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Abstract The Internet of Things (IoT) leads to an ever-

growing presence of ubiquitous networked computing devices

in public, business, and private spaces. These devices do not

simply act as sensors, but feature computational, storage,

and networking resources. Being located at the edge of the

network, these resources can be exploited to execute IoT

applications in a distributed manner. This concept is known

as fog computing. While the theoretical foundations of fog

computing are already established, there is a lack of resource

provisioning approaches to enable the exploitation of fog-

based computational resources. To resolve this shortcoming,

we present a conceptual fog computing framework. Then,

we model the service placement problem for IoT applications

over fog resources as an optimization problem, which explic-

itly considers the heterogeneity of applications and resources

in terms of Quality of Service attributes. Finally, we propose

a genetic algorithm as a problem resolution heuristic and

show, through experiments, that the service execution can

achieve a reduction of network communication delays when
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the genetic algorithm is used, and a better utilization of fog

resources when the exact optimization method is applied.

Keywords Fog computing · Service placement · Resource

provisioning · Internet of Things · Quality of service

1 Introduction

Due to the wide adoption of virtualization and cloud tech-

nologies, companies and end users nowadays are able to lease

computational resources on-demand [2]. As a second major

technology trend, the advent of the Internet of Things (IoT)

leads to an ever-growing presence of networked comput-

ing devices in public, business, and private spaces. These

devices sense the environment, perform computations, and

enact operations by working autonomously or by cooperating

with other devices, being often enriched with Internet con-

nectivity [3]. Furthermore, IoT devices can expose (for free

or under incentives) their computing and storage capabilities.

Together, the proliferation of cloud and IoT technologies

enables small-scale and large-scale smart environments and

systems for various domains, such as smart healthcare, smart

cities, smart energy grids, or smart factories [5]. However,

from a technological point of view, the decentralized nature

of the IoT does not match the rather centralized structure

of the cloud. Today, IoT data are mostly produced in a dis-

tributed way, sent to a centralized cloud for processing, and

then delivered to the distributed stakeholders or other dis-

tributed IoT devices, often located close to the initial data

sources [5]. This centralized processing approach results

in high communication delays and low data transfer rates

between IoT devices as well as the IoT devices and potential

users [4].
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The support of decentralized processing of data on IoT

devices in combination with the benefits of cloud technolo-

gies and virtualization has been identified as a promising

approach to reduce communication overheads and data trans-

fer times in the IoT [4,24]. To realize decentralized data

processing, it is necessary to move parts of the computational

and storage resources needed to process IoT data closer to

data sources and service consumers (i.e., end users or data

sinks) [10]. The underlying conceptual approach, i.e., the

virtualization of IoT devices and the subsequent usage of the

virtualized resources to process data, is known as fog or edge

computing [4]. The community has not yet converged against

crisp definitions of these terms [13]. In the following, we use

the term fog computing for simplicity.

Fog computing mirrors the basic structure of the IoT,

where a multitude of heterogeneous, networked devices

cooperate [3,10]. Fog cells, i.e., single IoT devices coordi-

nating a group of other IoT devices and providing virtualized

resources, are located close to the edge of the network. These

cells allow to execute IoT services to process data in close

vicinity to the data sources and data sinks, instead of involv-

ing the cloud. This leads to lower communication delays, as

well as to a better utilization of already available computa-

tional, storage, and networking resources in the fog. Potential

use cases for fog computing include typical IoT scenarios,

e.g., data prefiltering in Big Data scenarios [8], preprocessing

of data streams from sensor nodes [19], or data processing

in smart systems [26]. In many application areas, fog com-

puting is used in combination with cloud computing, which

can overcome the limited resource availability in the fog with

resources acquirable on-demand.

While the basic idea and theoretical foundations of fog

computing are already established [4,10], there is still a lack

of concrete solutions on resource provisioning. Apart from

the question of how to virtualize the resources offered by

IoT devices, another major barrier for the uptake of fog com-

puting is the question of how to distribute IoT services on

available fog resources.

Hence, in this paper, we describe a conceptual framework

for resource provisioning and service placement in the fog.

For this, we apply the concept of fog colonies. Fog colonies

are micro-data centers made up from an arbitrary number

of fog cells. As in a cloud data center, within a fog colony,

services and data can be distributed and shared between the

single cells. The operational purpose of fog colonies is the

cooperative execution of IoT applications, which are com-

posed of a sequence of services, e.g., as a distributed data flow

(DDF) [16]. Thus, fog colonies aim to move from centralized

cloud-based processing to a decentralized processing net-

work that includes networked IoT devices and allows cloud

offloading and multi-cloud deployment.

Based on this concept of fog colonies, we are able to

orchestrate fog cells and to provide a suitable service place-

ment approach, i.e., a solution on how to place services on

virtualized resources in a fog landscape. For this, we for-

malize an optimization problem that aims to adhere to the

deadlines on deployment and execution time of applications

and to maximize the utilization of existing resources in the

fog. To solve the proposed optimization problem, we apply

different approaches, namely the exact optimization method

and its approximation through a greedy first fit heuristic and a

genetic algorithm. Also, we compare the results to a classical

approach that neglects fog resources and runs all services in a

centralized cloud. The goal of the evaluation is to identify the

best approach to solve the proposed optimization problem in

terms of resulting Quality of Service (QoS) (i.e., application

response times), QoS violations (i.e., application deadline

violations), and cost.

This paper extends our previous work [30] (i) by providing

a motivational scenario based on the application of fog com-

puting for Cyber-Physical Systems (CPS), (ii) by adding a

formal model of the fog landscape and IoT applications to be

executed in that landscape, (iii) by providing a formal defini-

tion of the Fog Service Placement Problem (FSPP), and (iv)

by implementing heuristics to solve the FSPP. With respect

to [30], we have also replaced the simulation environment in

favor of iFogSim [17].

The remainder of this paper is organized as follows: After

motivating our work in Sect. 2, we describe the architecture

of our conceptual fog computing framework in Sect. 3. Next,

in Sect. 4, we formulate the envisioned optimization problem.

We solve the problem by various methods and evaluate the

results in Sect. 5. Afterwards, we discuss the state-of-the-art

work in the area of the fog computing frameworks, resource

provisioning and service placement in Sect. 6. Finally, we

conclude the paper in Sect. 7.

2 Motivational scenario

To motivate our work, we use a scenario from the Euro-

pean H2020 Factories of the Future project Cloud-based

Rapid Elastic Manufacturing (CREMA) [27,28]. The goal

of the CREMA project is to realize Cloud Manufacturing,

which is a paradigm to achieve the objectives of the Indus-

trial Internet (also known as Industry 4.0) based on principles

from cloud computing, Business Process Management, and

the IoT [34]. Mapping these principles to the manufacturing

domain allows a high level of flexibility and interoperability

by integrating single distributed steps of manufacturing pro-

cesses from different organizations as if the complete process

was carried out on the same shop floor.

Various support systems for manufacturing, e.g., Enter-

prise Resource Planning or Manufacturing Execution Sys-

tems, are integrated in Cloud Manufacturing processes.

In addition, IoT technologies like CPS, smart objects, or
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Fig. 1 Implementing cloud manufacturing with fog computing

sensor networks emit vast amounts of data in manufactur-

ing scenarios. This data is consumed by distributed Cloud

Manufacturing stakeholders. So far, cloud computing has

been named as the primary enabler of Cloud Manufac-

turing with regard to the provisioning of computational

resources [34,36]. However, manufacturers tend to create

private clouds to process and store data within their own

premises [15,22].

With the advent of fog computing, it is possible to go

one step further using IoT resources instead of private

cloud-based resources for some tasks in manufacturing pro-

cesses. To realize fog computing in Cloud Manufacturing,

the resources of IoT devices available at the shop floor (e.g.,

smart objects, sensor nodes, CPS, gateways) need to be vir-

tualized and subsequently integrated into a fog landscape.

Based on these virtualized resources, it is possible to deploy

services belonging to manufacturing processes in the fog.

As an example, we consider a monitoring process that

runs several services aiming to collect machine and software

component data and monitor communications among multi-

ple sources, customers, and equipment. Taking into account

the amount of transferred data and the cost of the cloud, the

according services from the process are placed on the compu-

tational resources in the available infrastructure of the shop

floor (see Fig. 1). Thus, the major computationally inten-

sive part of the considered process is located close to the

data sources. The outcome of the monitoring process is then

sent to the management system of the shop floor, which, in

fact, can be located both on the local infrastructure and in

the cloud. This approach facilitates the usage of IoT-based

computational resources, eases the control and monitoring of

online manufacturing devices, allows dynamic reconfigura-

tions of the software infrastructure, and reduces the cost of

using cloud resources [25]. However, to realize this setting,

efficient strategies for defining the placement of manufactur-

ing services in the fog are needed.

It should be noted that the example provided in this section

is illustrative only. Fog computing is a promising approach in

a number of IoT scenarios (e.g., in smart city, smart mobility,

or smart grid scenarios), where a large volume of data needs

to be processed, and the decentralized computation can be

helpful to improve application performance and to relieve

the network stress. Therefore, fog computing is well suited to

achieve the overall objectives of such ‘smart systems’, i.e., to

connect and process data from distributed data sources while

using already existing computational resources, decreasing

processing latency, and offering means to process data on-site

in a privacy-aware manner.

3 Conceptual fog computing framework

In this section, we present the architecture of the fog com-

puting framework depicted in Fig. 2. The framework enables

the enactment of IoT services in an arbitrary fog landscape.

This allows to optimize resource provisioning and service

placement in the fog, as discussed in Sect. 4.

Following the basic structure of fog computing as pre-

sented in [4,10], we allow for resource provisioning and

service placement in both the cloud and fog. To achieve this, a

cloud-fog control middleware is introduced, which controls

all fog cells. IoT applications have to be executable with-

out any involvement of the cloud to reduce communication

delays and cost. Hence, another level of control is necessary,

which needs to run exclusively in the fog. For this, we intro-

duce fog orchestration control nodes, which are a specific

kind of fog cells. A fog orchestration control node manages

a number of fog cells or other control nodes connected to it.

We call such structures fog colonies. In our conceptual frame-

work, we support a hierarchy of fog colonies with a head

element in the cloud, i.e., the cloud-fog control middleware.

The further layers of the hierarchy are the fog orchestration

control nodes, the fog cells, and finally the IoT devices at the

very bottom of the hierarchy (see Fig. 2).

In the following, we use the notion of IoT applications for

tasks which need to be accomplished using computational

resources provided by the cloud or by the fog. The details on

what is an IoT application are given in Sect. 4.1.2. IoT appli-

cations are composed of a set of services to be executed. This

generic definition of applications allows to model different

Fig. 2 Fog computing framework overview
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kinds of IoT applications, e.g., data stream processing appli-

cations, MapReduce jobs, distributed data store services, and

the processes presented in Sect. 2. In the following subsec-

tions, we will present the top-level components of the fog

computing framework in more detail.

3.1 Cloud-fog control middleware

The cloud-fog control middleware is a central unit that man-

ages the execution of applications in the cloud, and supports

the underlying fog landscape. The middleware performs

cloud resource provisioning and placement for services that

are not delay-sensitive or cannot be executed in the fog,

e.g., resource-intensive Big Data analysis. If necessary, the

middleware performs global optimization of underlying fog

colonies by restructuring them. For this, the cloud-fog control

middleware is supplemented by both the means to con-

trol the cloud and the means to manage the underlying fog

colonies. Such control is performed continuously or on-

demand, depending on system events, e.g., if new fog devices

appear which can be used to deploy fog cells, or to recover

after faults of fog cells. Importantly, the cloud-fog control

middleware can overrule fog orchestration control nodes in

fog colonies, but the latter may also act autonomously in the

case that no middleware is available.

3.2 Fog cells

Fog cells are software components running on IoT devices.

They serve as access points allowing to control and mon-

itor the underlying IoT devices, e.g., sensor and actuator

nodes. They may interact with an arbitrary number of other

IoT devices. However, in practice, the number of devices to

be controlled by a fog cell is limited by its computational

resources.

Each fog cell consists of the following components (see

Fig. 3). The listener receives requests for service place-

ment from the fog orchestration control node. The moni-

Fig. 3 Fog cell and fog orchestration control node architecture

tor observes service executions in the compute unit. The

database stores data about received requests, the current

system state of the fog cell, i.e., available resources, and

monitoring data. The fog action control performs actions

according to the service placement plan produced by the fog

orchestration control node, e.g., to deploy and start a partic-

ular service (see Sect. 3.3). The compute unit provides the

actual computational resources for the deployment and exe-

cution of services.

Fog cells expose REST APIs for data transfer and control

actions. The Data API allows basic CRUD operations over

the data stored within a fog cell, and the Deploy API allows

performing control actions for services running in the fog

cell, i.e., instantiating, starting, stopping, and deleting ser-

vices [4]. To become a member of a fog colony, a fog cell

needs to use the Data and Deploy APIs of the corresponding

fog orchestration control node, and at the same time expose

its own Data and Deploy APIs for other fog cells.

3.3 Fog orchestration control nodes

The main task of a fog orchestration control node is to support

a fog colony. Each fog colony features exactly one head fog

orchestration control node which is a powerful fog cell with

extended functionality for executing services and managing

the resources offered by subordinated fog cells. Opposed to

fog cells, fog orchestration control nodes can receive requests

for execution of IoT applications from users. Additionally,

the control node is able to propagate requests for service

placement to the cloud-fog control middleware or to other

fog colonies (via their fog orchestration control nodes), when

services cannot be handled by the current fog colony. For

this, a service placement mechanism is necessary to identify

how services can be delegated in the entire fog landscape.

Fog orchestration control nodes (i) perform infrastructural

changes in the fog colony, (ii) analyze resource utilization

within the colony, (iii) calculate a service placement plan to

allocate resources for services, and (iv) monitor fog cells.

An approach to optimize service placement is described in

Sect. 4.

On the left-hand side of Fig. 3, the extensions needed for

fog orchestration control nodes are depicted. The reasoner

component produces a service placement plan that deter-

mines where each service of requested IoT applications needs

to be deployed. The reasoner also gets information about the

system state from the adjacent fog cells, i.e., available fog

colony resources, controls the connected fog cells, and plans

infrastructural changes in the fog colony, if necessary. If the

considered fog colony does not provide sufficient resources

or further processing is needed, such requests are separated

and propagated to other fog colonies by the propagation com-

ponent via the fog orchestration control node. The watchdog

receives up-to-date information about the utilization of the
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connected fog cells. It observes monitoring data from the

database and compares that data to the expected QoS levels,

i.e., measures the consumption of computational resources

in the fog colony as well as QoS parameters, e.g., the execu-

tion time. This information influences the decision-making

in the reasoner, i.e., if any expected QoS level is exceeded,

the notification is sent to the reasoner to replan the service

placement. The service registry hosts service implementa-

tions and enables the fog action control to search for services

and to deploy them on the fog cell compute units. The service

registry is located in the storage unit of control nodes, since

storing service implementations is resource-consuming. In

addition to the fog cell’s functionality, the listener is extended

to receive requests for application execution. These requests

can be newly submitted to the listener of the fog orchestra-

tion control node, or propagated from another fog colony

in the fog landscape. The database stores the service

placement plan produced by the reasoner. The fog action

control performs the service placement according to the

plan.

It should be noted that an alternative approach would be a

decentralized orchestration of fog cells in a fog colony, i.e.,

without a centralized control node. While this leads to higher

fault tolerance, it also involves extensive coordination and

voting between the involved fog cells. Therefore, we opt for

a more centralized approach in this work. However, we still

foresee that another fog cell becomes the fog orchestration

control node in a fog colony, if necessary, e.g., in case the

original fog orchestration control node fails.

4 Service placement in the fog

As discussed in Sect. 3, it is necessary to provide the fog

orchestration control node of each fog colony as well as the

cloud-fog control middleware with means to analyze sub-

mitted requests for IoT application executions and place

according services onto specific virtualized resources. For

this, the fog orchestration control node needs a complete

overview of the system state of its fog colony and data

about neighbor colonies. With this system state as input,

the reasoner is able to compute a service placement plan

and to send requests for service placement to particular fog

resources. As stated in Sect. 3.3, we assume that each fog

colony is autonomous, i.e., the cloud-fog control middle-

ware is only involved if a fog colony needs additional cloud

resources.

As in the field of cloud resource optimization, mani-

fold goals for resource provisioning and optimal service

placement are possible, e.g., time, cost, or energy efficiency

optimization [1,24,31]. In the following, the goal of service

placement optimization is to maximize the utilization of a fog

landscape and to adhere to the QoS expectations of applica-

tions, i.e., deadlines on the application execution time. First,

this means that the computational resources offered by fog

cells have to be utilized as much as possible. Second, the

data needed and sourced within a particular fog colony have

to be handled by that particular colony, if possible. If the fog

colony is overloaded, another fog colony in the fog landscape

has to be utilized, e.g., the closest neighbor colony. If the uti-

lization of the closest neighbor colony for requested service

placements results in violations of deadlines of applications,

then the corresponding services have to be deployed in the

cloud.

Together, these goals form the foundation for an opti-

mization problem, as will be presented in the upcoming

subsections. Based on the solutions to this optimization prob-

lem, the fog orchestration control node either instantiates

services on particular fog cells, or propagates requests for

specific service execution to the closest neighbor colony or

to the cloud. We refer to this problem as the Fog Service

Placement Problem (FSPP). In addition to the optimization

problem presented in Sect. 4.2, we design and implement a

genetic algorithm (GA) as a heuristic approach to solve this

problem.

4.1 System model

In order to formulate the FSPP, we define a model of the

resources in a fog landscape in Sect. 4.1.1 and a model of

IoT applications to be executed in the fog in Sect. 4.1.2.

Afterwards, we formulate the FSPP in Sect. 4.2. In Table 1,

we outline the notation used in the FSPP.

4.1.1 Fog landscape

The basic entity in a fog landscape is a fog colony. Each

fog colony consists of ‘thin’ IoT devices which do not pos-

sess any computational power, i.e., sensors and actuators,

and ‘fat’ IoT devices which possess computational power

and can be virtualized, i.e., fog cells and fog orchestration

control nodes. A fog orchestration control node F represents

the head of a colony and oversees the service placement and

execution. F controls subordinate fog cells, which are identi-

fied as the set Res(F). Fog cells f j ∈ Res(F) are equipped

with sensors and actuators. All the communication in the fog

colony is performed through the fog orchestration control

node. The communication link between the fog orchestra-

tion control node and a particular fog cell f j is identified

by a non-negligible delay d j . The CPU utilization of the fog

orchestration control node and fog cells is indicated by U F

and U f j
, respectively. Analogously, M F and M f j

refer to

the RAM capacities of the fog orchestration control node F

and a fog cell f j , and SF and S f j
refer to storage capacities

of F and f j , respectively.
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Table 1 FSPP notation

Notation Definition

Time t Current time

τ Interval between two rounds of the FSPP (in s)

Fog

Landscape

R Cloud

F Fog orchestration control node of the fog colony

N Closest neighbor fog orchestration control node

Res(F) Fog cells in the fog colony

U F CPU capacity of F

M F RAM capacity of F

SF Storage capacity of F

f j Fog cell in a fog colony

U f j
CPU capacity of f j

M f j
RAM capacity of f j

S f j
Storage capacity of f j

d f j
Link delay between F and f j

d R Link delay between F and R

d N Link delay between F and N

Applications A Set of applications to be executed

Ak Application

DAk
Application deadline

wAk
Deployment time of an application

m Ak
Makespan of an application

rAk
Response time of an application

ai Service in an application

Uai
CPU demand of a service

Mai
RAM demand of a service

Sai
Storage demand of a service

mai
Makespan of a service

Resai (F) All fog cells able to host a service ai

For each fog colony, we consider a neighborhood of fog

colonies and identify the most efficient neighbor colony. For

the purpose of the FSPP, the criterion for that is to find the

closest neighbor colony by comparing communication link

delays between the fog orchestration control node F and con-

trol nodes of all other neighbor colonies. We indicate N as the

fog orchestration control node of the closest neighbor colony.

The communication link between F and N is characterized

by a non-negligible delay d N .

A cloud-fog middleware is responsible for the utilization

of resources of the cloud R; hence, it represents a commu-

nication bridge between fog colonies (by means of their fog

orchestration control nodes) and the cloud. Even though the

fog colonies are assumed to be autonomous, the cloud-fog

control middleware can overrule fog orchestration control

nodes if needed, e.g., in the case of a failure or fog colony

overload. The communication link between F and R is char-

acterized by a non-negligible delay d R .

4.1.2 IoT applications and services

The fog colony controlled by F receives m requests for appli-

cation executions. Let A be a set of m IoT applications to

be executed. The IoT application follows the DDF deploy-

ment model [16]. Each Ak ∈ A contains a set of services,

where each service ai ∈ Ak has to be placed on a virtu-

alized (cloud or fog) computational resource. The modeled

applications require that each composing service has to be

deployed before the application can start its execution, i.e.,

before data starts flowing between services. The application

response time rAk
is a sum of (i) the overall makespan dura-

tion m Ak
and (ii) the overall deployment time wAk

of the

application. The overall makespan duration of the applica-

tion m Ak
results from the communication delays among fog

devices and from the makespan duration of each application

service ai ∈ Ak . The makespan duration mai
of a service ai

is the time interval between starting and finishing the execu-

tion of ai . The overall deployment time of the application is

wAk
, and it depends on the current deployment time wt

Ak
of

the application and the additional time that occurs when any

service in the application is propagated to the closest neigh-

bor colony. The current deployment time indicates the time

elapsed since the request for execution of the application,

e.g., when any service from this application was propagated

from a neighbor colony, this time is stored in wt
Ak

. The details

about the response time estimation are provided in Sect. 4.2.

We assume the deployment time of application wAk
already

accounts for all the management operations which define and

enact service placement. Each application possesses a dead-

line for deployment and execution DAk
defined by users of

the application. Each service ai is defined by its demands of

CPU Uai
, RAM Mai

, and storage Sai
, and by a service type.

The service type indicates that a service ai has to be placed

on specific kinds of virtualized resources in the fog land-

scape. Without loss of generality, we consider three different

service types, namely sensing, processing, and actuating ser-

vices. There is no need to introduce notation for service types,

as they are accounted for in the system model (see variables

in Sect. 4.2).

4.2 Optimization problem

Based on the introduced entities of the fog landscape and IoT

applications, we define the FSPP. The FSPP aims to perform

an optimal placement of services on resources in a fog land-

scape. The solution of the FSPP is a service placement plan

that contains mapping decisions which place each service

either on fog cells or on the fog orchestration control node,

and propagation decisions, which propagate the placement

requests to the closest neighbor colony or to the cloud. The

fog orchestration control node periodically solves the FSPP,

every τ time units, to compute the placement of applications
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requested for execution. When requests are submitted to the

fog colony, their placement is postponed to the next closest

optimization round of the FSPP, indicated by its start time t .

When all the application services are correctly assigned, the

application can start its execution.

Problem variables First, we define the decision variables

which form a service placement plan. The binary variables

x
f j

ai
and x F

ai
denote whether service ai has to be placed

on a fog cell f j or on the fog orchestration control node

F , respectively. The binary variables x N
ai

and x R
ai

indicate

whether service ai has to be propagated to the closest neigh-

bor colony, indicated by N , or to the cloud R, respectively.

For each service ai , we consider a set of fog cells Resai (F),

with Resai (F) ⊆ Res(F), which can host and execute ai .

This definition allows to easily account for the compatibility

between the service type (i.e., sensing, processing, and actu-

ating services) and the allocated resource. In other words, all

the fog cells in Resai (F) are ready to execute the service ai .

Goal function The objective of the FSPP is to maximize

the number of service placements to fog resources (rather

than to cloud ones), while satisfying the requirements of each

application, as in (1).

max

A
∑

Ak

⎛

⎝P(Ak) ·

Ak
∑

ai

⎛

⎝

Resai (F)
∑

f j

x
f j

ai
+ x F

ai
+ x N

ai

⎞

⎠

⎞

⎠ (1)

Propagating any service to the cloud or to the closest

neighbor colony introduces communication and deploy-

ment delays, which can be detrimental when the application

response time is approaching the deadline. Therefore, the

application requests for placement are prioritized using the

coefficient P(Ak) defined in (2). P(Ak) depends on the dis-

tance between the application deadline DAk
and its (already

passed) deployment time in t , denoted as wt
Ak

. The latter

accounts for the time waited by the application before it is

correctly assigned to the computational resources. The key

idea is to first grant fog resources to the applications that have

spent a high waiting time for deployment, with respect to the

application deadline (which cannot be violated, as specified

in the following constraints).

P(Ak) =
1

DAk
− wt

Ak

(2)

Constraints First, CPU, RAM, and storage demands of

services placed on certain fog resources must not exceed the

available resources of those devices, as defined in (3) and (4).

The equations allow also to consider a percentage of system

resources γ ∈ [0, 1] that should be preserved free on each

fog cell (e.g., to allow for its operational maintenance).

A
∑

Ak

Ak
∑

ai

Cai
x

f j

ai
≤γ C f j

, ∀ f j ∈ Resai (F), C ={U, M, S}

(3)

A
∑

Ak

Ak
∑

ai

Cai
x F

ai
≤ γ C F , C = {U, M, S} (4)

Second, it has to be ensured that the response time rAk
of

each application does not violate the deadline DAk
of that

application, as defined in (5).

rAk
≤ DAk

, ∀Ak ∈ A (5)

The application response time rAk
is calculated as the sum

of the overall makespan duration of the application m Ak
and

its deployment time wAk
, according to (6).

rAk
= m Ak

+ wAk
(6)

The makespan duration m Ak
accounts for the time needed

to execute all the application services (in the fog landscape

or in the cloud), together with the time needed to per-

form communications among services (which traverse the

fog orchestration control nodes). Therefore, the application

makespan duration m Ak
is a sum of communication link

delays in each case of placement of a service on a particu-

lar virtualized resource multiplied by an according decision

variable as in (7). The factors d(ai , f j ), d(ai , F), d(ai , R),

and d(ai , N ) represent the makespan duration of a service

ai when it is executed on the fog cell f j , the control node

F , the cloud R, and the closest neighbor colony N , respec-

tively. These factors are formalized in (8)–(11). Details on

how the estimation of the response time is performed can be

seen further in Example 1.

m Ak
=

Ak
∑

ai

⎛

⎝

Resai (F)
∑

f j

d(ai , f j )x
f j

ai
+ d(ai , F)x F

ai
+

+ d(ai , R)x R
ai

+ d(ai , N )x N
ai

⎞

⎠ (7)

d(ai , f j ) = d f j

+ mai
(8)

d(ai , F) = mai
(9)

d(ai , R) = 2d R + mai
(10)

d(ai , N ) = 2d N + mai
(11)

The application deployment time wAk
considers the time

elapsed before each service is correctly placed on the com-

putational resources (either fog or cloud). Specifically, wAk

accounts for the already passed plus the additional expected

deployment time that appears if any service ai ∈ Ak is
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propagated to the closest neighbor colony. To account for

this additional deployment time, we rely on the auxiliary

variable yAk
. Let yAk

= 1 if at least one service in Ak is

propagated to the closest neighbor for colony, yAk
= 0 oth-

erwise. We formalize the application deployment time wAk
as

follows:

wAk
= wt

Ak
+ τ yAk

+ T
t

wN
yAk

(12)

The second and third terms provide a contribution only if

yAk
= 1. Specifically, τ yAk

models that, by propagating

any service to the closest neighbor colony, the application

deployment is postponed to at least τ time units, whereas

T
t

wN
yAk

models the additional deployment time spent in

the closest neighbor colony before the application execu-

tion. Indeed, the closest neighbor colony can decide to place

the service as soon as possible or to further postpone its

execution by propagating the request to its related neigh-

bor colony. To calculate the expected deployment time in

the closest neighbor colony T
t

wN
requires to view forward in

time, which is not feasible in practice. Therefore, we estimate

T
t

wN
relying on historical data. T

t

wN
is obtained as the mov-

ing average of parameter α on the latest sampled deployment

time T t−τ
wN

per each service propagated to the closest neighbor

colony:

T
t

wN
= αT t−τ

wN
+ (1 − α)T

t−τ

wN
(13)

where α ∈ [0, 1] represents the discounting factor of the

moving average, T t−τ
wN

is the recorded deployment time of

the service forwarded to N at time t − τ , and T
t−τ

wN
is

the expected average deployment time in N as estimated

in t − τ .

Provided that |Ak | is the cardinality of Ak , this variable

yAk
is modeled by means of the equations (14) and (15) as a

logical OR among the placement variables x N
ai

with ai ∈ Ak .

It has to be noted that yAk
does not consider the case when

a service is propagated to the cloud, where the service is

deployed immediately, without waiting for the optimization

procedure as in the closest neighbor fog colony.

yAk
≤

Ak
∑

ai

x N
ai

, ∀Ak ∈ A (14)

yAk
≥

∑Ak
ai

x N
ai

|Ak |
, ∀Ak ∈ A (15)

Finally, we define that each service ai can be placed or

propagated on exactly one computational resource, i.e., fog

Fig. 4 Example of service placement

cell f j , fog orchestration control node F , the closest neigh-

bor control node N , or to the cloud R:

Resai (F)
∑

f j

(

x
f j

ai

)

+ x F
ai

+ x N
ai

+ x R
ai

= 1 ,

∀ai ∈ Ak , ∀Ak ∈ A (16)

Example 1 To clarify the calculation of the response time of

an application, we provide an example for an application A1

that consists of four services A1 = {a1, a2, a3, a4} and is dis-

tributed between two fog colonies. Let the assignments to the

fog devices be as follows: Service a1 is placed on f 1, a2 is

placed on F , a3 is propagated to the closest neighbor colony

N , and a4 is placed on f 2 (Fig. 4). In this example, we assume

that the application had no previous deployment time, so that

wt
A1

= 0, and in the closest neighbor colony with the control

node N the average deployment time is T wN
(t). The response

time rA1 is calculated according to (6)–(11) as shown in (17).

To be able to calculate estimations of according factors of

data transfers between services in an application, as neces-

sary for (8)–(11), we use the notion of triangular inequality

in the network [9], which helps to find an approximate dis-

tance and according delay between two network locations,

which is assumed to be bigger than the direct delay between

two locations (see Fig. 4).

rA1 = d f 1
+ ma1 + ma2 + d N + ma3 +

+ d N + d f 2
+ ma4 + T wN

(t) + τ (17)

Domain definition The domain definition for the FSPP

decision variables results from (18)–(22):

x
f j

ai
∈ {0, 1}, ∀ai ∈ Ak , ∀Ak ∈ A, ∀ f j ∈ Resai (F) (18)

x F
ai

∈ {0, 1}, ∀ai ∈ Ak , ∀Ak ∈ A (19)

x R
ai

∈ {0, 1}, ∀ai ∈ Ak , ∀Ak ∈ A (20)

x N
ai

∈ {0, 1}, ∀ai ∈ Ak , ∀Ak ∈ A (21)

yAk
∈ {0, 1}, ∀Ak ∈ A (22)
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4.3 Genetic algorithm

In general, the service placement problem has been shown

to be NP-complete [21]. Hence, we present a heuristic to

solve the FSPP. The choice to design and implement a GA

to solve the FSPP was based on the popularity of GAs in

solving service composition problems in cloud-based envi-

ronments [35]. The main advantage of GAs is that they allow

to investigate a large search space and provide a viable qual-

itative solution in polynomial time [38,39].

As the name implies, GAs intend to mimic evolutionary

processes [33]. One iteration of a GA implies the application

of three genetic operators in one generation, i.e., selection,

crossover, and mutation. A generation consists of a popula-

tion of individuals, where each individual is represented by

its own chromosome. Each chromosome consists of genes.

The selection operator considers the population of individu-

als in the current generation and chooses the best individuals

to let them reproduce and have an offspring, i.e., new individ-

uals, which form the next generation. The selection operator

assesses the fitness function of the chromosome of each indi-

vidual. The fitness function shows the level of ‘health’ of a

chromosome, and is calculated based on a goal function and

the constraints of an optimization problem. After a certain

percentage of individuals in a population has been chosen for

reproduction, the crossover operator starts swapping genes

of chromosomes of chosen individuals to create an offspring.

The elite of each generation, i.e., the individuals with the best

fitness values, go to the next generation unaltered. The muta-

tion operator performs a mutation of a certain number of

individuals from the new offspring to support the diversity

of generations, i.e., the mutation changes a random number

of genes in the chromosome of an individual. Consequently,

an old generation is evolving into a new generation with a

population filled by both the unaltered elite and offspring.

The algorithm repeats this process until a certain stopping

condition is fulfilled. As stopping condition, various criteria

may be used, e.g., the number of generations, the moment

when the fitness function has no improvement with regard to

a certain tolerance value, or a specific moment in time. In the

following, we describe the concrete implementation of the

GA to solve the FSPP.

Chromosome representation In our implementation, the

chromosome encoding is a vector, which represents a ser-

vice placement plan, i.e., a solution to the FSPP. The length

of the chromosome is the total number of services from all

applications, which were requested for execution at time t ,

i.e.,
∑A

Ak
|Ak |. Therefore, each service can be easily identi-

fied by the position of the according gene in the chromosome.

Each gene in a chromosome denotes a certain placement of a

service on a specific fog resource. A gene is an integer value

corresponding to the unique identifier of the computational

resource (i.e., fog cell, fog orchestration control node, the

Fig. 5 Chromosome representation

4 5 54 1 3 ... ... 1 6

Fig. 6 Chromosome contents

closest neighbor colony, or the cloud). A position of a gene

in a chromosome along with its integer value represents the

service placement on the resource (see Fig. 5). Such chro-

mosome encoding ensures the placement of all services.

Apart from encoding the placement, an estimated system

state can be derived from the information in the chromo-

some (Fig. 6). This information includes the used CPU,

RAM, and storage capacities of fog resources (both fog cells

and fog orchestrator control nodes), and according response

times of applications, which will be obtained if the service

placement according to the considered chromosome repre-

sentation is enacted. The estimated system state is calculated

based on the genes of the chromosome. This calculation is

performed whenever the chromosome is created, i.e., also

after crossovers and mutations.

Fitness function The fitness function for each chromosome

is calculated based on the principle of encouragement if the

chromosome fulfills the constraints of the FSPP, and of pun-

ishment in the other case [37]. We consider three types of

constraints: (i) a set of constraints Ψ on capacities of CPU,

RAM and storage resources, (ii) a set Γ of implicit binary

constraints derived from the model’s goal function, i.e., con-

formance to service types, indications whether services are

placed on the fog resources, and (iii) a set of constraints

Υ causing the ‘death’ of chromosomes, specifically, service

type violations and deadline violations. To calculate the fit-

ness function of a chromosome c, we have to account for

these three types of constraints.
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First, we consider whether the constraints ∀βp ∈ Ψ are

satisfied (i.e., if βp(c)≤0) or not satisfied (i.e., if βp(c) > 0),

as in (23):

δβp(c) =

{

0, if βp(c) ≤ 0

1, if βp(c) > 0
(23)

Similarly, δβγ (c) denotes whether the constraints from Γ are

satisfied (βγ (c) = 0), or not (βγ (c) = 1). Regarding the Υ

constraints, the penalty distance from the satisfaction of Υ

constraints for c is defined in (24), where βυ denotes a con-

straint, and δβυ (c) indicates whether a constraint was violated

in the current chromosome c, i.e., δβυ (c) = 1.

D(c) =
∑

βυ∈Υ

δβυ (c) (24)

Provided that ωβp(c) is a weight factor of constraint βp ∈ Ψ ,

ωβγ (c) is a weight factor of constraint βγ ∈ Γ , and ωp is

the penalty weight factor for the Υ constraints, the fitness

function is calculated according to (25):

F(c) =
∑

βp∈Ψ

ωβp (1 − 2δβp(c)) +

+
∑

βγ ∈Γ

ωβγ (1 − 2δβγ (c)) − ωp D(c) (25)

If constraints βp or βγ are satisfied in the considered chromo-

some c, then δβp(c) and δβγ (c) become 0, and the according

values within the first and the second terms are added to

the fitness function. When the constraints are not satisfied,

δβp(c) and δβγ (c) become 1, and the according values result-

ing from the first and second terms are subtracted from the

fitness function. The third term ensures penalty ωp D(c) for

having D(c) other than 0, where the penalty factor ωp has to

be big enough to ensure that the worst chromosomes do not

participate in breeding individuals of next generations in the

GA.

Genetic operators As for the parameters of the GA

operators, we use the 80%-uniform crossover, tournament

selection, random gene mutation with 2% mutation rate,

elitism rate of 20%, and a population size of 1000 individ-

uals, which were set based on pre-experiments where these

parameters were varied. The uniform crossover was chosen

because genes are integer values. 80% of selected individuals

perform crossovers. To combine genes from parent chromo-

somes, a fixed mixing ratio is used, e.g., a ratio value of 0.5

means that 50% of genes come from each parent. As for

the tournament selection, each of the two chromosomes is

selected based on the tournament with a certain arity. This

is done by drawing a number of random chromosomes (here

the arity is 2) without replacement from the population and

then selecting the fittest chromosome among them. The 2%

random gene mutation means random genes in chromosomes

mutate with the probability of 2%.

Stopping condition The stopping condition of the GA is

activated when the fitness function achieves a tolerance value

of ǫ = 10−4, which is the average relative change in the fit-

ness value over generations. During each run of the GA, the

fitness function increases because less penalties are applied to

the individuals. Therefore, the stopping condition performs

only when the fitness function of the fittest individual in the

generation is a positive value, i.e., when there are no ‘death’

penalties applied to the individual. Additionally, we include

an auxiliary stopping condition with a maximum limit of gen-

erations achieved to eliminate unproductive time-consuming

search.

In the next section, we evaluate our GA compared to the

exact optimization method and to a baseline, namely the

greedy first fit heuristics, and to the execution in the cloud.

5 Evaluation

Our evaluation aims to show the performance of various

approaches of solving the FSPP. To apply the different

approaches in a fog environment, we use the fog simula-

tion toolkit iFogSim [17] to simulate the fog landscape and

cloud resources.

5.1 Evaluation environment

While iFogSim features most of the entities necessary to

model a fog landscape as described in Sect. 3, some modifi-

cations of the entities were necessary. The Application class

is extended by the means to account for the deployment and

response times of an application, and the application dead-

line. The FogDevice class is extended to perform as a fog

orchestration control node. For that, the class was supple-

mented with the functionality to analyze the utilization of

resources in the underlying fog colony and to identify the

closest neighbor colony to propagate services to. To adhere

to the FSPP constraints, the functionality to calculate a mov-

ing average of deployment times of applications in the closest

neighbor colony was implemented (as described in Sect. 4.2).

5.2 Evaluation scenarios

We solve the FSPP by a greedy first fit heuristic (called

the ‘First Fit’ scenario), which serves as a baseline for our

evaluation, the exact optimization method (see Sect. 4.2)

implemented by the means of the IBM CPLEX library1

1 https://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/.
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(called the ‘Optimization’ scenario), and the GA (called the

‘Genetic’ scenario) introduced in Sect. 4.3. If the fog land-

scape is not available at all, the execution is performed solely

in the cloud (called the ‘Cloud’ scenario).

In the First Fit scenario, a service placement plan is pro-

duced by searching a first fit fog resource [6,30]. Hence, a

list of all available fog devices in the fog landscape is sorted

by the communication link delays between each resource

and the fog orchestration control node, by available resource

capacities, and by the types of services. The placement of

services on fog resources is prioritized over the placement

in the cloud. The first fit algorithm iterates over each service

of each application in a cycle and checks if the current fog

device in the sorted list of fog devices satisfies the service and

application requirements. If the fog colony cannot host a ser-

vice, the service request is propagated to the closest neighbor

colony.

The Genetic scenario is based on the GA that is discussed

in Sect. 4.3.

The solution of the FSPP in the Optimization scenario is

computed by the exact optimization method implemented by

the means of the IBM CPLEX solver. To simplify the use of

this solver, the open source Java ILP library2 is applied.

In the Cloud scenario, all the services are placed on cloud

resources. This scenario aims to show the benefits of decen-

tralization in fog landscape.

5.3 Experimental setup

As setup for the evaluation, we consider five different appli-

cations following the motivational scenario, i.e., motion,

video, sound, temperature, and humidity processing applica-

tions in the manufacturing shop floor, and according sensors

and actuators. The IoT applications are simulated by the

means of iFogSim (iFogSim supports the DDF deployment

model [17]). The needs in resources for application services

are predefined to ensure that one computational device can-

not host a whole application and to show that the FSPP is

flexible and reacts on different input parameters. Service

makespan durations were set based on received average data

from pre-experiments run in iFogSim for specified services.

A summary of the experimental setup is shown in Tables 2

and 3.

We observe a service placement in one fog colony that

consists of ten fog cells connected to a fog orchestration con-

trol node. The communication link delays between the fog

orchestration control node and the cloud, the closest neighbor

colony, and fog cells are correspondingly 1, 0.5, and 0.3 s. In

reality, the communication link delays depend on the physi-

cal distance between resources.

2 https://sourceforge.net/projects/javailp/.

Table 2 Application resource demands

Service Uai
(MIPS) Mai

(MB) Sai
(MB) mai

(s)

Sense 50 30 10 0.90

Process1 200 10 30 0.10

Process2 200 20 30 0.10

Process3 100 30 30 0.25

Actuate 50 20 10 0.50

Table 3 Application details

Application DAk
(s) wAk

(s)

A1 120 60

A2 300 0

A3 300 60

A4 360 60

A5 240 0

In the closest neighbor colony, the expected deployment

time of applications is T
t

wN
= 3 min, and the sampled

deployment time in the previous round of FSPP period is

T t−τ
wN

= 2 min. Also, in the experiments, we additionally

vary these parameters to show their influence on the sys-

tem behavior. The CPU, RAM and storage resources in the

fog orchestration control node are 1000 MIPS, 512 MB, and

8 GB accordingly. The respective resources of the fog cells

are 250 MIPS, 256 MB, and 4 GB. In the experiments, CPU

capacities of fog resources are also varied to show their

influence on service placement. All three service types, i.e.,

sensing, processing, and actuating services, can be executed

in the fog colony and the cloud, whereas only processing ser-

vices can be propagated to the closest neighbor colony. The

processing cost in the cloud is $0.30 per billing time unit

(BTU), i.e., 1 h, as in [30].

Finally, we use for the optimization model α = 0.5 to

update the expected deployment time in the closest neighbor

fog colony, i.e., T
t

wN
. In the Genetic scenario, we set the

weight factor ω =1 for all constraints [37], and the penalty

weight ωp is 1000, which are explained in Sect. 4.3.

5.4 Evaluation metrics

To show how a service placement plan allows to meet the

application deadlines, we observe the response times of

applications. A difference between the application deadline

and its response time DAk
− rAk

shows how far the response

time is from the respective deadline.

A service execution delay indicates how much time is

spent by a service in the network. This metric is calculated

by the means of the simulation environment depending on

the communication link delays between resources.
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Table 4 Scenario performance comparison

Scenario rAk
(s) DAk

− rAk
(s) Placement (%) Cost

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 f j F N R ($)

Optimization 62.43 262.6 64.66 322.9 4.89 57.56 37.34 235.3 37.1 235.1 40 24 24 12 0.09

First fit 61.42 262.6 322.8 322.8 264.4 58.57 37.34 -22.87 37.11 -24.43 40 16 44 0 0.00

Cloud 60.00 0.001 60.00 60.00 0.001 59.99 299.9 239.9 299.9 239.9 0 0 0 100 4.81

Table 5 Genetic algorithm performance

Metrics A1 A2 A3 A4 A5 Average placement Cost

Resource (% of all services) ($)

rAk
(s) 65.65 262.47 65.83 322.64 5.19 f j 28.8 (σ = 3.92)

(σ = 1.48) (σ = 0.27) (σ = 1.38) (σ = 0.25) (σ = 0.29) F 11.2 (σ = 1.60) 0.22

DAk
− rAk

(s) 54.34 37.52 234.16 37.35 234.80 N 24.0 (σ = 2.52) (σ = 0.02)

(σ = 1.48) (σ = 0.27) (σ = 1.38) (σ = 0.25) (σ = 0.29) R 36.0 (σ = 4.38)

The utilization of the fog (cloud) is calculated as a ratio

of the number of services placed on fog (cloud) resources to

the total number of services. This metric demonstrates the

usage of different resources.

In order to show how the model behaves in different

conditions, we analyze intrinsic relationships between the

service placement and different parameters (i.e., strict or

loose deadlines, overloaded or underloaded resources, aver-

age deployment time in the closest neighbor colony, time

between two subsequent optimization periods), which gives

insights into the system behavior.

Assuming ownership of the fog landscape, the cost of ser-

vice execution in the fog can be neglected. The cost of service

execution is calculated for the usage of cloud resources as a

product of the cost per processing in the cloud and time in

seconds of using cloud resources divided by the number of

seconds in 1 BTU.

5.5 Results and discussion

The aim of this evaluation is to observe the executions of ser-

vice placement plans provided by various approaches, i.e., in

the First Fit, Genetic, and Optimization scenarios. By apply-

ing service placement plans, we observe response times of

applications, deadline violations, the utilization of resources,

and the processing cost. Additionally, these results are com-

pared with the results of the Cloud scenario. An overview of

the results is shown in Table 4. A summary of the results of

the Genetic scenario is shown in Table 5. These results were

separated as the GA is a non-deterministic algorithm, which

required running multiple repetitions of the experiments to

achieve an average and deviation of the results.

Fig. 7 Response times of applications

5.5.1 Deadline violations and service delays

The First Fit scenario results in deadline violations for the

applications A3 and A5 by 22.87 and 24.43 s, respectively. In

the Genetic, Optimization, and Cloud scenarios, the service

placement solution does not violate deadlines; however, each

approach leads to different results in terms of fog resource

utilization and application response times (see Table 4). In

the First Fit scenario, the services are propagated to the

closest neighbor fog colony when the current colony is not

able to execute them because of resource constraints. The

cloud has the lowest priority in the desirable service place-

ment. Therefore, in the First Fit scenario processing services

are propagated to the closest neighbor colony. Because the

resources in the fog landscape are less powerful than cloud

resources, the spikes in Fig. 8 appear. Even though the

deadlines in the Genetic and Optimization scenarios are not

violated, the delays in single service executions on average

are smaller in the Genetic scenario compared to the Opti-

mization scenario.

The response times of applications and delays for single

service executions in the four scenarios are depicted in Figs. 7

and 8. In Fig. 7, the Cloud scenario does not violate deadlines,
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Fig. 8 Service execution delays

Fig. 9 Impact of application deadlines on response times

and services are executed immediately after submission of

application requests because of the theoretically unlimited

resources of the cloud. However, in reality, the utilization

of cloud resources leads to higher execution cost and higher

communication delays due to the physical distance of the

cloud data center.

To show the impact of application parameters on response

times, we conduct another experiment which varies the

deadline parameter of application A4 (Fig. 9) and observes

response times of all applications. A4 was chosen for this

experiment as it has the biggest response time (see Tables 4

and 5). Given the parameters of the applications as shown

in Table 3, when the deadline is below 120 s, the process-

ing services of A4 are assigned only to the fog orchestration

control node as this is the closest deadline among all appli-

cations. Above 120 s and below 300 s, the application A1 has

a closer deadline than A4, and therefore processing services

of A1 and one processing service of A4 are placed on the fog

orchestration control node, and the rest two processing ser-

vices of A4 are propagated to the cloud. Above 300 s, A4 has

enough time to wait for the deployment, and therefore, some

services are propagated to the closest neighbor colony, and

both τ and T
t

wN
affect the response time of the application

A4.

5.5.2 Utilization of the fog landscape

In the First Fit scenario, all sensing and actuating services

are placed on the different fog cells in the fog colony, four

processing services are placed at the control node, and the

remaining 11 processing services are propagated to the clos-

est neighbor colony.

Fig. 10 Utilization of resources

Fig. 11 Impact of T
t

wN
on service placement

In the Genetic scenario, the sensing services of applica-

tions A1, A3, and A5 are placed on the fog cells, the actuating

services are placed either on the fog cells or in the cloud, and

the processing services are placed in the cloud. This service

placement plan includes 36% of placements in the cloud,

and the available resources of the fog colony are not used

optimally, i.e., the fog orchestration control node has enough

free resources to host more services. Many cloud placements

occur because in the fitness function of each of generated

chromosomes there is a considerably big penalty for dead-

line violations, but there are no penalties for not using the

full capacities of resources of the fog orchestration control

node or fog cells.

In the Optimization scenario, all ten sensing and actuating

services are placed on fog cells; however, the fog orches-

tration control node hosts more services, i.e., six services.

Another six services are propagated to the closest neighbor

colony, and three are executed in the cloud. Such service

placement utilizes fog resources to a higher degree, leading

to a reduced cloud utilization. The utilization of the fog land-

scape in different scenarios is summarized in Fig. 10.

To show how τ and T
t

wN
affect the utilization of the fog

landscape, we conduct separate experiments, calculate the

goal function, and observe service placement by varying τ

and T
t

wN
. As can be seen in Fig. 11, while T

t

wN
is small, the

closest neighbor fog colony performs the processing fast and

therefore allows the fog orchestration control node to assign

most of the services to the closest neighbor colony. Then,

T
t

wN
reaches a certain value when it starts to interfere with

deadlines of applications, and, therefore, there is a decrease

in the goal function as more services are propagated to the
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Fig. 12 Impact of resources of F on service placement

Fig. 13 Impact of application deadlines on the goal function

cloud. Also, when to increase T
t

wN
significantly, all the ser-

vices are propagated to the cloud, and the closest neighbor

colony is not sufficient any more to host any service. The

same considerations are valid for the τ parameter.

Regarding variations in the fog colony’s resources, the

number of services placed in the fog grows as well as the goal

function of the model when the capacity of the fog orchestra-

tion control node increases (see Fig. 12). In the considered

scenarios, increasing the capacity of the fog cells currently

does not change the goal function, because fog cells can only

host sensing and actuating services, and the number of these

services does not change.

The impact of variations of deadlines of applications on

the goal function is shown in Fig. 13. To receive these obser-

vations, the experiment was conducted five times. In each

experiment, the deadline of one application at a time has

been changed from 30 s to 6 min, while all other applications

remain unaltered. The results of the experiment show that

when the deadline is small, the services of the considered

application are placed by the fog orchestration control node

as they cannot be propagated to the closest neighbor colony,

because that would mean adding a further deployment time of

τ plus T
t

wN
. When the relaxed deadline is in place, the dead-

line becomes higher than the deadlines of other applications,

i.e., starting from 3 min, which prevents the services from

the considered application to be placed on the fog orchestra-

tion control node, and therefore they are propagated to the

cloud. The goal function value in this case is reduced accord-

ing to the coefficient 1
DAk

−rAk
and due to the fact that less

services are placed in the fog. When the deadline becomes

more relaxed comparing to the parameters τ and T
t

wN
, i.e.,

starting from 5 min, services are propagated to the closest

neighbor colony, and the goal function slightly increases, as

more services are hosted by the fog landscape. After that,

only reduction is observed due to the change of the 1
DAk

−rAk
.

5.5.3 Cost of execution

The cost of service execution according to the Genetic sce-

nario is $0.22, because 9 out of 25 services are executed in

the cloud. In the Optimization scenario, the execution cost

constitutes 40% of the cost in the Genetic scenario, charging

$0.09 since only three services are propagated to the cloud.

The execution cost received in the Optimization and Genetic

scenarios is 2 and 4%, respectively, compared to the exe-

cution cost in the Cloud scenario. The results are shown in

Tables 4 and 5.

To sum up the most important observations of the evalua-

tion, the execution of the service placement plans produced in

the Genetic and Optimization scenarios do not violate dead-

lines of applications unlike the service placement plan of the

First Fit scenario. The cost of execution in the Optimization

scenario constitutes only 40% of the cost from the Genetic

scenario. Even though the GA solution leads to less delay if

observing single service executions, the exact optimization

method better utilizes the fog landscape resources.

6 Related work

As fog computing is still a recent research topic, there is a lack

of concrete solutions supporting this paradigm. Nevertheless,

there is some conceptual as well as fundamental work in

related areas, which needs to be discussed.

First, there has been some work on fog computing archi-

tectures. In their seminal conceptual work on the topic,

Bonomi et al. introduce a layered model bridging the IoT

and the cloud [4]. The authors show that applications may

be placed in the cloud and in the fog, spanning potentially

different cloud providers. In addition, it is shown that a fog

computing framework has to encompass different communi-

cation links, i.e., with the cloud, within the fog, and with IoT

devices. Dastjerdi et al. [10] present a reference architecture

for fog computing which follows a very similar structure

if compared to the work by Bonomi et al. The reference

architecture implies serving IoT requests in the local fog

rather than involving the cloud. In the reference architec-

ture, central fog services are placed in a Software-Defined

Resource Management layer that provides a cloud-based

middleware. This prevents fog colonies from acting in an

autonomous way. Instead, fog cells are analyzed, orches-

trated, and monitored by the cloud-based middleware. Also,

fog resource provisioning and the offloading of computa-
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tional tasks from the fog to the cloud are achieved through

the middleware. In another discussion of basic fog features,

Vaquero et al. [31] consider different concepts to realize fog

architectures, including both centralized and decentralized,

i.e., peer-to-peer, approaches. In particular, the authors intro-

duce the notion of edge clouds, which are private fogs made

up from IoT devices, resembling our notion of fog colonies.

Having discussed conceptual architectures, it is necessary

to focus on service delivery models for fog computing. The

first model to be discussed is stream processing. It requires

the creation of a processing topology that includes IoT data

sources and operators. An IoT ecosystem for stream pro-

cessing called VISP is proposed in the work of Hochreiner et

al. [19]. In VISP, complex network topologies are analyzed,

and services are placed on resources according to QoS con-

straints. This work is an interesting example of a real-world

testbed which can be used for implementation of a fog com-

puting framework in the future. Giang et al. [16] introduce a

DDF programming model, which is also the basic application

model applied within the work at hand. This model resem-

bles the stream processing approach and provides means to

create and execute IoT applications. In the work of Barnaghi

et al. [11], a structured IoT information model is proposed.

This model is based on semantic annotations and is divided

into (i) an entity model, which aims to establish basic physi-

cal entities and relationships in the IoT infrastructure, and

(ii) a resource model, which represents software artifacts

corresponding to those physical entities. The proposed IoT

information model can be used, e.g., for service associa-

tion discovery and monitoring, for reasoning upon semantic

annotations, and for decision-making processes. A different

service delivery model is Network Function Virtualization,

described in a survey by Han et al. [18]. This approach influ-

ences both the conceptual architecture of the fog computing

environment and the modeling of IoT applications. Virtual-

ized Network Functions (VNF) are virtual appliances which

can be placed onto physical resources. With regard to fog

computing, VNFs can be considered as containers with soft-

ware corresponding to fog orchestration control nodes, fog

cells, and cloud-fog control middleware, which were dis-

cussed in our paper. We assume that these VNFs are already

placed onto fog devices. In fact, in our work, we consider one

layer above VNFs, i.e., the placement of IoT applications on

top of VNFs.

The conceptual fog frameworks discussed above do not

take into account the concrete needs of resource provision-

ing and service placement in the fog. Instead, the focus is on

communication and task sharing between the different layers,

i.e., cloud, fog, and IoT. In fact, the number of resource pro-

visioning mechanisms specifically aiming at fog computing

is quite limited so far. Hong et al. present a programming

model including a simple resource provisioning strategy

which relies on workload thresholds, i.e., if the utilization of a

particular fog cell exceeds a predefined value, another fog cell

is leased [20]. Aazam and Huh present a more sophisticated

resource provisioning mechanism based on the prediction of

resource demands [1]. In this work, dynamic allocation of

resources is performed in advance during the design time

of the system. This approach is based on cost optimization,

and the resource allocation depends on the probability fluc-

tuations of the demand of the users, types of services, and

pricing models. In another work of Vögler et al. [32], a policy-

based approach to optimize deployment topologies on the

edge devices is presented. This approach offers an elastic

application deployment by the means of defining a ‘hot pool’

of resources per each service of requested applications to

enable additional scaling. In our work, we also consider run-

time service placement optimization to account for dynamic

infrastructural changes in a fog landscape; however, we con-

centrate on more concrete formalization of a system model

and optimization problem.

Apart from fog-specific resource provisioning solutions,

resource provisioning and service placement are major

research challenges in the general field of cloud com-

puting [7,23,40]. While these approaches offer interesting

insights, there are certain differences between fog services

and cloud services. These differences prevent a direct adap-

tation of cloud resource provisioning solutions. First, the size

and type of cloud resources are very different from their coun-

terparts in fog computing. While cloud resources are usually

handled on the level of physical machines, virtual machines,

or containers, fog resources are usually not as powerful and

extensive. Second, fog colonies may be distributed in a rather

large area and heterogeneous network topology, while cloud

resources are usually placed in centralized data centers, mak-

ing it more important to take into account data transfer times

when developing solutions for resource allocation in the fog.

This is especially important since one particular reason to

use fog computing in IoT scenarios is the higher delay-

sensitivity of fog-based computation [4]. Hence, resource

provisioning approaches for the fog need to make sure that

this benefit is not foiled by extensive data transfer times and

cost.

Resource provisioning is also an important topic in Mobile

Cloud Computing (MCC) [14], which integrates mobile

devices and cloud resources and offers solutions for offload-

ing tasks from mobile devices to the cloud [12]. However,

MCC is mostly based on a rather simple network topology

with direct communication between mobile devices and the

cloud. Neither groups of devices (as in fog colonies), nor

the different layers observed in fog computing are taken into

account in MCC. Therefore, again, the according resource

provisioning approaches offer interesting insights and ideas,

but cannot be directly ported to the field of fog computing.

Our former works [29,30] consider both the structure of

a fog landscape and service placement mechanisms. The
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paper at hand extends those contributions offering additional

service placement mechanisms (i.e., the genetic algorithm-

based heuristic) and evaluation experiments.

7 Conclusion

Fog computing aims to utilize available computational, stor-

age, and networking resources for the enactment of IoT

applications close to the edge of the network. Currently, the

uptake of fog computing is still at its very beginning, and

thus there is a lack of theoretical and practical foundations

for fog resource provisioning and service placement.

After having motivated our work with a scenario from

the field of Cloud Manufacturing, we discussed a conceptual

architecture for a fog computing framework and formal-

ized an optimization problem for service placement in the

fog, called the FSPP. We simulated the envisioned architec-

ture and solved the FSPP using several approaches, i.e., a

greedy first fit heuristic, a genetic algorithm, and an exact

optimization method. Also, we compared all the results with

the execution of the same experimental setup in the cloud.

Unlike the service placement plans produced by the greedy

first fit heuristic, the service placement plans of the genetic

algorithm and the exact optimization method do not violate

deadlines of applications. The optimization method produces

a service placement plan which is more effective in utilizing

the fog landscape resources, leading to lower execution cost

when compared to the average service placement plan pro-

duced by the genetic algorithm (with the cost constituting

only 40% of the cost of service placement plans produced

by the genetic algorithm). The genetic algorithm produces

solutions which on average experience a lower deployment

delay by exploiting more cloud resources (on average 36%

of the services have been run in the cloud).

In our future work, we aim to implement a real-world

testbed based on the proposed conceptual fog computing

framework and to improve the system model for resource

provisioning in terms of cost of resources and reliability and

availability of services. The architecture can be enhanced by

fault tolerance mechanisms to account for mobility in the

fog landscape. Parallel heuristic algorithms should be inves-

tigated in order to find a viable substitution for the exact

optimization method, which may fail to solve the problem

on the Big Data scale. Another aspect of our future work is

the systematic observation of a fog landscape to obtain real-

world network data to evaluate the behavior of the service

placement approaches.
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