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Abstract. The performance of modal Multi-Conjugate Adaptive Optics systems correcting a finite number of
Zernike modes is studied using a second-order statistical analysis. Both natural and laser guide stars (GS) are
considered. An optimized command matrix is computed from the covariances of atmospheric signals and noise,
to minimize the residual phase variance averaged over the field of view. An efficient way to calculate atmospheric
covariances of Zernike modes and their projections is found. The modal covariance code is shown to reproduce
the known results on anisoplanatism and the cone effect with single GS. It is then used to study the error of
wave-front estimation from several off-axis GSs (tomography). With increasing radius of the GS constellation O,
the tomographic error increases quadratically at small ©, then linearly at larger ©® when incomplete overlap of
GS beams in the upper atmospheric layers provides the major contribution to this error, especially on low-order
modes. It is demonstrated that the quality of turbulence correction with two deformable mirrors is practically
independent of the conjugation altitude of the second mirror, as long as the command matrix is optimized for

each configuration.
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1. Introduction: AO, MCAOQO, and tomography

The purpose of Adaptive Optics (AO) is to correct at-
mospheric turbulence in real time, improving the image
quality of ground-based astronomical telescopes (Roddier
1999). Multi-Conjugate Adaptive Optics (MCAO) is a fur-
ther development of this concept, where correction is made
by several Deformable Mirrors (DMs) conjugated to dif-
ferent altitudes. In this way a wider Field of View (FOV)
can be corrected and better correction uniformity can be
achieved (Johnston & Welsh 1994; Ellerbroek 1994; Fusco
et al. 1999).

Atmospheric tomography was conceived as a method
to measure the instantaneous 3-dimensional phase pertur-
bations in the atmosphere, in order to get the control sig-
nals for MCAO (Tallon & Foy 1990). Light from several
Guide Stars (GSs) is used to probe the 3-dimensional per-
turbations, which are retrieved by solving an inverse prob-
lem as in medical tomography. It was realized later that
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the signals to control one or more DM can be derived di-
rectly from the information brought by GSs, without the
need to reconstruct the whole turbulent volume. We use
the term “tomography” in this sense, probably not quite
rigorously. An MCAO system cannot work without to-
mography. However, with only one DM (no MCAQ) the
tomography can be employed to correct the image of a
selected scientific target using the signals from surround-
ing GSs — either natural stars (NGSs) or artificial Laser
Guide Stars (LGSs). The interest of such a solution lies in
the possibility to correct the so-called cone effect (Tyler
1994) which degrades the performance of LGS-based AO
systems, or to widen the field where NGS can be found,
improving the sky coverage of AO.

In Fig. 1 a scheme of an MCAO system is given. Each
Wave-Front Sensor (WFS) measures the atmospheric per-
turbations for its own GS. Here we suppose that the per-
turbed wave-fronts are described by a finite number of
Zernike modes. Of course, WF'S signals also contain some
measurement noise. Those signals (e.g. the coefficients of
wave-front expansion on Zernike basis) are multiplied by
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Fig. 1. Scheme of an MCAO with modal control. Atmospheric
layers matching the conjugation altitudes of the 2 DMs are
shown. Both the WFS signal vector s and the DM command
vector c are specified as the coefficients of wavefront expansion
on Zernike modes. For DM2, this expansion is defined on a
meta-pupil of the diameter D + 20 H2, where D is the telescope
diameter, 0 is the radius of the FOV, H is the conjugation
altitude of DM2.

some command matriz M to control the shape of the DMs.
This shape is also specified in terms of Zernike modes, and
for this reason such an MCAOQO system can be called modal,
as opposed to zonal systems where both WFS and DM sig-
nals are specified as local parameters (wavefront slopes or
actuator voltages).

Although Zernike modes are slightly sub-optimal for
turbulence correction (Roddier 1999), the Zernike basis
plays an important role in theoretical studies of AO and
gives reasonable performance predictions. We extend these
studies to 3-dimensional turbulence correction and present
an analitycal tool for fast performance estimates which
permits to explore rapidly the vast space of system pa-
rameters in search of best configurations. Further refined
analysis of selected configurations must be done by Monte-
Carlo simulation which will take into account many addi-
tional details.

In an MCAO system the shape of DMs is driven in
such a way as to obtain the best possible correction in a
closed loop; the WFSs then measure the remaining resid-
ual wave-front aberrations. Here we consider an open-loop
MCAQO system, where the WFSs measure the uncorrected
perturbations, not residual aberrations. The DMs correct
the turbulence in another (scientific) beam. As shown by
Ellerbroek (1994), this approximation can describe a real
(closed-loop) AO system under certain assumptions. We
neglect the temporal aspects of MCAOQO operation by sup-
posing that all measurements and corrections are done
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instantaneously. Thus, our attention is focused on the
spatial aspects of turbulence tomography and correction,
which are indeed new and specific to MCAO.

The command matrix plays a role of a “magic” black
box that receives the WFS signals and produces the re-
constructed wave-fronts at the output. How should the
command matrix be selected to obtain the best possible
correction? What is “the best possible”? How good is the
correction finally? Which parameters of MCAO need to be
optimized, and how? These are the questions addressed in
the present work.

In Sect. 2 we briefly outline possible correction strate-
gies and the method to estimate the first-order MCAOQO
performance based on modal covariances (mathematical
details of the derivation are given in Appendix B). Our
numerical code is presented in Sect. 3. In Sect. 4 the re-
sults on tomography are given, and in Sect. 5 a low-order
MCAQO system is considered. The conclusions are summa-
rized in Sect. 6.

2. Principles of optimized modal tomography
2.1. Inverse control

The concept of modal MCAQO was discussed in the paper of
Ragazzoni et al. (1999, hereafter RMR99). It was shown
that the deformations of several DMs can be measured
(and hence controlled) by measuring a certain number of
Zernike modes on natural or laser GSs.

In a classical AO there is a one-to-one correspondence
between the wavefront and DM modes, but in MCAOQO this
relation is not so simple. As can be seen in Fig. 1, for
a finite Field of View (FOV) of a radius 6, the diame-
ter of the second DM (called meta-pupil) must be larger
than the telescope pupil D by at least 20 Hs, where Hs
is the conjugation height of the second DM. A beam of
some GS illuminates only a portion of the meta-pupil: the
beam footprint diameter is smaller than D for an LGS
(as shown in the figure) or equal to D for an NGS. In
addition, the footprints are displaced from the center of
the meta-pupil as soon as the GSs are not on-axis. The
wavefront is decomposed into Zernike modes on a small
circle (footprint), and DM commands are decomposed on
a larger circle (meta-pupil). The relation between those
two sets of modes is called mode projection, and is given
by a mode projection matrixz. It is discussed in RMR99
and in Appendix A.

Using mode projections, it is possible to express by a
matrix the reaction of all WFSs to a given Zernike mode
on a meta-pupil. This interaction matriz A relates the vec-
tor of WF'S signals s to the control signals (commands) ¢,
as in any AO system, and its specific form (projections)
is only a consequence of the modal representation of both
signals that we choose. As noted in RMR99, the inter-
action matrix can be inverted, to give a command ma-
trix Miny:

s=Ac and ¢= Mys, where M, = A~ (1)
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Such a control law is called inverse control. In fact the in-
teraction matrix A is not always invertible, and Singular
Value Decomposition (SVD) (Press et al. 1992) is typi-
cally used to obtain Mj,, by truncation of some singu-
lar values below a pre-selected threshold (A~!* is such a
pseudo-inverse matrix, and not the inverse matrix A~1).
Threshold selection is done by trial and error, it depends
on the amount of noise in the WFS signals. In the sim-
plest case of a classical modal AO system with only one
WEFS and one DM, both interaction matrix and M;,, are
identity matrices.

2.2. Residual variance

Given some command matrix M and some model of at-
mospheric turbulence, what is the average variance of the
uncompensated (residual) phase €2(0) for a given view-
ing direction 87 How does it depend on the location in
FOV? To answer these questions, second-order statisti-
cal quantities (covariances) must be computed. The result
(Appendix B) depends on the three matrices S, T', and R:

€2(0) = €2 — TraceMTT — RMSM™") =% +é2,.  (2)

Here €2 is the uncorrected atmospheric phase variance on
the telescope pupil, superscript 7" means matrix transpose,
and the operator Trace gives the sum of the diagonal el-
ements. It is convenient to sub-divide €?(0) into a sum
of the variance €2 of the first corrected J Zernike modes
(piston excluded) and the variance of higher uncorrected
modes, or fitting error €Z,.

The signal covariance matrix S;; = (s;s;) is a statis-
tical covariance of all pairs of WFS signals (modes). It
depends on the turbulence vertical profile, GS geometry,
and noise.

The target matriz T depends on the observed target lo-
cation @, but also on the DM parameters and atmospheric
parameters. It is computed as a product of the system pro-
jection matrix and a covariance matrix between Zernike
modes of the target and those of GSs.

The cross-talk matrix R is direction-dependent and de-
scribes the mutual influence of DM commands. It does not
depend either on the GSs nor on the atmospheric model.
When R is singular, it means that two (or more) combi-
nations of commands produce the same effect, and hence
are redundant. For example, R is singular when tip and
tilt modes are not removed from all DMs except the first
one. The redundant modes are usually removed by SVD
filtering of R.

2.3. Optimized control

We might use Eq. (2) to derive such a control matrix that
minimizes €2(6). But for which direction 8? A standard
approach (Ellerbroek 1994) consists of choosing some set
of directions with suitable weights Wy and in minimizing
the FOV-weighted €2. To do this, matrices T and R in
Eq. (2) must be replaced by the matrices T and R which
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are averaged over the FOV and are direction-independent.
The optimized command matrix Moy is then found:

Mopt = Ril*Tsil, (3)

a result known for a long time in classical AO (Wallner
1983).

At first glance, inverse and optimized command matri-
ces are computed from completely different formulas. Are
they indeed so different? The optimized control matrix is
a specific case of a Wiener filter and takes into account
the noise and turbulence statistics. It does not control the
modes for which there is not enough information. At high
signal to noise ratio it tends to something resembling the
inverse control matrix. The relation between inverse con-
trol and optimized control looks like a relation between
simple inverse filtering and least-squares (Wiener) filter-
ing in a linear image restoration problem.

When the matrix R is singular, it is inverted by SVD
by selecting a threshold for weak mode rejection. Of
course, both R and M,pt depend on the weights Wy. On
the other hand, S is always non-singular when the WFS
noise is taken into account.

3. Covariance code

A code has been developed which implements the above
principles and permits one to compute an optimized or in-
verse command matrix and to estimate the residual vari-
ance in selected directions for a modal MCAO system.

Computation of the atmospheric covariance of Zernike
modes is the most essential and computer-intensive part
of the code. The formulas of Whiteley et al. (1998) express
these covariances through the integrals of the triple prod-
ucts of Bessel functions. This calculation was carefully op-
timized using some term re-arrangement, pre-computing,
etc., gaining 10-100 times in computing speed com-
pared to the straightforward integration (Appendix C).
Mode projection is another important part of the code
(Appendix A).

A similar approach to modal MCAO is being devel-
oped by Fusco et al. (1999, 2000, 2001). They compute
modal covariances using the analytical Noll formulas and
projection relations (thus not accounting for a finite turbu-
lence outer scale). An optimized command matrix is then
used in Monte-Carlo simulation to find the residual vari-
ance, while we compute it directly from the covariances,
without recourse to system simulation.

In the rest of this section we describe the model of the
MCAO system used in our simulation and the tests of the
code.

3.1. System parameters

The atmosphere is modeled here as several discrete layers.
Throughout this paper a 7-layer model for Cerro Pachon
is used (Ellerbroek & Rigaut 2000) with ro = 0.15 m at
Ao = 0.5 pm and isoplanatic patch 6y = 2.47”. All phase
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Fig. 2. Representative configurations of AO systems on a 8 m telescope considered in this paper. For a classical system (left),
the Zernike modes 2—66 are supposed to be measured and corrected on a natural or laser guide star, possibly displaced from
the scientific target (small square). In tomography (center), the wave-front is still corrected by one DM, but wavefronts from 3
off-axis NGSs or LGSs are measured. Finally, an MCAO system attemps to correct a larger field with 2 DMs, minimizing the
wavefront errors averaged over several points in the field (squares).

variances are computed for the wavelength Ag. The tur-
bulence outer scale Ly = 25 m is assumed (Martin et al.
2000).

We apply the code to the case of an 8 m telescope
with a low-order MCAO system correcting Zernike modes
numbers 2-66 (radial order 10), as appropriate for near-
IR imagery. For our atmospheric model, the uncorrected
variance of those modes is 170.2 rad? (tip-tilt included).
For comparison, with infinite outer scale the variance is
822 rad?. The fitting error (variance of modes 67 and
higher) is €z, = 5.91 rad® To compute the Strehl ra-
tio SR()\) at some imaging wavelength A, the variance of
corrected modes e?] must be added to e%t and re-scaled:
SR(\) = exp[—(€% + €2,) (Mo /N)?].

The noise in the WFSs (assuming that they are of
Shack-Hartmann type) is simulated by the method of
Rigaut & Gendron (1992). The correspondence between
noise level and stellar magnitude is affected by system-
dependent WFS parameters. In this paper we focus our
attention on the compensation of atmospheric errors and
consider only relatively bright GSs, hence imprecise noise
modeling is not important.

In Fig. 2 the representative AO systems considered in
the rest of the paper are shown schematically. We begin by
calculating the anisoplanatic and cone-effect errors for a
classical AO system with single GS and one DM (Sects. 3.2
and 3.3). Then in Sect. 4 the possibility to correct an on-
axis target with one DM and several off-axis GSs (tomog-
raphy) is investigated. Full MCAQO systems correcting a
large field with several DMs are studied in Sect. 5.

3.2. Modal anisoplanatism

Chassat (1989, 1992) has derived fast-converging series
to compute modal covariances for the case of NGS and
infinite outer scale using a Mellin transform. In the gen-
eral case (LGS, finite outer scale) such series do not exist
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Fig. 3. Residual variance €2 of the corrected modes 2-66 in
function of the NGS off-axis angle, as given by the covariance
code (full line) and by the Chassat series (asterisks). Dotted
line shows the (0/0)°/% law.

(Sasiela 1994) and covariances must be calculated by inte-
gration. In Fig. 3 the rms difference between on-axis and
off-axis modes from 2 to 66, as computed with Chassat
series for Cerro Pachon atmospheric model, is plotted as
asterisks. We simulated with our code a conventional AO
system with identity command matrix correcting Zernike
modes 2-66 with an off-axis NGS (an infinite outer scale
was assumed in this case). The full line shows the residual
variance as a function of the NGS off-axis distance. A very
good agreement with Chassat attests that covariances are
computed correctly.

The dotted line in Fig. 3 shows the (6/6,)%/3 “Fried”
anisoplanatic phase variance (Fried 1982). It is superior
to the modal anisoplanatism, as noted by many authors
(Chassat 1989; Stone et al. 1994; Chun 1998). At small an-
gles the Fried variance increases mostly due to small-scale
perturbations which are not included in the 66 corrected
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Table 1. Phase variance caused by the cone effect
(rad? at 0.5 pm).

Hics, km | do, m (D/do)*® €25 €2
90 4.81 2.33 1.67 2.16
60 3.45 4.07 340 4.15
30 2.08 9.46 9.87 11.03

modes. At larger angles a contribution of differential pis-
ton term to the Fried variance becomes significant. So, the
corrected FOV of a low-order AO system is 1.5-2 times
larger than the atmospheric isoplanatic patch 6.

3.3. Cone effect

The beam of an LGS is converging, and this differ-
ence from the stellar beam provokes an error in the cor-
rected wave-front, known as a cone effect. The theory pre-
dicts this error to be (D/dp)*/® (Roddier 1999), where
do depends on the LGS altitude and on the turbulence
profile. For the Pachon atmospheric model the dy was
computed with formulas of Tyler (1994) for three LGS al-
titudes Hy,gs. In Table 1 the residual variances are given
for a classical AO system at 8 m telescope with an identity
command matrix correcting modes up to 66 or up to 231
(radial orders 10 and 20, respectively).

The cone effect for 66 modes is less than (D/dg)°/3
for the same reason as the modal anisoplanatism: low-
order modes are better correlated. With increased correc-
tion order the cone effect estimated by the covariance code
approaches the analytical predictions. Given the approx-
imate nature of the latter, the agreement can be judged
satisfactory.

The tests described above show that our code re-
produces the known analytical results for classical AO
systems.

4. Tomography

In this section an AO system with several GSs and one
DM is studied in order to test modal tomography. First,
the influence of the angular size of the GS constellation
on tomographic reconstruction is evaluated. It is shown
that the tomographic error is mostly caused by incomplete
overlap of GS beams in the higher layers, exceeding signif-
icantly the tomographic error for infinite beam size. The
tomographic correction of the cone effect inherent to LGSs
is addressed as well; the best correction is achieved when
LGSs are projected at a distance of 4 m from the optical
axis, providing a good coverage of the 8 m aperture. In this
case the tip and tilt are supposed to be perfectly corrected;
because of that, the tomographic error at large LGS sepa-
rations is smaller than for the NGSs, meaning that most of
the tomographic error resides in low-order modes. Finally,
still in the LGS context, we study the possibility of es-
timating atmospheric tilt not from one, but from several
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Fig. 4. Residual variance €24 at the center of FOV for the
symmetric configurations of 3 and 5 NGSs at varying distance
from the FOV center. Dashed line corresponds to a case of 3
LGSs (unknown tip and tilt) plus an NGS at center measuring
modes 2, 3. If LGSs are replaced by NGSs in this same config-
uration, the results are similar (dash-dot line). Dotted line is
an atmospheric tomography limit for 3 NGSs.

more widely spaced NGSs, and show that “tilt tomogra-
phy” brings a potential gain in the sky coverage.

4.1. Dependence of tomographic error
on the constellation size

Four combinations of guide stars with varying radius
© are considered here: i) a symmetric configuration of
3 NGSs; ii) same with 5 NGSs; iii) 3 sodium LGSs (al-
titude 90 km) with unknown tip and tilt and one NGS
at the FOV center measuring tip and tilt only; iv) same
for infinite-altitude NGSs. All sources are bright because
we want to compute the atmospheric error. The target is
supposed to be on-axis, with modes up to 66 corrected by
a single DM using a command matrix optimized for each
GS configuration. The residual variance of the corrected
modes €2 is plotted in Fig. 4 against ©.

The tomographic error for a telescope with infinitely
large aperture was calculated in Tokovinin & Viard (2001)
as (©/vx)%/3, where the tomographic patch size v de-
pends on the number of guide stars K and on the tur-
bulence profile. We estimate v3 ~ 110” and ~5 ~ 150"
for the Cerro Pachon atmosphere. It means that the ul-
timate atmospheric tomography limit is a way below the
modal tomography error at the 8 m telescope! This indi-
cates that for a 8-m class telescope working in the near
infrared the major component of tomographic error arises
from incomplete overlap of GS beams, and not from the
de-correlation between atmospheric layers.

Comparing Fig. 4 with Fig. 3, we see that modal to-
mography significantly widens the FOV. If the FOV size
is arbitrarily defined as a field radius corresponding to
a 2-fold reduction of the Strehl ratio SR(K) (13.4 rad?
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error at Ag = 0.5 pm), then it is equal to 20", 75", and
120" when 1, 3, and 5 NGSs are used.

4.2. Correction of the cone effect

The dashed line in Fig. 4 shows results for tomography
with 3 bright sodium LGSs which measure all modes from
4 to 66. It is known that when tip and tilt are not con-
strained by LGSs, either the modes 2—6 need to be mea-
sured on a single NGS (Le Louarn & Tallon 2000), or sev-
eral tip-tilt NGSs are needed (Ellerbroek & Rigaut 2000)
in an MCAO system. However, in the case of tomography
(one DM only) this complication is not required, and we
suppose that tip and tilt only are measured by an addi-
tional NGS at the FOV center.

For very small ©, LGSs give worse results, which can
be explained by the cone effect (see above). When the ra-
dius of LGSs reaches 9”, their distance from the optical
axis is 4 m (at 90 km), which means that LGS beams
cover the whole 8-m aperture and tomography is able to
reduce the cone effect (the residual error of the first 66
modes is 0.20 rad?). If an additional 3 modes (astigma-
tisms and defocus) are measured on the central NGS, the
error becomes 0.04 rad?. We did not yet explore the degree
of cone effect removal in a higher-order system needed for
turbulence correction in the visible.

Remarkably, with increasing © the 3-LGS curve falls
below the 3-NGS curve. It means that the contribution of
modes 2 and 3 (retrieved from tomography for 3 NGSs
or measured directly on tip-tilt star for LGSs) is non-
negligible. Still better results are obtained with LGSs if
more modes (up to 6) are measured on the central NGS,
as required for MCAQO. When the LGSs are placed at an
infinite altitude (dash-dotted line in Fig. 4) the cone ef-
fect disappears, but otherwise the results turn out to be
similar.

At © ~ 30" the 3-NGS curve changes from quadratic
to almost linear growth. This angle corresponds to the
beam separation of 0.8 m at a characteristic altitude of
6 km — of the order of the spatial size of the small-
est perturbations corrected with 66 modes (radial order
10) on an 8 m aperture. At this same angle the curves
for the 3-NGS and 3-LGS cases begin to diverge, sig-
nalling that for 3-NGS the contribution of uncorrelated
tip and tilt becomes important at larger ©. The surface of
non-overlapping beam portions is roughly proportional to
O, hence the amount of uncorrelated atmospheric noise
and modal anisoplanatism both grow linearly with ©.
This finding supports the crude analytic modeling of the
MCAO anisoplanatism suggested by Fusco et al. (2000).

4.3. Tilt tomography

In this sub-section the problem of measuring tip and tilt
from an off-axis NGS (as needed for an LGS AO system)
is addressed. The variance of modes 2 and 3 is plotted by
a dashed line in Fig. 5 against the off-axis distance. The
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Fig. 5. Residual combined variance of tip and tilt when they
are measured on one off-axis NGS (dashed line) and when they

are estimated from the 3 off-axis NGSs (full line). Dotted lines
show the variance levels of 1 and 13.4 rad® (at 0.5 um).

full line shows the variance obtained when 3 off-axis NGSs
are used for estimation of the on-axis tilt (“tilt tomogra-
phy”). Better performance is achieved because the a priori
information on turbulence vertical profile is used here in
the form of tilt covariances.

For a variance of 1 rad? the 3 NGSs can be ~3 times
further away from the FOV center than a single NGS.
The area on the sky increases by a factor of 10, and the
probability to find 3 NGSs in a larger field can exceed the
single-NGS probability. The sky coverage of an LGS-based
AO system can thus be improved by using several NGSs
for tilt measurement. However, for larger field size and
larger variance, as is typical for K-band imagery, the gain
in FOV is less (~2 times), making increased sky coverage
less likely. This reduced performance is explained again by
the incomplete overlap of 8-m beams; for larger apertures
the gain in sky coverage brought by tilt tomography will
be non-negligible at all wavelengths.

5. MCAO

In this section, various aspects of a full MCAO modal
system are studied. First, we test mode projections which
are specific to MCAO and show that projection relations
between Zernike modes do permit the control of one or
more over-sized DMs by measuring the wavefronts on the
telescope pupil. Our simulations are compared with the re-
sults of two other groups, demonstrating that the modal
code predicts similar MCAOQ performance. Then the selec-
tion of the optimum conjugation height Hs of the second
DM in a double-conjugate AO system is addressed: we
show that if the command matrix is re-adjusted to chang-
ing Hs, the MCAO performance remains practically con-
stant. Thus, there is no need to adapt the optical conjuga-
tion of DM2 to the changing altitude of turbulent layers,
but rather to take this into account in the control. Finally,
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Fig. 6. The inverse condition number of the cross-talk matrix
R of a 2-DM MCAO system, as a function of the FOV radius
0 which defines meta-pupil diameter D + 20 H,. Six points of
equal weight at the vertices of a hexagon of radius © are used as
Wy optimization function. Full curve corresponds to © = 60",
dashed curve to © = 30”.

the superiority of the optimized control over inverse con-
trol is illustrated.

5.1. Mode projections

In a conventional AO system with a bright single NGS and
one DM, €, is zero because all modes up to 66 are per-
fectly corrected. To test the mode projections, let the DM
be conjugated not to telescope pupil, but to H = 8 km,
with a the meta-pupil size of 9.55 m. Only the central 8 m
of the pupil is measured and corrected, although the DM
commands are now defined on a larger circle.

Using the inverse command matrix My, we still ob-
tain €2, = 0. The system is able to reproduce ezactly
the small-pupil modes by the large-pupil ones. However,
M,y has now elements as large as 52 (it was an iden-
tity matrix when DM was conjugated to pupil), and the
variance of the DM signal is 2600 rad?, instead of the
170.2 rad? atmospheric variance! Of course, this exces-
sive variance corresponds to the unused periphery of the
meta-pupil. With optimized control, the command matrix
elements are smaller, the DM variance is less (245 rad?),
and €25 = 0.77 rad?.

We next consider the problem of the R-matrix inver-
sion. This matrix depends only on the DM conjugation
heights, meta-pupil diameter, and FOV weighting Wy. A
double-conjugate MCAOQ system correcting Zernike modes
up to 66 with DM2 conjugated to H, = 5 km is chosen.
The Wy consists of 6 equal-weight points at the vertices
of a hexagon of radius ©. Changing the diameter of meta-
pupil D + 20H, (or, equivalently, the unvigneted FOV
radius 6) changes the modal basis of the meta-pupil, and
hence the cross-talk matrix. As seen in Fig. 6, the inverse
condition number of R (ratio of the smallest and largest
eigenvalues) is a strong function of the radius 0, having
a maximum at 6 slightly less than ©. Other weighting
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patterns were tried (e.g. a triangle with the 4th heavily
weighted point at FOV center), with similar results. It
is thus strongly recommended to select a meta-pupil size
corresponding to # = © or slightly less.

5.2. Comparison with other codes

The predictions of the modal covariance code were com-
pared to the results of the simulation of GEMINI MCAO
system as given by Ellerbroek & Rigaut (2000). The 3
DMs are conjugated to altitudes 0, 4.5, and 9 km and cor-
rect modes up to 66. The 5 LGSs are used, of which 4 are
located at the corners of a 60” square field, and the fifth
at the FOV center. Four NGSs for tip-tilt measurements
are in the middle of the square sides. The 9 weighting
directions include center (weight 16/36), NGS positions
(weight 4/36) and LGS positions (weight 1/36).

Our code gives a weighted residual of €25 = 1.46 rad?
(0.66 rad® at FOV center). With a threshold of 1073, 16
modes out of 188 are rejected in the inversion of the R
matrix. In Fig. 5a of Ellerbroek & Rigaut (2000) the rms
OPD of 0.12 um is given for the similar case, correspond-
ing to 2.3 rad? phase variance. The results are quite close,
despite the difference between modal basis, optimization
procedures, etc.

Fusco et al. (2001) describe the strategy of optimized
MCAO control which is very similar (if not identical) to
our approach, although presented in a different way. In
their Fig. 6 they give SR(K) = 0.5 at the center of FOV
for a 4 m telescope with 2 DMs, 3 NGSs at a 40.2” ra-
dius and for a 4-layer turbulence profile. We computed
the performance for the same configuration and found
SR(K) = 0.54 at the center. Both codes thus give identi-
cal results.

5.3. Is the conjugation altitude important?

Now let us study a simple MCAO system with only two
DMs to investigate the optimum conjugation height Ho
of the second DM. Three NGSs of magnitude 11 in an
equilateral triangle at a distance of 30” from the FOV
center are used. One of the 4 FOV weighting points is
located at center and the remaining three are configured
in a 30”-radius triangle rotated by 60° with respect to
NGSs. Meta-pupil size at DM2 is equal to D 4 20 H,, with
6 = 30”. The threshold for R-matrix inversion is 1073.
The results are presented in the Table 2.

Surprisingly, the weighted mean variance depends very
little on the DM2 conjugation altitude. It corresponds to a
SR(K) = 0.59 (fitting error included). However, as shown
in the second and the third columns, the variance of the
signals applied to DMs does depend on Hs. When bright
NGSs are considered and weak modes are not rejected,
the much increased variance of DM signals is obtained,
reaching 856 and 936 rad? at DM1 and DM2, respectively,
for Hy = 1 km. At the same time the correction quality
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Fig. 7.Strehl ratio in the K band along
the aa’ cut in the FOV for a 2-DM
MCAO system with 3 NGSs in a 120"
diameter circular field. Left: the GS lay-
out, the squares indicate the optimiza-
tion points in the FOV. Right: the plot
of SR variation on the FOV: full line

—20

— optimized command matrix, dashed

20 40 60  line — inverse command matrix, dotted

Angle, arcsec

line — classical AO with only one NGS.

Table 2. Residual variance and the variance of DM signals
(rad® at 0.5 pum) as a function of the conjugation altitude H..

HQ, km 6%6 DM1 DM2 Nrej.
1 4.67 738.8 826.4 0
4 4.24 155.7 67.6 0
10 3.81 1354 238 3
16 4.29 140.2 19.5 6
20 4.81 1434 227 6
30 4.93 150.2 38.5 9

is improved and becomes completely independent of the
DM2 conjugation altitude.

We offer the following explanation for this behavior.
With only 2 DMs it is possible to model the phase in
the telescope aperture and its gradient over the FOV.
The phase gradient is controlled by the difference of DM
shapes, while on-axis phase is defined by their sum. When
two DMs are conjugated to 0 and 1 km, large signals of
opposite sign must be applied to reproduce the gradient;
the variance is hence large and almost equal on both DMs.
With increasing Ho, less deformation on DM2 is required
to model the gradient. Increasing Hy further, we obtain
a quasi-singular R matrix and some modes are rejected,
reducing the number of controlled parameters and slightly
degrading both average residual variance and the correc-
tion uniformity over the FOV.

What happens if we conjugate the second DM to a
negative altitude? For the altitudes of —4 and —10 km
the residual variance remains small, 5.52 and 6.33 rad?,
which is not surprising given the above reasoning. Thus,
contrary to the “common sense”, DM2 can be conjugated
to a negative altitude as long as this is taken into account
by the optimized command matrix.

This result seems to be of practical importance. Even if
the turbulence profile was constant, the distance of turbu-
lent layers from the telescope aperture changes for obser-
vations at different zenith angles. The distance variation
can be fully compensated by a command matrix optimiza-
tion, and there is no need to change the DM conjuga-
tion altitude optically during the operation of an MCAO
system.

5.4. Comparing optimized and inverse control

It is of interest to see how the performance of an MCAOQO
system depends on the type of command matrix. In Fig. 7
the Strehl ratio in the FOV is plotted for a 2-DM case
(both with 66 modes) with three 11-magnitude NGSs at
60" radius. It was found that the selection of a threshold
in computing the inverse command matrix changes the
results considerably; the best threshold of 0.15 was used
here (85 rejected modes). The SR for a classical AO is
plotted for comparison. The gain in performance brought
by the optimization is apparent. The lowering of the Strehl
ratio at the position of the GS with optimized control
(as opposed to inverse control, where it is maximum at
GS) is explained by the chosen weighting points. If the
GS positions are included among the optimisation points,
the best Strehl ratio is obtained at these positions, too,
at the expense of slightly worse correction over the rest of
the field.

6. Conclusions
The main results of this work are:

1. The theory of optimized tomography and MCAO
based on Zernike modes is outlined.

2. The modal covariance code applicable to both natural
and laser guide stars is presented. Its original features
include fast computing of atmospheric covariances and
projections for Zernike modes. The code is shown to
reproduce the known analytical results on modal aniso-
planatism and the cone effect.

3. It is shown that for a low-order MCAO system on an
8 m telescope the tomographic error and the associated
FOV limitation is related to incomplete beam over-
lap in upper atmospheric layers, leading to the aniso-
planatism of low-order modes. On Extremely Large
Telescopes the tomographic FOV will be larger, and
will be eventually limited by the turbulence profile, in-
dependently of telescope diameter (Tokovinin & Viard
2001).

4. Tt is suggested to use several NGSs for tilt estimation
in an LGS-based AO system. The sky coverage will be
increased compared to the standard 1-NGS case.
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g =2 (207 d)
nd Yoi =Z (2R, /D)

Fig. A.1. Computation of Zernike mode projections. A circular
portion of some mode Z;(2R/D) defined on a large pupil (di-
ameter D) can be expressed as a linear combination of modes
Z;(2r/d) on a small pupil (diameter d) shifted by Ar. The
coefficients are found from the solution of a linear system for
a set of grid points on the small pupil.

5. In an MCAO system with only two DMs the conju-
gation altitude of the second DM has little effect on
the performance, as long as the command matrix is
optimized.
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Appendix A: Projections of Zernike modes

It is well known that a circular portion of any wavefront
W (r) can be de-composed on the basis of Zernike poly-
nomials. In our context, the “wavefront” is defined on the
DM (called also meta-pupil) of diameter D by a set of
its Zernike coefficients {A4;}. We want to represent a cir-
cular portion of this wavefront (the beam footprint) of a
smaller diameter d as a sum of Zernike polynomials on
this small circle with coefficients {a;}. Let 7 be the coor-
dinate of a point relative to the center of a small circle,
and R = r + Ar — coordinate relative to the center of a
big circle shifted by Ar (Fig. A.1). Then

J

W (r) = éAiZi (%) = ;ajzj (%r) :

where Z;(x) are the Zernike polynomials defined for
|z < 1.

The relation between the two sets of coefficients exists
(cf. RMR99) and is given by the mode projection matriz P

(A1)
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which permits to represent a portion of a large-circle mode
by a sum of small-circle modes:

J
2R 2r
j=1
Putting this into Eq. (A.1) leads to
J
a; = PijAi or a=PIA (A.3)

i=1

As noted in RMR99, the Zernike polynomials expressed in
rectangular coordinates x, y are nothing but generic mono-
mials of the type > crx®yt. The computation of ¢ is de-
scribed in Ch. 13.5 of Malacara (1992). Although Zernike
polynomials are defined only inside a unit circle (so that
the small circle in Fig. A.1 must always lie within the large
one), this constraint can be dropped because the mono-
mials can be computed for arbitrary coordinates. Thus,
unlike RMR99, we also consider the cases when the beam
footprint spills outside the meta-pupil.

Suppose that the matrix P up to some radial order of
Zernike polynomials @ must be found. A straightforward
approach would be to select some i, to compute the mode
Z;(2R/ D) on a portion of the large circle and then to find
the elements of P as scalar products, using the fact that
Zernike basis is ortho-normal:

d 2
Pij :w—l/ dx Z; (—m+—Ar) Zi(x).
J ol <1 D D ]( )

Thus, matrix P is constructed column by column by se-
lecting all ¢-s. This approach, however, is not efficient in
terms of computing time. A much better solution is ob-
tained when we note that the coefficients of a polynomial
are defined by a set of its values at a sufficient number
of points. This problem is solved each time when some
data are approximated by a polynomial. In our case, the
“data” are the values of a truncated mode Z;(2R/D) at
a set of points (grid), the approximating polynomials are
Z;j(2r/d), and we know in advance that the exact approx-
imation exists (RMR99).

A grid of N points x,, is selected inside a unit circle,
and the matrix G of the size J = (Q +1)(Q +2)/2 by N
is computed, g;n = Z;(2,). For a given displacement and
scaling of the small circle, the grid points are transformed
to new positions X,, = (d/D)x,+(2/D)Ar and a portion
of the Zernike polynomial number 7 is computed at these
points, giving the matrix y;, = Z;(X,). The function
y(x) is then “approximated” on a small circle by the sum
of Zernike modes Z;(x) with coefficients a; which are, by
definition, the elements of the ith column of the projection
matrix. Using Eq. (A.2), we write

(A4)

J
Yin =Y _ Pijgjn, or ¥ =PG.

j=1

(A.5)

Now matrix G can be inverted, to yield P by a single
multiplication:

P=YG ' (A.6)
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The tricky point of this method is to achieve a good in-
version of G, which depends entirely on the grid. We have
found that better results are obtained with the number
of grid points about twice the number of Zernike modes,
N = 2J. As for the point locations, a “spiral” grid with
polar coordinates r, = (n/N)%? and ¢, = 7?Nr, was
found to give a good condition number of the matrix G.
This grid resembles a quasi-random distribution of points
in a circle, with a slightly enhanced density near the bor-
der. The computation and SVD-inversion of the matrix
G need to be done just once for a given problem (given
Q). Then, for varying geometrical pupil transformations,
only the vector Y has to be re-computed. This method re-
duces the computation time significantly with respect to
the direct computation of scalar products.

The behavior of matrix P is noteworthy. All its ele-
ments have absolute values less than one if a small pupil
is cut from a larger one (interpolation), but may take high
absolute values (with both signs) in the opposite case (ex-
trapolation to a large pupil). All elements above the di-
agonal are always zero: any given mode projects to a set
of modes up to the same number (and not only up to the
same radial order, as stated in RMR99). For small dis-
placements and scaling, P has diagonal elements close to
1. Finally, for a large ratio of pupil diameters the elements
near diagonal are small, and only the first columns of P
are important. It means that a small part of any ith mode
is well represented by a sum of lower-order modes; the
wavefront decomposition in a small part of a pupil is thus
effectively of lower order than on the whole pupil.

Knowing P, it is easy to compute the interaction ma-
trix A which enters into the Eq. (1). Both commands and
signals are numbered sequentially, grouping the Zernike
coefficients in single vectors (Fig. 1). So, each element A,
corresponds to the jth mode measured on a particular GS
when an ith mode of unit amplitude is applied to one of
the DMs. It is hence equal to P;;, where P is calculated for
a particular GS-DM combination and takes into account
the shift of the GS beam and the ratio of its diameter to
the diameter of DM. For the first DM conjugated to pupil
there are neither shifts nor scaling, and P is an identity
matrix.

Appendix B: Modal covariance theory

As noted above, we consider a modal MCAO system where
the WF'S signals and the DM commands are specified as
Zernike coefficients. The number of modes measured on
each of guide stars may be different. Let the total num-
ber of measurements be L. The WFS data are then an
L-element vector s. The number of controlled parameters
(commands) [ is equal to the total number of controlled
modes on all DMs. The command c is an I-element vec-
tor of the Zernike coefficients corresponding to DMs. Our
purpose is to find the command matriz M that would give
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the best imaging quality for a linear control, i.e.
c= Ms.
Matrix M has the size I x L.

The DMs are conjugated to different heights. Although
their shape does not depend on the viewing direction
6, the combined effect of the corrections does. Following
Ellerbroek (1994), the influence functions r;(x, @) are in-
troduced which depend on @ and describe the wavefront
shape on the telescope pupil when a unit command ¢; (i.e.
a Zernike mode) is applied to one DM (not to be confused
with the influence functions of DM actuators in classical
AO). For a given command vector ¢ the wavefront correc-
tion is hence equal to the sum of ¢;r;(x, 0) over i. Using
mode projections, an influence function can be expressed
through the system projection matriz P:

w0 = 07 ().

=2

(B.1)

(B.2)

where Z; are the Zernike polynomials, J is the number of
the highest mode considered in the whole problem. The
system projection matrix P has the size I x (J —1). It
is constructed in the following way. For each of DMs, the
mode projectiom matrix P is computed and its lines cor-
responding to the modes controlled on this particular DM
(e.g. excluding piston, tip, tilt) are included into the cor-
responding sub-section of P. Strictly speaking, the sum in
(B.2) must start with j = 1 (piston mode), but this term
is irrelevant for imaging.

The phase residual e (after correction, piston-removed)
can be written as

[eS) I 2
a0) =) [aj<0> “Yars®)|z(F) @
j=2 i=1

Here a;(0) are the Zernike coefficients of the wavefront
coming from the direction 6. Using the ortho-normality of
Zernike modes on a circular telescope pupil, the aperture-
averaged and ensemble-averaged rms residual (e?) is writ-
ten as a sum of the squared coefficients, leading to (¢2) =
€2 + €%, where €%, is the variance of uncorrected high-
order modes (fitting error) and €7 is the variance of the
first J modes:

oo
€t = Z <CL?>, (B4)
j=J+1
J I I
5= (a}) — 2ZPij (ajei) + Z Z PijPij{cicir)
Jj=2 i=1 i=1i'=1

Our aim is to express the residual through the covariances
of Zernike coefficients and WFS data. This is achieved by
putting Eq. (B.1) for the correction signals (commands)
¢; into (B.4). Resulting quantities, apart from M, are de-
scribed by three matrices.

The data covariance matrix S (independent of 0,
symmetric, size L x L):

Sur = (s1817)- (B.5)
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Matrix S is computed as a sum of the covariances of at-
mospheric Zernike coefficients (see Appendix C) and noise
covariances. These latter are estimated for the case of
a Shack-Hartmann sensor by the method of Rigaut &
Gendron (1992).

The cross-talk matrix R (6-dependent, symmetric,
size I x I) is defined as a product of influence functions
integrated over the pupil:

R;i(6) :/ dx ri(x,0)ry(x,0) = PPT. (B.6)
pupil
This relation (B.6) between R and P follows from the

ortho-normality of Zernike modes.
The target matrix T (0-dependent, size I x L):

J
Ta =) Pylas)- (B.7)
=2
With these definitions, the rms residual of the first J
modes is

I L

= ¢, — Trace(2MTT — RMSM™), (B.8)

€2, being the uncorrected variance of these modes.

This rms residual still depends on 6, so if we use
Eq. (B.8) to optimize the control, the resulting command
matrix will also depend on 6. Moreover, with several DMs
the cross-talk matrix R is singular, because for any given
viewing direction the same correction can be obtained by
different combinations of DM signals. The standard ap-
proach consists in averaging the residual the FOV (over )
with an arbitrary weighting function Wy which describes
the optimization goal. The function Wy is defined to have
a unit integral over 8. Denoting the f-averaged quantities
by bar, we have, for example,

@)1= [ wae)e)ae. (B.9)

So, we must replace T' and R in Eq. (B.8) with 7' and R
to obtain the final expression for (€%).

The optimized (in the minimum variance sense) con-
trol matrix is found by differentiating Eq. (B.8) over Mj,
and solving the linear system of equations. Referring to
Ellerbroek (1994), this would be called unconstrained op-
timum control. The result is Eq. (3).

This solves the problem. In order to compute the opti-
mal control law, we must know the projection operators P
for all modes of all DMs (they depend only on the geom-
etry of the MCAO system) and the data covariances Sy
for both natural and laser guide stars. The covariances in-
volving the observed object which are needed for T do not
require a separate technique for their estimation. Matrix S
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depends on the turbulence profile and on the WFS noise,
as well as on the configuration and number of guide stars,
but it is independent of 8 and of the DM geometry.

In deriving Eq. (3), it is supposed that the “weak”
modes corresponding to the small eigenvalues of R are re-
moved from the control parameters (hence pseudo-inverse
instead of inverse). We do not provide here more detailed
discussion of weak mode removal, which differs Eq. (3)
from the classical result of Wallner (1983).

Appendix C: Computation of Zernike mode
covariances

Formulas for the computation of covariances of Zernike
coeflicients for a natural guide star, a laser guide star and
a mixed case were given by Molodij & Rousset (1997).
However, they considered only covariances of the polyno-
mials of the same number. More general formulae for the
covariances between different modes were later derived by
Whiteley et al. (1998). Basically, for each layer the covari-
ances are expressed through a one-dimensional integral I
involving triple products of Bessel functions J,(x) com-
bined with powers:

I :/ dx By(x)Ba(a1x,n1)B2(azw, n2)B3(siz, m), (C.1)
0

where
By(z) = 27! (2% 4 22)7 /6,
BQ((ICL', TL) = ailjnJrl ((J,CL'),

Bs(sjzy,m) = I (siz). (C.2)
The dimensionless integration variable z is actually a
product of the spatial frequency f and aperture radius,
x = fD/2. The first term describes the turbulence spatial
spectrum (the parameter o = 7D /L takes into account
the turbulence outer scale Lg, a non-negligible correction
for 8-m class telescopes). The two second terms depend
on the radial orders ny, ns of the corresponding Zernike
modes and also depend on the layer altitude h through
the factors a; = 1 — h/H;, where H; are the guide star
altitudes. Only the third term depends on the angular
distance between guide stars a which enters into the di-
mensionless beam separation s; = 2ah/D. Finally, m is
a combination of the azimuthal orders, m = m; + ms or
m = |m1 — mal.

Several tricks are used to speed up the covariance com-
putation, which is the most computer-intensive part of the
code. First, instead of evaluating I for each turbulent layer
and computing a weighted average, we change the order of
summation and integration, computing the weighted av-
erage of the integrand and then integrating it only once.
Secondly, we notice that the integrand is a smoothly os-
cillating function of z which goes to zero both at z = 0
and at > 50 (for radial orders not exceeding 20). So,
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precise enough integrals are estimated with the Newton-
Rapson method from the 200 values of the integrand tab-
ulated with a step of Az = 0.25. Both By and By are
pre-calculated (the latter — for all orders n and all layers,
as a 3-dimensional array). Pre-calculation of Bs is done
for a single value of the LGS altitude H, as encountered
in practical problems, and also for the NGS (a = 1). Then,
for a given set of angles o the B3 only need to be eval-
uated. It is multiplied by the two appropriately selected
Bs-s and by Bj, averaged over layers and integrated.

Further reduction of computing time is possible for
symmetric guide star configurations. In this case the num-
ber of distinct angular separations a; can be small, even
though «; must be counted separately for NGS-NGS,
NGS-LGS, and LGS-LGS pairs. For each of these 3 com-
binations, the I is pre-computed for all a; and all possible
indices n1, ny and m (m goes from 0 to ny + n2). For
a given radial order ) the number of such combinations
(ox @Q3) is less than the number of pairwise mode combina-
tions (ox Q%), thus leading to faster covariance calculation.

When a procedure of covariance computing is called,
it checks first whether the angle « is found among the ta-
ble of pre-computed integrals (otherwise, the integrals are
done directly). Then it extracts the two values of I corre-
sponding to two m-s and combines them with appropriate
factors to get the covariance.
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