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Optimized Least-Square Nonuniform
Fast Fourier Transform

Mathews Jacob, Member, IEEE

Abstract—The main focus of this paper is to derive a memory
efficient approximation to the nonuniform Fourier transform of a
support limited sequence. We show that the standard nonuniform
fast Fourier transform (NUFFT) scheme is a shift invariant ap-
proximation of the exact Fourier transform. Based on the theory
of shift-invariant representations, we derive an exact expression
for the worst-case mean square approximation error. Using this
metric, we evaluate the optimal scale-factors and the interpolator
that provides the least approximation error. We also derive the
upper-bound for the error component due to the lookup table
based evaluation of the interpolator; we use this metric to ensure
that this component is not the dominant one. Theoretical and
experimental comparisons with standard NUFFT schemes clearly
demonstrate the significant improvement in accuracy over con-
ventional schemes, especially when the size of the uniform fast
Fourier transform (FFT) is small. Since the memory requirement
of the algorithm is dependent on the size of the uniform FFT, the
proposed developments can lead to iterative signal reconstruction
algorithms with significantly lower memory demands.

Index Terms—Fourier transform, interpolation, nonuniform,
sampling, shift-invariant.

I. INTRODUCTION

T
HE efficient evaluation of the nonuniform Fourier sam-

ples of an N-point discrete signal is a central problem

in many areas including tomography [1], [2], magnetic reso-

nance imaging [3]–[5], synthetic aperture radar [6], recovery

of band-limited images [7], [8], filter design [9], [10], and

wavelets [11]. The brute-force evaluation of the Fourier sum

at nonuniform signal samples is computationally expensive.

Hence, the standard approach is to obtain these samples as the

interpolation of the uniform Fourier transform. The uniform

Fourier transform is computed using the standard K-point fast

Fourier transform (FFT) , while support limited func-

tions (e.g., Kaiser–Bessel, Gaussian) are used to interpolate the

samples. It is reported that weighting the signal with suitable

scale-factors, before evaluating the uniform FFT, significantly

reduces the approximation error [12], [13]. This approach is

often referred to as “type-2” nonuniform fast Fourier transform

Manuscript received April 24, 2008; accepted December 25, 2008. First pub-
lished February 06, 2009; current version published May 15, 2009. The asso-
ciate editor coordinating the review of this manuscript and approving it for pub-
lication was Prof. Pierre Vandergheynst. This work is supported by the Clinical
and Translational Research Institute at the University of Rochester.

M. Jacob is with the Department of Biomedical Engineering, University of
Rochester, NY 14622 USA (e-mail: mathews.jacob@rochester.edu; website:
http://www.cbig.rochester.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2009.2014809

(NUFFT), to differentiate it from the gridding scheme (type-1

NUFFT) [12]–[15].

Our work is motivated by iterative non-Cartesian MRI

[3]–[5] and iterative tomographic reconstruction [1], [2].

NUFFT schemes are often used to accelerate the computation

of the forward model, which needs to be evaluated during

each iteration [4], [5]. Current NUFFT schemes have some

drawbacks that limit their practical utility in reconstructing

large multidimensional datasets. Since the accuracy of the

reconstruction algorithms are heavily dependent on the quality

of the NUFFT approximation, it is a general practice to evaluate

the Fourier transform on a fine uniform grid (e.g., )

to minimize the interpolation error [13]. This approach signif-

icantly increases the memory demands of the algorithm. For

example, the reconstruction of a three dimensional data-set with

requires eight times more memory that the original

data-set. Another drawback is in the suboptimal selection of

scale factors. Although scale-factors play a significant role in

reducing the NUFFT error, they are often selected arbitrarily

[12] or are restricted to parametric families with few degrees

of freedom [13]. This limits the performance of the NUFFT

approximation significantly. Finally, there is no well-accepted

methodology for selecting the sampling step in the discretiza-

tion of the interpolators themselves. The exact evaluation of

the interpolators at noninteger samples, within the iteration

loop, is computationally expensive. Hence, it is a general

practice to obtain these samples by linearly interpolating their

precomputed uniform samples. This practice may considerably

increase the approximation error, if the sampling step is not

properly selected.

The main focus of this paper is to overcome the above limi-

tations and thus derive a memory efficient approximation to the

nonuniform Fourier transform. We show that the widely used

NUFFT scheme is essentially a periodic shift invariant approxi-

mation [16]–[18] of the exact discrete Fourier transform. Based

on our earlier results [19], we derive an exact expression for

the worst-case mean square approximation error. This metric

conveniently decouples the error contributions resulting from

the scale-factors and the interpolator into two separate positive

terms. This enables us to optimize both the scale-factors and the

interpolator using the same performance measure. Specifically,

we obtain a closed form expression for the optimal least-square

scale-factors (OLS scale-factors) for a specified interpolator.

Assuming these scale-factors, we derive the error metric that is

only dependent on the interpolator. We then introduce an itera-

tive re-weighted minimization algorithm to obtain the optimized

least-square interpolator (OLS-interpolator). Using analogous

arguments, we also derive the worst-case error resulting from
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the discretization (lookup table based evaluation) of the inter-

polator. This expression is useful in determining the minimum

oversampling factor that is required so that the performance of

the interpolator is not limited by discretization. From theoret-

ical and numerical comparisons, we find that the OLS-NUFFT

significantly ameliorates the accuracy over classical approxima-

tions, especially when the length of the uniform FFT is small.

Since the length of the uniform FFT determines the memory

demands of the algorithm, these developments can lead to a

memory efficient multidimensional NUFFT scheme.

Our paper is inspired by the work of Fessler et al. where the

authors derived the interpolator by optimizing the maximum

worst-case NUFFT approximation error [13]. An analogous ex-

pression was derived by Neislony et al. using the matrix formu-

lation [20]. The main limitation of these expressions is their in-

ability to decouple the effect of the scale-factors from that of the

interpolation function. Hence, Fessler et al. restricted the scale-

factors to a parametric family with few degrees of freedom and

derived optimal parameters using exhaustive search [13]. An al-

ternative is to assume Kaiser–Bessel or Gaussian scale-factors

and optimize the interpolator [13], [20]. Since these approaches

restricted the flexibility of the scale-factors and hence the op-

timal interpolation functions, the performance of these NUFFT

schemes was only comparable to the one using the min–max op-

timized Kaiser-Bessel function [13]. Both of the above schemes

ignored the error in discretizing the interpolation function. We

find that this is a dominant component, often limiting the per-

formance of the NUFFT scheme.

Error metrics, analogous to the proposed one, were proposed

by several authors in the context of NUFFT. Steidl et al. devel-

oped an expression for the norm of the approximation error

[15], [21]. This expression also decouples the effect of the in-

terpolator and scale-factors into two terms. However, it is not

obvious on how to use this expression to derive the optimal in-

terpolator and scale-factors since it is significantly more non-

linear than the proposed one. In the context of gridding (type 1

NUFFT), Jackson et al. used the out of band energy of the inter-

polation function as a measure of the aliasing error [22], while

Beatty et al. developed a related expression that quantified the

point wise aliasing amplitude [23]. Although these expressions

were derived in the context of gridding, they bear some sim-

ilarity to the first term of our band-limited metric (for almost

band-limited functions). Jackson et al. used an iterative scheme

to derive a finitely supported interpolating function that is maxi-

mally band-limited [22]; the resulting function is an approxima-

tion for the prolate spheroidal wave function. In contrast, Beatty

et al. used second order cone programming to derive the inter-

polator that minimized the point-wise aliasing amplitude [23].

They obtained a slight improvement in aliasing error over the

Kaiser–Bessel function, which in-turn is an approximation of

the prolate spheroidal function.

The rest of the paper is organized as follows. In the next sec-

tion, we review the fundamentals of periodic shift invariant rep-

resentation, its error analysis, and the standard NUFFT method.

In Section III, we apply the error expression to the NUFFT

method and derive the optimal least-square scale-factors and

outline the derivation of the interpolator. In the following sec-

tion, we derive the optimal discretization of the interpolator and

quantify the error contribution resulting from the lookup table

based evaluation of the interpolator. We compare the perfor-

mance of the interpolator to the standard methods using theo-

retical metrics as well as numerical simulations in Section V.

II. PRELIMINARIES

A. Shift Invariant Approximation of Periodic Signals

The shift invariant representation is widely used for functions

in [16]–[18]. The shift invariant representation of the

signal is given by

(1)

where is the shift invariant basis function and

are the coefficients. The basis function is often assumed to

be finitely supported in , where is an integer. This

scheme can be extended to -periodic signals, when the period

is an integer multiple of the sampling step (i.e., )

[19], [24]. We assume and to be even integers, although

there is no such restriction in the general setting [19]. For peri-

odic signals , we have

(2)

Assuming to be a linearly independent

set of basis functions, this relation is only satisfied when

. Using this -periodicity of , we rewrite the

above equation as

(3)

where is the -periodized version of :

(4)

The coefficients are derived as the

inner-product between and the shifted

analysis functions :

(5)

Here, denotes the conjugate of the function . Note

that both and are -periodic functions and need

not be support limited. If and are biorthogonal (i.e.,

), then is

a projection of onto the shift invariant space:
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The synthesis equation in the periodic case (3) can also be

written as (1), where the coefficients

is the periodized version of . This is probably more fa-

miliar in the context of NUFFT; it denotes a simple interpolation

using the finitely supported function

and periodic boundary conditions. This evaluation of a specific

sample requires multiplications and additions.

B. Expression for the Approximation Error

The main factors that determine the quality of the shift-in-

variant approximation of the periodic signal are as follows:

1) the interpolation function ;

2) the sampling step ;

3) the -periodic analysis function .

A careful optimization of these factors is essential to mini-

mize the approximation error, while keeping resources such

as memory and computational complexity to a minimum. An

exact expression for the approximation error is essential for a

systematic computational optimization of the scheme.

We had derived the expression for the average error in ap-

proximating an arbitrary periodic function in a shift invariant

(SI) space in [19]. The space is only integer shift variant;

shifting the function to (by noninteger multiples

of the sampling step) affects the approximation error. The error

is periodic with period . The average mean square

error1 (averaged over all possible shifts) is shown in [19] as

(6)

where the error kernel is given as

(7)

In (6), are the Fourier series coefficients of ,

defined by

(8)

and is the Fourier transform of :

(9)

In (7), is the discrete

Fourier transform of the autocorrelation sequence

. Moreover, denotes

the dual function of . Both and are positive terms.

1The variations in the error with respect to the shifts are shown to be small;
the average error is a good indicator of the performance in most applications.

Moreover, is only dependent on , while is depen-

dent of the analysis function ; this term vanishes iff

(10)

With this specific choice of the analysis function, the error ex-

pression simplifies to

(11)

This is the minimum achievable mean square error for a speci-

fied signal , an interpolator and the sampling step .

Note that the metric (11) is independent of the analysis func-

tion . The approximation , derived using of the optimal

analysis function specified by (10), is the orthogonal projection

of onto .

C. NUFFT: Problem Statement

For simplicity, we restrict our attention to the 1-D

NUFFT problem. We are given equally spaced samples

. The goal is to derive an efficient

approximation of the discrete time Fourier transform (DTFT)

of this sequence:

(12)

at the nonuniform frequency locations . Note

that the conventions are slightly different from the previous sec-

tion, where the discrete sequence indicates the Fourier se-

ries of the continuous domain function . In contrast, here

we have as the discrete Fourier transform of the sequence

. The direct evaluation of (12) is computationally expensive

(requires operations). Clearly, the continuous domain

function is -periodic. The frequency samples may

thus be assumed to be in the range , without loss

of generality. The sequence may be obtained from the con-

tinuous domain function as

(13)

D. Mathematical Formulation of the NUFFT Approximation

To reduce the computational cost in evaluating (12), the

standard practice is to approximate it as an interpolation of the

-point uniform discrete Fourier transform (DFT) (

even) of :

(14)
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Although this equation is valid for , it only needs to be

evaluated for because of the -peri-

odicity of . This summation is efficiently evaluated using

FFT and has a computational complexity of . The

weights are termed as scale-fac-

tors in the NUFFT literature. They are often chosen heuristically

[12] or as a function of [13]. The NUFFT scheme thus approx-

imates the exact DFT, specified by (12), as the interpolation of

using assuming periodic boundary conditions [12], [13],

[25]

(15)

Since is support limited in the range , the

ideal interpolator and scale-factors are

and , respectively [13]. The NUFFT interpola-

tion using these scale-factors and interpolator is exact. How-

ever, since the sinc function is not support limited, there is no

computational gain in computing (15) over the direct evalua-

tion. Hence, the general practice is to approximate the sinc func-

tion using support limited interpolators (support limited in the

range ) such as Kaiser–Bessel, Gaussian, or opti-

mized functions [12], [13], [25]. The computational complexity

in performing the Fourier interpolation at nonuniform points

is . Nonuniform scale-factors are used here to compen-

sate for the finite support.

E. Discretization of the Interpolator

The computation of (15) at arbitrary sampling locations

requires the evaluation of at the locations

. Since is support limited in the range eval-

uations of the interpolator at noninteger sampling locations are

required to compute each Fourier sample . The widely

used interpolators have either complicated expressions or are

obtained using optimization schemes. To prevent the evalua-

tion of the interpolator from dominating the computational com-

plexity, researchers often precompute the interpolators on a uni-

form grid, which is much finer than the grid on which the DFT is

evaluated. Nonuniform samples of the interpolator are obtained

by interpolating these lookup table entries using linear or nearest

neighbor methods. We denote the oversampling factor by and

assume it to be an even integer. Thus, the interpolation function

is modeled as (15)

(16)

where is the B-spline function. The proposed theory is appli-

cable for any discretization. We will specifically focus on linear

and nearest neighbor interpolation, since they are the widely

used schemes. The linear B-spline function is defined as

if

otherwise
(17)

Fig. 1. Illustration of the NUFFT pipeline. The sequence � is evaluated as
the K-point FFT of the input sequence ����, weighted by the scale-factors
����. � is over-sampled by � and interpolated to a fine uniform grid, using
the discrete sequence ������ � ����� � � � � � ���� � �. These uniform
samples �� 		�	
�	
�

 are then interpolated using linear or nearest
neighbor schemes to obtain the nonuniform Fourier samples (denoted by the
dots) �� 	� 
.

while the B-spline function of degree 0 is defined as

if

otherwise
(18)

The coefficients in (16) are the samples of the specified

function (Kaiser-Bessel/Gaussian) at the sampling locations

. In (16), we assumed that .

With the interpolation model (16), may also be

thought of as the linear interpolation of the uniform samples

:

(19)

We substituted (16) in (15) and used the relationship

, where is the Kroneker delta function,

to obtain the above equation. It implies that the uniform samples

are derived by up-sampling by and

filtering it by the discrete filter . The entire NUFFT pipeline

is illustrated in Fig. 1. In standard computational schemes, the

last three steps (oversampling, filtering by and interpolating

using B-spline functions) are combined into a single complex

operation for computational efficiency. We have chosen to ex-

pand these steps as in Fig. 1 to obtain a better understanding of

the process and for the ease of analyzing the error involved in

the discretization (see Section IV-C).

III. OPTIMAL NUFFT SCALE-FACTORS AND INTERPOLATOR

In this section we introduce the framework to derive the

optimal NUFFT scale-factors and interpolator. We derive the

worst-case error in approximating a periodic signal in a shift in-

variant basis, which is then used to choose the optimal NUFFT

parameters.

A. NUFFT as a Shift Invariant Approximation

We now show that the NUFFT approximation is essentially

a shift invariant approximation of , the original discrete

Fourier transform of , in the shift invariant space .
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Note that the NUFFT synthesis equation, specified by (15),

is already in the same form as (1). Substituting with the

inverse Fourier transform of in (14), we obtain

(20)

Thus, the derivation of the coefficients in NUFFT can be in-

terpreted as the inner-product between the

exact continuous domain Fourier transform of , denoted

by , and the analysis functions

. Thus, the NUFFT scale-factors are anal-

ogous to prefilters in shift invariant representations [26], [27].

Note that the equivalent analysis function need not be support

limited, even when is support limited.

B. Error Expression

Having shown that the NUFFT scheme is a shift invariant

approximation, we now use the error metric introduced in

Section II.B to analyze it. In contrast to the standard shift

invariant setting, the NUFFT interpolation is performed in the

Fourier domain; is the discrete Fourier transform of .

Applying (6) to the representation of , we obtain

(21)

We use the finite support of to restrict the range of the

summation. The negative sign in the index of is because

of the difference in the definitions of and [see (13)

and (8)]. We now use this error expression to derive the optimal

least-square scale-factors.

C. Optimum Least-Square Scale-Factors

From (10), it is easy to see that if the scale-factors are

chosen as

(22)

then is the orthogonal projection of onto the

shift invariant space. This corresponds to the minimum achiev-

able mean square error for any signal . The indexes of

in (22) have negative signs because is defined as the

inverse discrete Fourier transform of in (20). We term this

as the optimal least-square (OLS) scale-factors. When

the interpolator is a real valued function and its energy is

concentrated in the Fourier domain (e.g., prolate spheroidal

wave functions), the optimal scale-factors may be approx-

imated (assuming for and

) as

We also need to assume that , which is valid if

is real. These approximate scale-factors are reported as the

minimum aliasing error choice in [13]. The optimal LS scale-

factors, specified by (22), provides the minimum possible error

over all scale factors:

(23)

Here, we used the symmetry of the error kernel.

D. Worst-Case Approximation Error

Note that (23) is dependent on the signal samples . We

would like to have an expression that is only dependent on the

interpolator. We now define the worst-case mean square error

as the maximum of over all possible sequences

. Using Schwartz inequality, we obtain

(24)

Note that this is a tight bound for the approximation error. Se-

quences that satisfy

leads to the worst-case error. We show that (24) can be ex-

actly and efficiently evaluated for any discretized interpolator in

Section IV-A. Thus, it can be used to determine the optimal pa-

rameters of Kaiser–Bessel and Gaussian interpolators. Our main

focus is to use this metric to derive the optimal least-square in-

terpolator. Note that we derived the optimal scale-factors, before

computing the worst-case error expression, only for simplicity.

Since and are positive terms, the OLS scale-factors

also leads to the minimum worst-case mean square error (over

all possible scale-factors). The OLS scale-factors and the inter-

polators are optimal with respect to the worst-case mean square

error criterion.

E. Optimized Least-Square Interpolator

Our goal is to derive a that is finitely supported in the range

and minimizes the worst-case LS error:

(25)
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subject to . Note that the functional is

nonquadratic. It is difficult to derive the continuous domain in-

terpolator that minimizes the criterion. Moreover, obtaining the

analytical expression of is not useful in a practical NUFFT

setup, as discussed previously. Hence, we propose to numeri-

cally derive the optimal discretization of . We propose to use

an iterative re-weighted minimization algorithm. Towards this

end, we rewrite the criterion as a weighted quadratic criterion:

(26)

We split the original criterion into two parts. We define the

weights as

otherwise
(27)

At each iteration of the iterative algorithm, we assume the

weights to be fixed and derive the that minimize the

weighted quadratic criterion (26). The weights are then

recomputed using (27). This process is repeated until the min-

imum of is reached. We do not make any theoretical claims

on the convergence of the scheme to the global minimum.

However, we observe that it converges to the same solution for

all the initializations and parameter settings that we considered,

unless (see Section V). The algorithm fails to converge

when . A more detailed description of the algorithm for

discretized interpolators is given in Section IV-B.

F. Similarity to the Kaiser–Bessel Interpolator

If we set , then (26) can

be rewritten as

(28)

(29)

The first term in (28) is approximately equal to

. It is an equality when

; when , the above approximation ignores

some of the high frequency terms of , but may be valid for

interpolators that are almost band-limited. The interpolator that

minimizes (29) in-turn maximizes the in-band energy (energy

in the range ). The well known zeroth order

prolate spheroidal wave function (PSWF) is a unit norm

function , which is finitely supported in the range

and have maximal energy in a specified range in

the Fourier domain [28]

(30)

Thus, the function obtained by the minimization of (29) may

be seen as the discrete counterpart of the PSWF (29). The

Kaiser–Bessel function was introduced as an approximation to

the PSWF function [29]. Kaiser–Bessel functions are widely

used in NUFFT and they give the best performance among

other well known interpolators [13], [23].

IV. NUMERICAL EVALUATION OF THE DISCRETIZED

INTERPOLATOR

In this section, we elucidate the iterative reweighted mini-

mization scheme to derive the optimal discretization of the inter-

polator in more depth. We start by reducing the infinite summa-

tions in the worst-case error expression to finite sums to obtain

an exactly computable metric.

A. Discretized Interpolator: Worst-Case Error Expression

To be consistent with the lookup table based evaluation of

the NUFFT, we propose to derive in the space spanned by

linear B-spline functions. Using the model specified by (16), the

derivation of the OLS interpolator boils down to the derivation

of the finite sequence . Com-

puting the Fourier transform of (16), we obtain

(31)

where is the discrete time Fourier

transform of . It is a -periodic function, and hence

is a -periodic function. Using this model, we

show in the Appendix that the infinite sums in the numerator

and denominator of (24) are reduced to finite summations:

(32)

(33)

where . Here, and

are defined by (44) and (47). The functions and have exact

expressions in terms of the autocorrelation of B-spline functions

[30] (See the Appendix for details.) Using these relations, we
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compute the weights . Substituting from (33) in (26) and

simplifying as shown in the Appendix, we obtain

(34)

This is a weighted norm in the Fourier domain, where the

weights

(35)

are assumed to be fixed at each iteration. We estimate the sam-

ples of the interpolator

such that this metric is minimized, subject to .

B. Iterative Reweighted Minimization Algorithm

As discussed earlier, we propose an iterative algorithm that

uses the following steps: Start with an initial sequence .

1) Set .

2) Using , derive the optimal weights specified by

(35).

3) Using the current weights , derive the optimal co-

efficient sequence that minimizes (34), subject to

. We show in the following section that the

derivation of can be formulated as an eigendecompo-

sition problem.

4) Derive using the previous estimate and as

where

(36)

5) Exit if . Else, set .

6) Goto step 2.

Step 4 of the above algorithm is a one dimensional minimiza-

tion procedure to ensure the monotonic convergence of the al-

gorithm. The step-size is determined using a simple linear

search. We choose the initial sequence as the samples of

the optimized Kaiser-Bessel interpolator. We show in Section V

that the final interpolator, to which the algorithm converges, is

not dependent on the initialization. We now focus on step 3,

where we derive the optimal that minimizes (34) subject to

, for a specified . This problem can be

rewritten in the matrix form as

subject to

(37)

where is the DFT matrix, is the

diagonal matrix with diagonal entries as .

is the autocorrelation matrix with entries

. and

are matrices of dimension . Solving

this constrained minimization problem using the Lagrange’s

multiplier method, we obtain

(38)

where is the minimum generalized eigenvalue of the ma-

trix pair [31].

C. Error Due to the Discretization of the Interpolator

As discussed in Section II-E, we discretize the interpolator

for its efficient evaluation within the NUFFT. The quality of the

discretization depends on the oversampling factor. It is desirable

that the minimum possible oversampling factor is chosen so as

to minimize the size of the lookup table. At the same time, it

is crucial that the interpolator is sampled at an adequately high

rate so that the worst-case least-square error is not dominated by

discretization. Due to these contradicting demands, it is highly

desirable to quantify the error due to the discretization of the

interpolator in the NUFFT approximation.

As seen in Section II-E, the approximation may

also be interpreted as the linear interpolation of the sequence

:

(39)

where is obtained by convolving the up-sam-

pled version of with ; are the uniform samples of

the interpolator. In this two step process, there are two main

error sources: a) the error in approximating the uniform sam-

ples of the DFT, (denoted by ) by

and b) the error in approximating as the interpolation of

the uniform samples . The first term is dependent

on the specific choice of the sequence , while the second term

is dependent on the B-spline interpolator . To separate these

error components, we rewrite (39) as

(40)

Using this relation, we obtain the total approximation error as

(41)
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Fig. 2. Illustration of the convergence of the algorithm. The iterative reweighted algorithm was initialized with B-spline functions of degree 0 to 5, indicated by
the curves in a. We derived the OLS interpolator using the iterative reweighted minimization algorithm, assuming � � ���� � � ���� � � ���� � � �. Note
that the final solution is the same, irrespective of the initialization. The worst-case errors are also the same, up to numerical precision. (a) Initializations. (b) Final
solution.

Fig. 3. Effect of discretization on the worst-case error. We considered� � ��� and� � ���. (a) indicates the decay of the worst-case OLS errors as a function
of � , when � � �� and linear interpolation is used. It is seen that the discretization error dominates the total error for interpolators with � � �. (b) shows the
worst-case error curve for � � ��� and linear interpolation. The performance of the NUFFT is significantly improved in this case. (c) indicates the decay for
the same settings, but nearest neighbor interpolation. It is seen that the error saturates to a slightly lower value that the linear interpolation case with � � ��. (a)
� � ��; Linear interpolation. (b) � � ��� Linear interpolation (c) � � ���; nearest neighbor interpolation.

Here, we used the triangle inequality of the norm. Thus, the

first term in (41) is dependent on the specific choice of , while

the second term is independent of . It is dependent on

the sampling interval , the discrete sequence , and

the B-spline function . Using the same argument as in (24),

we upper bound of this term as

(42)

We compare this term with the total worst-case NUFFT error

specified by (24) to see if it is the dominant component. As a

thumb rule, we seek to keep the worst-case discretization error

around 10 times smaller that (24) by appropriately choosing the

oversampling factor and the degree of the B-spline interpo-

lator.

D. Utilizing Symmetry to Reduce Computational Cost

The evaluation of step three of the iterative reweighted algo-

rithm (described in Section IV-B) involves the eigendecompo-

sition of the matrix pair , specified by (38). The compu-

tational complexity and the numerical stability of the eigen de-

composition grows significantly with the sizes of and . The

number of unknowns (length of ) can be reduced by a factor

of two by assuming the interpolation functions to be symmetric.

The matrices and can also be modified to account for the

symmetry, thus reducing their size by a factor of 2 in either di-

mensions. This approach significantly reduces the computation

time (often by a factor of 10 or more). The decrease in computa-

tional complexity becomes even more significant for high values

of and . We demonstrate that there is no performance loss

in using the symmetry constraint in the next section.

V. RESULTS

In this section, we analyze the convergence of the iterative

reweighted algorithm, the effect of discretization and the use of

symmetry constraint. We also compare the OLS NUFFT scheme
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Fig. 4. Comparison of symmetric and nonsymmetric interpolators at � � ���� � ���� � � and � � ���. Both the algorithms were initialized with the
optimized Kaiser–Bessel function. Note that the shape of the optimal interpolators and the error kernels are overlapping. The scaled (by 1e6) differences between
the functions and the absolute differences between the kernels are also shown. (a) Interpolators. (b) Error kernels.

Fig. 5. Optimal least-square parameters of the Kaiser–Bessel and Gaussian functions. These parameters are assumed in all the comparisons considered in this
section. (a) Optimal KB parameters. (b) Optimal Gaussian parameters.

with standard approximation methods using theoretical metrics

as well as numerical methods.

A. Analysis of the Iterative Reweighted Algorithm

We first demonstrate the convergence of the algorithm on a

specific example .

We consider a wide range of input initializations (ranging from

B-spline of order 0 to order 5). It is seen from Fig. 2 that the

final solution is the same, irrespective of the initialization. We

performed similar comparisons for a wide range of parameter

sets ( , and ) and verified that the algorithm converges

to the same function in all the cases, except when . In

this case, the iterative reweighted minimization scheme fails to

converge.

We study the effect of the discretization of the interpolators on

NUFFT performance in Fig. 3. We considered

and varied from 3 to 10. The worst-case total errors of the

OLS interpolators and the corresponding worst-case discretiza-

tion errors are plotted for (a) and linear interpola-

tion, (b) and linear interpolation, and (c)

and nearest neighbor interpolation. It is seen from Fig. 3(a)

that for , the worst-case total error saturates to the

worst-case discretization error, when . The comparison

of the error metrics specified by (42) and (24) enables us to de-

termine whether the performance of the NUFFT is limited by

the discretization. Note that (42) is a good indicator of the influ-

ence of discretization on the total error. Note from Fig. 3(b) that

choosing significantly decreased the errors over

. However, some saturation effects can be seen as the worst-

case total error curve approaches the worst-case discretization

error. It is seen in that even better results are obtained by further

increasing to 170 in Fig. 7. The nearest neighbor interpola-

tion using performs only slightly better than the linear

interpolation with [see Fig. 3(c)]. Hence, we will as-

sume linear interpolation for all the comparisons.

We now show that there is practically no difference in the

performance between interpolators optimized with and without

the symmetry constraint in Fig. 4. In contrast, the time taken to

evaluate the functions on a Macintosh 2.33-GHz Intel Core2Duo

processor is 14 and 143 s, respectively. The drastic reduction in

complexity is due to the decreased size of and matrices,

leading to eigen decomposition of a smaller system. We have
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performed similar studies for a range of parameter settings and

verified that the use of symmetry constraint does not decrease

the performance. The performance improvement in using the

symmetry constraint increases with and . Hence, we re-

strict our attention to symmetric interpolators in the rest of the

paper.

B. Comparison With Standard Interpolators

We compare the performance of the OLS function with

Kaiser–Bessel, Gaussian and min–max interpolators in this

subsection. To perform objective comparisons, we optimize the

Kaiser–Bessel (KB) and Gaussian interpolators with respect

to the mean square criterion (see Fig. 5). We assume the KB

order to be zero and determine the optimal value for . It is

seen that the optimal varies almost linearly with from

Fig. 5(a), while the slope is different for different values of .

When , we find that the slope is approximately 2.30,

close to the optimal value determined by Fessler et al. [13].

The parameter of the Gaussian function

corresponding to the different parameter settings are also shown

in Fig. 5(b). We also use the OLS scale-factors (22) for these

interpolators.

For the min–max interpolators, we use the scale-factors with

the highest order that is reported in [13], when . For

, we derive the scale factors by performing a least-

square fit of the parametric model to the op-

timal Kaiser–Bessel scale-factors (see [13] for details). The de-

fault of gives interpolation errors that are comparable to

uniform scale factors. However, increasing beyond 22 results

in poor fit to the KB scale factors due to the bad conditioning of

the system matrix.

The interpolators and their error kernels at and

are shown in Fig. 6. It is seen that the subtle variations

in the shape of the interpolators (Kaiser–Bessel, Gaussian and

the OLS functions) in Fig. 6(a) lead to significant discrepancies

in the error kernels. In contrast to the OLS function, the error

kernels of the standard interpolators are significantly elevated

close to the edge of the signal as shown in Fig. 6(b), thus re-

sulting in higher worst-case errors. By spreading the error to all

spatial locations, the OLS interpolator significantly reduces the

worst-case mean square error. The OLS interpolator gave lower

errors at most spatial locations when compared with the other

functions, even when . However, the performance im-

provement in this case is not as drastic as in (a-b). It is seen from

Fig. 6(e) and (f) that the error kernels of the min–max interpo-

lator, derived with the assumption of third order scale-factors,

are comparable to the OLS function.

In Fig. 7, we compare the different interpolator families

based on the worst-case mean square error (24) and the

min–max error (derived in [13]). The comparisons were per-

formed at and , respectively.

Fig. 7(a) and (d) denotes the error curves at and

oversampling factor . The use of a high oversampling

factor ensures that this term is not the significant contributor.

Similar comparisons are shown for and

in Fig. 7(b) and (e) and Fig. 7(c) and (f), respectively. Note

that although we minimized the worst-case mean square errors,

the proposed NUFFT scheme performs very well with respect

Fig. 6. Comparison of the OLS interpolator with classical schemes. (a), (c),
and (e) compares the interpolators at � � ���� � ���� � � ��� and
� � �. (a) indicates the shape of the interpolators (c). Comparison based on
the mean square error kernel. (e). Comparison based on the min–max error
criterion derived in [13]. (b), (d), and (f): Comparison of the interpolators for
� � ��	� � ���� � 
 and � � ���. (d) indicates shape of the interpola-
tors while (e) and (f) shows the mean square error kernel and the min–max error
kernels. (a) Interpolator: � � ���� � � �. (b) Interpolator: � � ��	�� � 
.
(c) MS error kernel: � � ����� � �. (d) MS error kernel: � � ��	�� � 
.
(e) MM error kernel:� � ����� � �. (f) MM error kernel:� � ��	�� � 
.

to both the error metrics at almost all parameter settings.

The min–max estimator provides lower min–max errors for

lower values of . However as the length of the interpolator

increases, its performance deteriorates. This is probably due to

the insufficient accuracy of the least-square fit to the optimal

Kaiser-Bessel scale factors. As explained previously, the use

instead of the default value improves the

performance min–max interpolators. In the case, we

used the best scale-factors that were available for the min–max

interpolator. Third order scale-factors were used for and

, while only second order scale-factors were available for

the rest (this explains the oscillatory nature of the mean square

error). Note that the min–max interpolator gives comparable

errors with the OLS function for and lower values

of . However, its performance saturates for higher values

of , probably because of the limited number of scale-factor

parameters that can be derived in the min–max setting. It is seen

from Fig. 7(f) that the min–max interpolator performs better

than the OLS function with respect to the maximum worst-case



JACOB: OPTIMIZED LEAST-SQUARE NONUNIFORM FAST FOURIER TRANSFORM 2175

Fig. 7. Theoretical comparison of the different interpolator families. (a) and (b)
indicate the decay of the worst-case mean square and min–max errors respec-
tively for� � ��� and oversampling ���	
� � ���. The worst-case discretiza-
tion error is displayed in magenta. (c), (d): Comparison of errors for � � �
�

and � � ���. As mentioned previously, we used uniform scale-factors for
the min–max interpolators for (� � ��� and � � �
�), while optimized
min–max scale-factors from [13] were used for � � �� . (e), (f) Comparison
of different kernels at � � ����� � ��� and � � ���. (a) � � ���. (b)
� � ���. (c) � � �
�. (d) � � �
�. (e) � � ���. (f) � � ���.

error metric, when . However, note from Fig. 6(f) that the

min–max function gives higher errors than the OLS function at

most frequency locations for the case (except close to

the signal boundary).

It is seen from the comparisons that the proposed OLS

NUFFT scheme significantly outperforms its closest com-

petitor: the Kaiser–Bessel interpolator. The performance

improvement is more significant for small values of . For

example, the use of the OLS interpolator provides approxi-

mately a factor of decrease in the mean-square error at

. The interpolator settings

provides a worst-case error, which is comparable to that ob-

tained with at . Since lower value of

implies NUFFT algorithms with lower memory demands, these

cases are of foremost interest in practical applications.

C. OLS Interpolators for Different Parameter Settings

We now analyze the OLS interpolators in more detail. In

Fig. 8, we plot them for different values of and . The

interpolators are normalized so that their integral is one. Note

from Fig. 8(c) that the functions are discontinuous at the bound-

aries and at the origin for lower values of . As increases,

Fig. 8. Shape of the interpolators at different values of � and � . The figures
in the top row, (a) and (b) show the interpolators for different values of � , cor-
responding to � � ��� and � � ���, respectively. The bottom row shows
the interpolators at different values of� for � � � and � � � respectively. (a)
� � ���. (b) � � ���. (c) � � �. (d) � � �.

they become smoother [see from Fig. 8(d)]. It is seen that the

interpolator changes its shape significantly with ; when

, it approximates the linear B-spline function.

D. Numerical Simulations

We now compare the numerical performance of the interpo-

lators in a simple one dimensional experiment. We considered

the center line [shown in Fig. 9(a)] of the standard 128 128

Shepp–Logan phantom. The Fourier transform of this phantom

is evaluated at 10 000 uniformly distributed random points (in

the range ) in the Fourier domain. We consider the

exact Fourier transform of the sequence at these points as the

ground truth. The NUFFT approximations using the OLS and

the standard interpolators optimized with respect to the worst-

case mean square error are compared to the ground truth. We

plot the errors as a function of and in Fig. 9. Note that

the NUFFT interpolation using the OLS interpolator provides

the best performance, consistent with theoretical worst-case pre-

dictions. Note that the error curves follow the same pattern as

predicted by theory. The NUFFT approximation at

and provides almost the same mean-squares error as

and .

VI. DISCUSSION AND CONCLUSION

The main focus of this paper was to derive a memory effi-
cient approximation for the nonuniform Fourier transform of
a discrete sequence. We derived an exact and computable ex-
pression for the worst-case mean square error in approximating
the exact Fourier transform using the nonuniform fast Fourier
transform (NUFFT) method. This metric was used to derive the
optimal NUFFT interpolator and scale-factors, thus resulting in
an algorithm with lower approximation errors. We also quanti-
fied the error in discretizing the interpolator. This measure en-
sured that a lookup table of sufficient size is used so that the dis-
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Fig. 9. Numerical comparison of the different interpolators using the center
line of the Shepp–Logan phantom shown in (a). The errors in the comparisons
(between the exact evaluations and the NUFFT approximations) are plotted for
different values of � and � . (b) � � ��� (c) � � ���.

cretization error is not the dominant component. We compared
theoretical and numerical performance of the proposed NUFFT
scheme with standard methods. The comparisons clearly indi-
cated that the proposed method significantly reduces the errors,
especially when the oversampling factor is small. Thus, the pro-
posed NUFFT scheme can result in iterative signal reconstruc-
tion schemes with much reduced memory requirements.

We focused on the derivation of one-dimensional interpolator
in this paper. A simple strategy to extend this scheme to multiple
dimensions is to consider the tensor product of 1-D interpolators
[13]. This interpolator will inherit the error minimizing proper-
ties of the 1-D scheme.

The computationally demanding components of the NUFFT
algorithm are (a) the evaluation of the uniform FFT and (b) the
interpolation in the Fourier domain. Increasing the length of
the uniform FFT augments the computational complexity faster
than linear, while the cost of the interpolation increases linearly
with the support of the interpolator. From our numerical studies,
we found the computational complexity of the algorithm for

and to be roughly the
same. Note that these parameter choices gave approximations
with almost the same errors. Moreover, the Fourier interpola-
tions may be greatly accelerated using GPU implementations
[32]. Of these two cases, note that the
OLS NUFFT provides a factor of decrease in the required
memory for -dimensional data-sets over the
OLS NUFFT scheme.

APPENDIX

A. Derivation of (32) and (33)

Using the Fourier transform of the model for , specified
(16), the denominator of (24) becomes

(43)

Here, we used the periodicity of . Here, , specified by

(44)

is the DFT of the sequence .
B-spline functions have analytical expressions and hence can be
evaluated analytically at any specified location [30]. The kernel
need to be evaluated for . We rewrite the numerator
as the difference between the denominator term, derived above,
and :

(45)

For , this term can be rewritten as

(46)

where

otherwise
(47)

B. Derivation of (34)

Substituting from (46) in (26), we obtain
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(48)

In the last equation, we used a change of variables

to simplify the expression. Since is finitely supported [see

(27)], we rewrite the term as ,

thus making it independent of . Moreover, we combine the

summations (exploiting the structure of the support of ) to

obtain

(49)
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