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Abstract: As a new paradigm, fog computing (FC) has several characteristics that set it apart from
the cloud computing (CC) environment. Fog nodes and edge computing (EC) hosts have limited
resources, exposing them to cyberattacks while processing large streams and sending them directly
to the cloud. Intrusion detection systems (IDS) can be used to protect against cyberattacks in FC
and EC environments, while the large-dimensional features in networking data make processing the
massive amount of data difficult, causing lower intrusion detection efficiency. Feature selection is
typically used to alleviate the curse of dimensionality and has no discernible effect on classification
outcomes. This is the first study to present an Effective Seeker Optimization model in conjunction
with a Machine Learning-Enabled Intrusion Detection System (ESOML-IDS) model for the FC and
EC environments. The ESOML-IDS model primarily designs a new ESO-based feature selection
(FS) approach to choose an optimal subset of features to identify the occurrence of intrusions in the
FC and EC environment. We also applied a comprehensive learning particle swarm optimization
(CLPSO) with Denoising Autoencoder (DAE) for the detection of intrusions. The development of
the ESO algorithm for feature subset selection and the DAE algorithm for parameter optimization
results in improved detection efficiency and effectiveness. The experimental results demonstrated
the improved outcomes of the ESOML-IDS model over recent approaches.

Keywords: security; machine learning; fog computing; intrusion detection system; optimization;
feature selection; edge computing

1. Introduction

Due to the tremendous growth of smart devices, we are approaching the era of
the Internet of Things (IoT) [1]. The IoT application requires geo-distribution, mobility
support, low latency, and location awareness, all of which are difficult to implement in
cloud computing (CC). Edge paradigms such as mobile edge computing (MEC) and fog
computing (FC) are presented to overcome IoT implementation challenges [2–4]. The nodes,
which can implement computing tasks, are named MEC hosts or fog nodes in MEC and FC
hosts in MEC, which could offer lower-latency services.

MEC and FC are slightly different; MEC hosts are typically installed by mobile service
providers, whereas FC is composed of an edge server or device with computing and
communication power [5], and FC is composed of an edge server or device with computing
and communication power. Researchers extended CC to the edge by analogizing the
network system and various characteristics [6]. A new network model, such as MEC or FC,
provokes several concerns regarding network performance and stability. Figure 1 depicts
the structure of fog edge computing that is employed in MEC and FC.

The majority of terminal devices in MEC or FC are resource-constrained; the terminal
connected to the MEC or FC hosts could be an unmanned aerial vehicle (UAV), a smart
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home appliance, a VR device, or a smartphone [7]. Man in the middle (MIM), denial of
service (DoS), privacy leakage, service manipulation, and rogue gateway are all possible
attacks on the FC system [8,9]. We focused on privacy protection as an effective method for
detecting the presence of intruders, assisting in the combatting of security threats in FC
structures, and reducing the resulting cybersecurity damages.

Figure 1. Fog edge computing.

The intrusion detection system for fog and edge computing environments detects
intruders in two ways: anomaly-based detection and signature-based detection, The normal
behavior of the scheme is taken into account as a model in anomaly-based detection, which
then examines the behavior of incoming traffic and categorizes it as either normal or
abnormal based on the model that was built [10–12]. In contrast, signature-based detection
compares incoming traffic to pre-established rules to determine whether to allow or reject
it. In the past few years, there have been a variety of study articles developed in the
area of intrusion detection systems for fog and edge computing environments [13,14].
Early research concentrated on supervised machine learning and unsupervised machine
learning. There have also been attempts to implement advanced applications [15–17], such
as a conventional detection method that allows the incorporation of the results of various
classifications to effectively improve IDS performance.

This study introduces an Effective Seeker Optimization with Machine Learning-
Enabled Intrusion Detection System (ESOML-IDS) model for FC and EC environments.
The ESOML-IDS model intends to appropriately determine the existence of intrusions in
the FC and EC environment. The ESOML-IDS model derives a novel ESO-based feature
selection (FS) approach to choose an optimal subset of features. Moreover, comprehen-
sive learning particle swarm optimization (CLPSO) with Denoising Autoencoder (DAE)
is applied for the detection and classification of intrusions. In order to demonstrate the
enhanced outcomes of the ESOML-IDS model, a wide range of simulations was carried out.
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Contributions of This Study

The main contributions of this study are as follows:

• We develop a new Effective Seeker Optimization with Machine Learning-Enabled
Intrusion Detection System (ESOML-IDS) technique for intrusion detection and classi-
fication in FC and EC environments;

• To detect and classify intrusions, a group of sub-processes are incorporated with the
proposed technique, including pre-processing, ESO-based feature subset selection, a
DAE classifier, and CLPSO-based parameter optimization;

• To demonstrate the comparative advantages of the proposed technique over recent
approaches, a wide variety of exhaustive simulations are carried out.

The rest of the paper is organized as follows. Section 2 surveys relevant research in this
area of intrusion detection. Section 3 introduces the proposed model. Section 4 provides
performance validation, showing the comparative advantages of applying the proposed
techniques in terms of cost, accuracy, and comparative analysis. Finally, Section 5 concludes
the paper.

2. Related Works

Lin et al. [18] presented a resource allocation and IDS architecture in edge computing.
In particular, the presented method is developed to aid heterogeneous resource-demanding
allocation and resource sharing. An edge computing IDS is introduced, and utilizing this
approach is the foundation for resource allocation. Next, a single-layer dominant and
max-min fair (SDMMF) allocation was employed. Li et al. [19] employed the game concept
in the field of edge computing systems and recommended a data-driven mimicry ID game
theory-based named GLIDE. The game income of participants and the utility computation
method under distinct positioning approaches were analyzed. Wang et al. [20] presented an
architecture for optimizing the smart false alarm reduction for DIDS-based edge computing
devices. The proposed method could offer energy efficacy as the data could be treated at the
edge for a short response time. The assessment result demonstrated that the architecture
could assist in reducing the task for the central server and the delay in comparison with
the comparative study.

Sudqi Khater et al. [21] presented a lightweight IDS-based vector space depiction with
an MLP method. Next, they estimated the proposed method against the Australian Defense
Force Academy Windows Dataset (ADFA-WD) and ADFA with Linux Dataset (ADFA-LD),
which is a novel generation system dataset that comprises exploits and attacks on different
applications. An et al. [22] presented a hypergraph clustering method based on the Apriori
approach. Our study could efficiently determine the relationship among FC that is suffering
from the threats of DDoS. Next, they verified that the resource consumption rate of the
model could be efficiently promoted via DDoS analysis.

Mourad et al. [23] developed a vehicular edge computing (VEC) fog-assisted system
that allows the offloading of IDS tasks to federated vehicle nodes situated within the
Adhoc vehicular fog that is implemented with minimum latency. Abdel-Basset et al. [24]
introduced a forensics-based DL (Deep-IFS) for identifying intrusions in IIoT traffic. The pre-
sented approach learns local representations with LocalGRU and presents an MHA to learn
and capture global representations (with longer-range dependency). A residual connec-
tion among layers is developed for preventing data loss. Pacheco et al. [25] proposed an
Anomaly Behavior Analysis Method based on ANN, to obtain an adaptive IDS that could
be able to detect whether a fog node was compromised and also take proper action for
ensuring transmission accessibility.

3. The Proposed Model

In this study, a novel ESOML-IDS approach was developed for intrusion detection
and classification in FC and EC environments. The presented ESOML-IDS technique aimed
to identify the occurrence of intrusions in the FC and EC environment. The ESOML-IDS
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technique encompasses a series of sub-processes such as pre-processing, ESO-based feature
subset selection, a DAE classifier, and CLPSO-based parameter optimization.

3.1. Data Normalization

The z-score is a conventional standardized and normalized approach that signifies
the number of standard deviations (SD). It normalizes the data set to the above-mentioned
scale for converting every datum with a distinct scale to the default scale.

For normalizing the data utilizing the z-score, it can be subtracted the mean of pop-
ulations in a rare data point and separated by the SD that offers a score ideally different
amongst −3 and +3, thus reflecting that a point is several SDs above/below the mean, as
calculated by Equation (1), where x signifies the value of the specific sample, µ stands for
the mean and σ denotes the SD.

z_score =
x− µ

σ
(1)

3.2. Design of ESO-Based Feature Selection Technique

The elastic collision seeker optimization algorithm (ESOA) involved in [26] has been
employed in our system for feature selection. The seeker optimization algorithm (SOA) im-
plements an in-depth search simulating human search performance. The SOA is optimized
as a search for the most optimal solution with a team of explorers in exploring space, using
the search team as the population and the seeker as the task approach. Three significant
upgrading stages are called ESOs.

3.2.1. Search Direction

The forward orientation of searching is determined as the experience gradient at-
tained in the individual effort and the estimation of another individual searching a past
place. The egoistic path

−→
f i.e(t), altruistic path

−→
f i.a(t), and preemptive path

−→
f i.p(t) of ith

individual from some dimension are achieved.

−→
f i.e(t) =

−→p i,best −−→x i(t)
−→
f i.a(t) =

−→g i,best −−→x i(t)
−→
f i.p(t) =

−→x t1 −−→x t2

(2)

The seeker utilizes the technique of an arbitrary weighted average for obtaining the
search orientation.

−→
f i(t) = sign(ω

−→
f i.p(t) + φ1

−→
f i.e(t) + φ2

−→
f i.a(t)) (3)

where t1, t2 ∈ {t, t − 1, t − 2}; −→x i(t1) and −→x i(t2) are the optimum benefits of −→x i(t −
2),−→x i(t − 1),−→x i(t) individually; gi,best refers to the historical optimum place from the
neighborhood, where the ith searching factor was placed; pi,best represents the optimum
locality in the ith searching factor to present locality; ψ1 is an arbitrary number from zero
to one, and ω implies the weight of inertia.

3.2.2. Search Step Size

The ESO represents the capability of fuzzy approximation reasoning. The technique
adjusts to the best estimate of the objectively optimized problem when it expresses a simple
fuzzy rule. Greater significance is associated with longer searching stages, whereas lower
fitness corresponds to shorter searching stages. The Gaussian distribution function was
adapted for describing the search step measurements.

µ(a) = e
α2

2δ2 (4)
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where α and δ represent the parameters of membership functions. Based on Equation (4),
the probability of a resultant variable above [−3δ, 3δ] is less than 0.0111. Thus, µmin = 0.0111.
However, for accelerating the convergence speed and attaining an optimum individual to
take an undefined step size, µmax is fixed as 0.9.

µ(i) = µmax −
s− Ii
s− I

(µmax − µmin), i = 1, 2, . . . , s (5)

µij = rand(µi), j = 1, 2, . . . , D (6)

where µij has been defined in Equations (5) and (6), Ii refers to the number of sequences
X(t) of the current individuals set in higher to lower function values, and the function
refers to the real number from some partition [µi, 1]. It is realized that Equation (5) reflects
the arbitrary search performance of human beings. The step measurement of j dimension
searching the interspace is defined in the subsequent formula:

αij = δij −
√
− ln(µij) (7)

where δij refers to the parameter of the Gaussian distribution function that is demonstrated
in Equations (8) and (9):

ω =
itermax − t

itermax
(8)

δij = ω ∗ abs(−→x min −−→x max) (9)

where ω refers to the weight of inertia. While the evolutionary algebra improves, ω reduces
linearly from 0.9 to 0.1. −→x min and −→x max, correspondingly, denote the variates of the
minimal and maximal values of the function. Figure 2 depicts the flowchart of SOA.

Figure 2. Flowchart of SOA.
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3.2.3. Individual Location Updates

After obtaining the scout path and scout step measurement of individuals, the place
upgrade is expressed as in Equation (10):

xij(t + 1) = xij(t) + αij(t) fij(t), i = 1, 2, . . . s; j = 1, 2, . . . , D (10)

i refers to the ith searching individual; j signifies the individual dimensional; fij(t)
and αij(t), correspondingly, represent the seekers’ path and searching step size at time t;
and xij(t) and xij(t + 1), correspondingly, define the seekers’ site at time t and (t + 1).

The mathematical model of the ESO-FS approach was established. Usually, the classi-
fication (for instance, supervised learning) requires some datasets that are of size NS × NF,
whereas NS signifies the count of samples and NF defines the count of features. The main
function of the FS problem is selecting a subset of features S in the entire amount of features
(NF), whereas the size of S is less than NF. It is attained by minimizing the subsequent
main function:

Fit = λ× γs + (1− λ)× (
|S|
NF

) (11)

where γs implies the classifier error utilizing S and |S| as the count of chosen features. λ is
utilized for balancing amongst ( |S|NF

) and γs.

3.3. Process Involved in DAE-Based Classification

During the intrusion detection process, the chosen features are fed into the DAE model
to classify intrusions [27]. DAE is dependent upon the AE. Noise (Gaussian noise usually,
or setting the data to zero arbitrarily) is present in trained data, and AE is required to
be learned for removing noise so as to obtain uncontaminated input data. In the case of
corrupted input, the AE is defined further as a stable and suitable feature that establishes a
further advanced description of the input data and improves the robustness of the total
method. At this point, x is the primary input data, x1 is the corrupted input data, y is the
novel feature attained by the encoded x1, and z represents the outcome attained by the
decoded y. The reconstructing error is calculated by Equation (12):

LD = ||x− g( f (x1))||2 (12)

The cost function is computed as:

JD(W, b) =
[

1
m

N

∑
i=1

(
1
2
||xi − g( f (xi

1))||2
]
+

λ

2

2

∑
l=1

sl

∑
i=1

sl+1

∑
j=1

(W l
ji)

2) (13)

Generally, it is only required to arbitrarily fix the unit from x to zero based on the noise
figure k (k ∈ [0, 1]); afterward, x1 is attained. This technique of resolving the parameters is
similar to that of AE. Figure 3 displays the infrastructure of DAE.
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Figure 3. DAE structure.

3.4. Parameter Tuning Using CLPSO Algorithm

We used the CLPSO algorithm, developed by [28], to achieve optimal tuning of the
parameters involved in the DAE model. PSO is a typical evolutionary computing approach
stimulated in the analysis of the predation performance of birds; the basic concept of
the PSO technique is sharing cooperation and data amongst individuals for finding the
optimum solutions. The velocity signifies the speed and direction in which the particle
moves. The position signifies the particle’s position. In order to process all the particles,
only the individual optimum experience and the global optimum experience of the total
swarm are learned. Assume xi = (xi1, xi2, . . . , xiD)

T and vi = (vi1, vi2, . . . , viD)
T , which

refer to the position and velocity of particle i i = {1, 2, . . . , N}, correspondingly, whereas D
refers to the dimensions of the primary space and N represents the population size. Assume
that pbesti = (pbesti1, pbesti2, . . . , pbestiD)

T and gbest = (gbest1, gbest2, . . . , gbestD)
T exist

as the individual optimum place of particles i and the global optimum position of the
entire swarm. The upgrade of velocity, as well as the position of particles, is computed by
Equations (14) and (15):

vid = w ∗ vid + c1 ∗ rand1(0, 1) ∗ (pbestid − xid) + c2 ∗ rand2(0, 1) ∗ (gbestid − xid) (14)

xid = xid + vid (15)

where i = 1, 2, . . . , N and d = 1, 2, . . . , D. However, w refers to the inertia weight, c1
and c2 stand for the acceleration co-efficient, and rand1(0, 1) and rand2(0, 1) are uniform
arbitrary numbers.

The CLPSO algorithm adapts the approach of comprehensive learning for select-
ing an object for learning, rather than learning by themselves, and the global optimum
individual [28]. The velocity upgrading formula in CLPSO is determined as:

vid = w ∗ vid + c1 ∗ rand1(0, 1) ∗ (pbest fid − xid) (16)

where fi determines that particle pbests is the particle that i must follow, and rand(0, 1) ∈
[0, 1] refers to a uniform arbitrary number. The CLPSO allocates the learning probability
Pci to all the particles i utilizing the subsequent formula:

Pci = 0.05 + 0.45
exp(10(i− 1)/N − 1)− 1

exp(10)− 1
(17)

In order to obtain all the solutions xi, it is learned from several particles rather than
only two particles. All the components of particles i learn by themselves or by another
particle depending upon learning probability Pci. Arbitrary components of particles i will
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learn from another particle when all their elements learn by themselves. The superior
fitness value of a solution is the superior possibility in which a particle is learned.

The CPSO technique is used for determining FF with the objective of minimizing the
classifier error rate, as provided below. The solution with the minimum classifier error rate
is assumed as a better solution.

f itness(xi) = Classi f ier Error Rate(xi) =
Number o f misclassi f ied instances

Total number o f instances
∗ 100 (18)

4. Empirical Results and Validation

This section discusses the effectiveness of applying the ECSOML-IDS technique to
detect and classify intrusions under several varieties of FS methods and class labels. It
demonstrates and validates the enhanced outcomes of employing the ECSOML-IDS tech-
nique in terms of a wide set of accuracy metrics. Thus, the experimental work of this
manuscript, together with the cost and performance analysis, is described below.

4.1. Cost Analysis

The UNSW-NB15 datasets are used for experimental validation because they have
significant potential for attack pattern recognition and analysis, as well as being effective
in enhancing the effectiveness of intrusion classifiers. In contrast to NSL-KDD and KDD-
CUP’99, Zhang et al. [28] claim that the UNSW-NB15 dataset better simulates the current
network traffic environment; the dataset holds a set of 42 features, including 3 categorical
and 39 numeric features. Table 1 and Figure 4 report the FS outcomes of the ESO-FS and
other FS techniques in terms of the number of features chosen and best cost (BC).

Figure 4. Best cost analysis of ESO-FS technique.

The results indicated that the GWO-FS model showcased worse FS outcomes with
a BC of 0.947, whereas the ACO-FS technique obtained a slightly enhanced BC of 0.268.
At the same time, the GSO-FS technique has resulted in a reasonable BC of 0.2194. However,
the ESO-FS technique has displayed enhanced FS outcomes with the choice of 12 features
and a BC of 0.1468.
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Table 1. FS analysis of ESO-FS technique.

Methods No. of Features Selected Best Cost

ESO-FS 12 0.1468
GSO-FS 16 0.2194
ACO-FS 18 0.2681
GWO-FS 24 0.2947

4.2. Performance Measures and Analysis

In this subsection, the impact of accuracy derived from utilizing the ECSOML-IDS
technique, for different numbers of epochs, and label classes, is examined. Several perfor-
mance metrics have been discussed in [*] for evaluating the effectiveness and quantifying
errors resulting from using certain class types with a distinct number of epochs. In this
paper, for performance validation purposes, several accuracy metrics have been used,
such as training accuracy, validation accuracy, testing accuracy, precision, recall, and F1
score, which are denoted by traccu, valaccu, testaccu, precn, recal , and Fscore, respectively.
Generally, classification accuracy is the ratio of the number of correct predictions to the
total number of input samples.

Accuracy =
Number o f correct predictions

Total numbero f predictions made
(19)

Moreover, the precision metric reflects the proportion of positive identifications that
was actually correct. Therefore, precision is computed as follows:

Precision =
TP

TP + FP
(20)

Meanwhile, the recall is the fraction of relevant instances that were retrieved. The recall
can be mathematically defined as:

Recall =
TP

TP + FN
(21)

where TP, FP, and FN are True Positive, False Positive, and False Negative outcomes,
respectively. Moreover, the F1-score is the traditional F-measure or balanced F score F1-
score) and is defined as the harmonic mean of precision and obtained as:

F1− Score = 2 ∗ Precision ∗ Recall
Precision + Recall

=
TP

TP + 1/2(FP + FN)
(22)

Table 2 and Figure 5 portray the classification outcomes of the ESOML-IDS model
under 1000 epochs and distinct classes. The results indicated that the ESOML-IDS model
resulted in effective outcomes under every class. For instance, with a normal class,
the ESOML-IDS model has obtained traccu, valaccu, testaccu, precn, recal , and Fscore of 83.38%,
83.56%, 78.22%, 82.72%, 81.50%, and 80.59% respectively. At the same time, with the DoS
class, the ESOML-IDS model has obtained traccu, valaccu, testaccu, precn, recal , and Fscore of
83.14%, 83.50%, 80.18%, 82.10%, 83.47%, and 81.99%, correspondingly. Moreover, with the
generic class, the ESOML-IDS system has obtained traccu, valaccu, testaccu, precn, recal ,
and Fscore of 82.46%, 82.88%, 80.43%, 82.08%, 81.21%, and 80.87%, correspondingly.
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Figure 5. Result analysis of ESOML-IDS technique under 1000 epochs and distinct classes.

Table 2. Result analysis of ESOML-IDS technique under 1000 epochs and distinct classes.

Epoch-1000

Class Labels Training Accuracy Validation Accuracy Test Accuracy Precision Recall F1-Score

Normal 83.38 83.56 78.22 82.72 81.50 80.59
DoS 83.14 83.50 80.18 82.10 83.47 81.99
Backdoor 83.86 81.75 80.32 82.45 82.02 82.89
Exploits 83.03 83.56 78.32 83.21 81.28 83.98
Analysis 83.07 82.24 77.92 81.59 81.99 80.63
Generic 282.46 82.88 80.43 82.08 81.21 80.87
Fuzzers 81.32 81.90 77.41 81.68 81.42 80.40
Shellcode 83.52 81.65 77.33 82.88 82.82 80.34
Reconnaissance 83.25 83.41 77.38 82.97 82.44 80.34
Worms 81.17 82.49 78.24 81.51 81.74 81.26
Average 82.82 82.69 78.58 82.32 81.99 81.33

Furthermore, with the shellcode class, the ESOML-IDS method has obtained traccu,valaccu,
testaccu, precn, recal , and Fscore of 83.52%, 81.65%, 77.33%, 82.88%, 82.82%, and 80.34%, re-
spectively. Eventually, with the worms class, the ESOML-IDS approach has obtained
traccu,valaccu, testaccu, precn, recal , and Fscore of 81.17%, 82.49%, 78.24%, 81.51%, 81.74%,
and 81.26%, correspondingly.

The accuracy outcome analysis of the ESOML-IDS approach on test data is exhibited
in Figure 6. The results demonstrated that the ESOML-IDS technique achieved improved
validation accuracy related to training accuracy. It is also observable that the accuracy
values become saturated with the epoch count of 1000.
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Figure 6. Accuracy analysis of ESOML-IDS technique under 1000 epochs.

The loss outcome analysis of the ESOML-IDS system on test data is demonstrated in
Figure 7. The figure shows that the ESOML-IDS technique offers reduced validation loss in
terms of training loss. It is additionally noticed that the loss values become saturated with
an epoch count of 1000.

Figure 7. Loss analysis of ESOML-IDS technique under 1000 epochs.

Table 3 and Figure 8 portray the classification outcomes of the ESOML-IDS algorithm
under 2000 epochs and distinct classes. The results indicated that the ESOML-IDS model
resulted in effective outcomes under every class. For example, with the normal class,
the ESOML-IDS technique has obtained traccu, valaccu, testaccu, precn, recal , and Fscore of
81.54%, 82.64%, 83.02%, 81.92%, 83.49%, and 82.18%, correspondingly. Simultaneously, with
the DoS class, the ESOML-IDS approach has obtained traccu, valaccu, testaccu, precn, recal ,
and Fscore of 82.72%, 83.10%, 84.78%, 83.08%, 81.46%, and 83.82%, respectively. Moreover,
with the generic class, the ESOML-IDS methodology has obtained traccu, valaccu, testaccu,
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precn, recal , and Fscore of 83.80%, 81.09%, 83.92%, 82.29%, 83.19%, and 83.97%, respectively.
Moreover, with the shellcode class, the ESOML-IDS model has obtained traccu,valaccu,
testaccu, precn, recal , and Fscore of 83.42%, 81.37%, 83.29%, 83.35%, 82.15%, and 82.55%,
correspondingly. At last, with the worms class, the ESOML-IDS model has obtained
traccu, valaccu, testaccu, precn, recal , and Fscore of 82.64%, 83.59%, 82.82%, 82.74%, 82.68%,
and 83.75%, correspondingly.

Figure 8. Result analysis of ESOML-IDS technique under 2000 epochs and distinct classes.

Table 3. Result analysis of ESOML-IDS technique under 2000 epochs and distinct classes.

Epoch-2000

Class Labels Training Accuracy Validation Accuracy Test Accuracy Precision Recall F1-Score

Normal 81.54 82.64 83.02 81.92 83.49 82.18
DoS 82.72 83.10 84.78 83.08 81.46 83.82
Backdoor 81.63 82.73 82.11 81.47 83.05 81.69
Exploits 82.86 83.70 83.24 83.10 82.82 82.39
Analysis 83.15 83.01 84.93 82.95 81.65 83.46
Generic 83.80 81.09 83.92 82.29 83.19 83.97
Fuzzers 82.12 82.85 81.29 81.64 81.53 83.92
Shellcode 83.42 81.37 83.29 83.35 82.15 82.55
Reconnaissance 83.37 82.17 81.51 82.29 82.95 83.04
Worms 82.64 83.59 82.82 82.74 82.68 83.75
Average 82.73 82.63 83.09 82.48 82.50 83.08

The accuracy outcome analysis of the ESOML-IDS approach on test data is showcased
in Figure 9. The results demonstrated that the ESOML-IDS technique achieved improved
validation accuracy related to training accuracy. It can be also observed that the accuracy
values become saturated with the epoch count of 2000. The loss outcome analysis of the
ESOML-IDS technique on test data is displayed in Figure 10. The figure reveals that the
ESOML-IDS system resulted in reduced validation loss in terms of the training loss. It is
additionally noticed that the loss values become saturated with an epoch count of 2000.
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Figure 9. Accuracy analysis of ESOML-IDS technique under 2000 epochs.

Figure 10. Loss analysis of ESOML-IDS technique under 2000 epochs.

Table 4 and Figure 11 provide a comparative study of the DAE-IDS technique with
existing techniques in terms of distinct measures. The results indicated that the SVM
technique gained ineffective results, with accuy of 0.6109, precn of 0.4747, recal of 0.6200,
and F1score of 0.5377. In line with, the LR technique offered somewhat increased outcomes,
with accuy of 0.6553, precn of 0.7691, recal of 0.6554, and F1score of 0.6662. Then, the DT
technique yielded moderate results, with accuy of 0.6603, precn of 0.7982, recal of 0.6604,
and F1score of 0.5112. Although the ANN and KNN techniques achieved reasonable classifi-
cation results, the DAE-IDS technique showed enhanced performance, with accuy of 0.7834,
precn of 0.8010, recal of 0.7786, and F1score of 0.7946.
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Figure 11. Comparative analysis of DAE-IDS technique without feature selection.

Table 4. Comparative analysis of DAE-IDS technique without feature selection.

Methods Accuracy Precision Recall F1 Score

ANN Model 0.7562 0.7992 0.7561 0.7658
LR Model 0.6553 0.7691 0.6554 0.6662
kNN Model 0.7009 0.7579 0.7021 0.7203
SVM Model 0.6109 0.4747 0.6200 0.5377
Decision Tree Algorithm 0.6603 0.7982 0.6604 0.5112
DAE-IDS 0.7834 0.8010 0.7786 0.7946

Table 5 and Figure 12 provide a comparative study of the ESOML-IDS model with
existing models in terms of distinct measures. The results indicated that the SVM approach
yielded ineffectual results, with accuy of 0.6153, precn of 0.5395, recal of 0.6152, and F1score
of 0.5131. Likewise, the LR system offered slightly increased outcomes, with accuy of 0.6529,
precn of 0.7088, recal of 0.6529, and F1score of 0.6569.

Table 5. Comparative analysis of DAE-IDS technique with feature selection.

Methods Accuracy Precision Recall F1 Score

ANN Model 0.7751 0.7950 0.7753 0.7728
LR Model 0.6529 0.7088 0.6529 0.6596
kNN Model 0.7230 0.7724 0.7230 0.7381
SVM Model 0.6153 0.5395 0.6152 0.5131
Decision Tree Algorithm 0.6757 0.7966 0.6756 0.6926
ESOML-IDS 0.8309 0.8248 0.8250 0.8308
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Figure 12. Comparative analysis of DAE-IDS technique with feature selection.

Then, the DT approach yielded moderate results, with accuy of 0.6757, precn of 0.7966,
recal of 0.6756, and F1score of 0.6926. Afterward, the ANN and KNN models reached
reasonable classification results, and the ESOML-IDS method accomplished enhanced
performance, with accuy of 0.8309, precn of 0.8248, recal of 0.8250, and F1score of 0.8308.
After examining the above-mentioned tables and figures, it is apparent that the presented
model achieved superior intrusion detection outcomes over the other techniques.

5. Conclusions

For intrusion detection and classification in FC and EC environments, a new ESOML-
IDS technique has been developed in this manuscript, aiming to identify the occurrence
of intrusions. The ESOML-IDS technique consists of a series of sub-processes including
pre-processing, ESO-based feature subset selection, a DAE classifier, and CLPSO-based
parameter optimization. For improving the detection efficiency in the aforementioned
environments, the ESO algorithm for feature subset selection and DAE for parameter
optimization have been utilized. Additionally, to demonstrate the enhanced outcomes of the
ESOML-IDS model, a wide variety of empirical experiments with exhaustive simulations
were carried out. The experimental results reported the enhanced outcomes of the ESOML-
IDS model over the recent approaches, showing the superiority of the proposed technique
in terms of accuracy, precision, recall, and F1 score. We believe that the proposed technique
can be used to extract manifold benefits with a minimal loss in accuracy for detecting
intrusions in FC and EC environments.
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