,
where we partition a workload into equal size pieces in a
way that minimizes interprocessor communication; thus,
we can use available graph partitioning software for this
task. However, we were unable to find tools for the case
of an overlapping partitioning, i.e., where each node may
be replicated several times. We note that there has been

some interest in such overlapping graph neighborhoods in
the algorithms and parallel computing communities, though
in somewhat different contexts.

Combining Graph and Greedy: One problem with the
greedy algorithm is how to get a good initial assignment
of lists from which to start the greedy process. Ideally, we
would start with each node having one or several good clus-
ter heads or seeds to which other lists can then be added.
This suggests the following combination of the graph-based
and greedy approaches: First, partition a single copy of the
entire index over the nodes based on the graph-partitioning
approach; this can be done using available and highly tuned
graph partitioning software. Then, use the greedy approach
to add additional copies of some of the lists to the nodes
until all available space is used.

6 Experimental Evaluation

In this section, we provide a preliminary experimental
evaluation of the various algorithms on large data sets.

6.1 Experimental Setup

We first describe the data set and experimental setup.
The results presented in this section are based on the GOV2
data set used in the TREC Terabyte Track. It consists of
25.2 million pages from 17186 hosts in the gov top-level
domain, and a set of 100, 000 queries made available as
part of the efficiency competition. In the following table,
we show the distribution of the number of keywords in the
queries; as we see, most queries have between two and five
keywords.

# terms k 1 2 3 4 5 6 > 6

% queries 2.10 19.63 32.25 25.26 12.67 4.87 3.22

Table 6.1. Percentage of queries with k terms
for the GOV2 query set.

We precomputed the intersection sizes of all pairs of
terms that occur in a common query, by issuing appropri-
ate queries to a full-text index of the collection. These sizes
are then used to determine the benefit of a particular list
placement during the computation of the list assignment.
This means that only pairwise benefits are considered by
our assignment algorithms; i.e., we do not consider the ad-
ditional benefits that occur when 3 or more lists are on the
same node (though these benefits are considered in the eval-
uation). We note that the extra benefits are small relative to
the pairwise case, while computing all intersections of sets
of three terms would have been quite expensive.
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Figure 6.1. Relative communication costs of our algorithms on 8 (top left), 16 (top right), 64 (bottom
left), and 128 (bottom right) nodes.

For the initial graph partitioning computation, we used
Version 4.0.1 of the METIS package2 based on a multi-level
partitioning approach described in [20]. We also experi-
mented with random initial assignments for comparison.

We first evaluate the algorithms in terms of the objective
function used during the list assignment, i.e., the number of
elements in the shortest list or shortest intersection of collo-
cated lists. In the second part of our experiments, we then
show the effect of combining our technique with the opti-
mized algorithms based on Bloom Filters and top-k prun-
ing described in [40]. Throughout this section we focus on
the communication costs of the various techniques and omit
local computation; note however that all local steps can be
very efficiently processed using a fairly standard search en-
gine query processor.

2http://glaros.dtc.umn.edu/gkhome/metis/metis/download

6.2 Performance Results

In Figure 6.1 we show the relative communication costs
of six methods, compared to the baseline method that does
not exploit collocation of lists and simply sends the shortest
list.

The methods consist of three methods without initial
graph partitioning, list-driven, node-driven, node-driven
with ratio, and three versions of node-driven with ratio and
initial graph partitioning, one where we iterate over edges
and two where we iterate over the queries to assign edge
weights, as described before. For the first three methods,
we assume that the first copy of each list is assigned at ran-
dom. We show four different graphs, for 8 (top left), 16 (top
right), 64 (bottom left), and 128 (bottom right) nodes. We
note that in these graphs, we are showing the value of the
objective function, i.e., the cost of the resulting assignment
in terms of the number of elements in the shortest list or
shortest intersection.
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16 128
Min Lists Max Lists Min Blocks Max Blocks Min Lists Max Lists Min Blocks Max Blocks

List-Driven 3,664 10,066 21,100 58,672 421 10,904 2,832 62,453
Node-Driven 2,371 3,336 23,224 23,547 279 1,202 2,898 3,362
Node-Driven Ratio 3,593 5,040 20,224 20,292 192 1,534 3,521 3,630
Ratio with Graph Part. - Edge 942 7,435 21,432 21,485 131 1,562 3,765 3,973
Ratio with Graph Part. - Query All 1,730 4,826 21,432 21,485 73 1,140 2,889 3,094
Ratio with Graph Part. - Query Min 2,529 4,359 19,453 19,465 189 948 3,352 3,420

Table 6.2. Resulting imbalance in the number of inverted lists per and in the index size per node, for
all six algorithms and for 16 and 128 nodes. Shown are for each setting the maximum and minimum
number of lists and 64 KB blocks of compressed index data held by any of the nodes.

# of terms k 1 2 3 4 5 6 > 6
% of queries (before) 2.10 19.63 32.25 25.26 12.67 4.87 3.22

% of queries (2 Nodes) 69.94 30.06 0 0 0 0 0
% of queries (8 Nodes) 38.88 43.96 14.42 2.34 0.41 0 0

% of queries (32 Nodes) 20.10 46.50 23.55 7.41 1.32 0.71 0.41
% of queries (128 Nodes) 11.37 41.62 29.85 12.18 3.45 0.81 0.71

Table 6.3. Percentage of queries with k terms before and after computing local intersections using
node-driven with ratio and initial graph partitioning - edge, for different numbers of nodes. The space over-
head is limited to 2.0 in this table.

We can make several observations from the graphs.
Looking at the point for space overhead 1.0 (i.e., only one
copy of each list, as in the baseline method) we can see
that graph partitioning of course gives a better assignment
of lists than the random assignment. (The first three meth-
ods are identical at this data point as the greedy phase has
not yet been reached.) Thus, some benefit can be obtained
with no space overhead at all. Overall, the method that as-
signs benefit only to the edge with the smallest intersec-
tion performs best. However, the other methods eventually
achieve the same improvements as the best method, though
with a higher space overhead. We note that there is an upper
limit to the benefit for all the methods, partly due to limita-
tions of the query trace: as the space overhead approaches
1.75 to 2.0 for the node-driven methods, and about 2.75 to
3.0 for the other methods, there is no additional benefit as
all interesting pairs in the query trace already exist some-
where on the same machine. We would expect moderate
additional benefits for larger query traces (as well as after
some additional fine-tuning of our policies).

The list-driven method performs worst. In fact, in the
results in Figure 6.1, we give the list-driven approach an
advantage by not enforcing a bound on storage size at each
individual machine. This results in significant imbalances
in index size at the nodes, as shown in Table 6.1. Basically,
slight imbalances are magnified by this method, as more and
more lists are attracted to the node with the most data. If
we enforce a bound on storage size at each node, the effect

will be that the nodes are filled one after the other, and the
benefits are even less. The other methods, by design, result
in a fairly balanced allocation of list data in terms of their
actual compressed size on disk (which we used to select the
node with the most remaining space in each step).
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Figure 6.2. Total communication cost per
query in KB, for 2 to 128 nodes, and including
the Bloom Filter and top-k pruning optimiza-
tions from [40]. The baseline in this figure is
the set of techniques in [40] without the list
assignment approach in this paper.

In the following, we focus on the method node-driven
with ratio and initial graph partitioning - edge, where we
iterate over the edges to compute edge weights for the parti-
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tioning. Note that by first performing local intersections on
each node, we a really transforming each query into another
query with fewer terms and shorter inverted lists. Thus, the
average number of terms per query decreases, and in partic-
ular queries with many terms are very likely to have at least
one pair that can be locally intersected at some node. In
Table 6.3, we see the the resulting changes in the keyword
distribution of queries, with most queries now having 3 or
less keywords.

So far, we have only evaluated the methods with respect
to the size of the shortest list or intersection (number of el-
ements). We now look at the actual total communication
cost in KB per query when we combine our technique with
the Bloom Filter and top-k pruning techniques from previ-
ous work. The results are shown in Figure 6.2, which plots
cost versus space overhead for configurations with 2 to 128
nodes. The most interesting cases are probably between 16
to 128 nodes: we note that we get a benefit of more than
a factor of 10 (12 KB versus 145 KB) for 16 nodes, and a
factor of about 6 for 128 nodes. Again, we point out that we
expect additional benefits with larger training query traces,
better fine-tuning of techniques, and also with the use of
data sets other than TREC GOV2 (which we believe to be
more challenging than typical search engine traces, e.g., in
terms of the number of terms per query).

Finally, we attempt to extrapolate our results to a collec-
tion of 2.5 billion pages, using the same method as in [40].
We observe again significant benefits by about a factor of
10 over the baseline method. We note that the raw baseline
number cannot be compared directly to the numbers in [40],
due to use of a different data set.

6.3 Discussion and Open Questions

As our preliminary results have shown, significant sav-
ings in communication cost can be obtained through care-
ful assignment of inverted lists to nodes. While the results
are promising, there are still a number of shortcomings in
our evaluation that we are working to resolve. We plan to
run experiments on other data sets, including the commonly
used Excite query traces on a set of crawled data. Extrap-
olating from the results in [40], which used this data set,
we would expect slightly improved numbers (say by about
a factor of 2), and also separate improvements due to the
larger size of the query trace (giving us a larger training
data set).

In addition, there are various details in our current imple-
mentation that could be further tuned, such as appropriate
smoothing of the query probability distribution which will
become more important for longer traces. Finally, while
our methods balance the space consumption between nodes
while minimizing the overall communication cost, we have
not yet considered how to also balance local computation

and communication costs between the different nodes in the
system.

As we saw, performance deteriorates slightly as the num-
ber of nodes increases, and we expect that for very large
collections, a hybrid organization might perform best. For
example, a 4 billion page collection might be partitioned
into 20 sets of 200 million pages, each handled by a sepa-
rate cluster of say 64 nodes. Within each cluster, we might
use our approach to distribute lists among nodes. With a
space overhead of 2.0 and postings containing position in-
formation, each node would receive about 8 GB of inverted
index data in this scenario. Note that this hybrid does not
actually save communication bandwidth over our approach,
but it allows parallel processing and transmission in differ-
ent clusters, thus making sure query latency is within a few
seconds or less.

As an open question for future research, it would be in-
teresting to study the basic list assignment problem, and
the graph-based variation of it, in more detail and to de-
rive more formal algorithms with performance guarantees
(or show that none exist). Improvements in our results
might also be possible by a more precise modeling of
the actual query processing cost during the list assignment
phase. Finally, there are many other research challenges that
need to be overcome to enable large P2P-based search en-
gines, including robustness of such large-data-set applica-
tions against changes in the network structure, and efficient
index updates in such systems.
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