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Optimized Modular Multiplication for
Supersingular Isogeny Diffie-Hellman

Weiqiang Liu, Senior Member, IEEE, Jian Ni, Zhe Liu, Senior Member, IEEE,
Chunyang Liu, and Máire O’Neill, Senior Member, IEEE

Abstract—Recent progress in quantum physics shows that quantum computers may be a reality in the not too distant future. Post-
quantum cryptography (PQC) refers to cryptographic schemes that are based on hard problems which are believed to be resistant to
attacks from quantum computers. The supersingular isogeny Diffie-Hellman (SIDH) key exchange protocol shows promising security
properties among various post-quantum cryptosystems that have been proposed. In this paper, we propose two efficient modular
multiplication algorithms with special primes that can be used in SIDH key exchange protocol. Hardware architectures for the
two proposed algorithms are also proposed. The hardware implementations are provided and compared with the original modular
multiplication algorithm. The results show that the proposed finite field multiplier is over 6.79 times faster than the original multiplier in
hardware. Moreover, the SIDH hardware/software codesign implementation using the proposed FFM2 hardware is over 31% faster than
the best SIDH software implementation.

Index Terms—Post-quantum cryptography, supersingular isogeny Diffie-Hellman (SIDH), modular multiplication
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1 INTRODUCTION

THE computing capability of quantum computers is sig-
nificantly higher than classical computers. It is found

that a 30-qubit quantum computer would have the same
processing power as a conventional computer processing
commands at 10 teraflops per second [1]. In 1994, Shor
[2] proposed an algorithm that can be used to quickly
factorise large numbers, which shows exponential speedup
of the computation. Later in 1996, Grover’s algorithm [3]
is proposed to search an unsorted database with quadratic
speedup over a conventional computer(in O(N2 ) time rather
than O(N)). Recent progress in the design and development
of quantum computers shows that real quantum computers
may be available in the not too distant future [4].

As a result, commonly used public-key cryptographic
algorithms, such as RSA [5] and Elliptic curve cryptog-
raphy (ECC) [6], which rely on integer factorization and
the discrete log problem that are used in all of today’s
communications and internet security will be vulnerable
to attacks from quantum computers. Post-quantum cryp-
tographic (PQC) [7], or quantum-safe schemes, which refer
to conventional non-quantum cryptographic algorithms that
are secure today but should remain secure even after prac-
tical quantum computing is a reality, have been shown to
be just as practical as classical RSA and ECC schemes [8].
Recently, NIST [9] and ETSI [10] have held workshops to
discuss the importance of quantum-safe cryptography. NIST
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are currently hosting a standardisation process to select
new post-quantum cryptographic signature and encryption
schemes [11].

Much research is now being conducted into PQC. A-
mong the various post-quantum techniques, the latest su-
persingular isogeny Diffie-Hellman (SIDH) key exchange
protocol scheme [12] shows promising security properties.
The SIDH key exchange scheme offers significantly smaller
key sizes than other post quantum key exchange and en-
cryption counterparts such as the commonly cited lattice-
based [13] [14], code-based [15], hash-based [16] and multi-
variate quadratic [17] cryptography. As SIDH is more than a
decade younger than the other types of PQC schemes, little
research has been conducted into evaluating its practicality.
The supersingular isogeny key encapsulation (SIKE) proto-
col which is based on SIDH has been submitted to the NIST
post-quantum cryptography process in November 2017 [18].

In 2011, Jao and Feo presented software implementation
results showing that their proposed SIDH key-exchange
protocols are over two orders of magnitude faster than
classical isogeny-based cryptosystems over ordinary curves.
Later Azarderakhs et al. implemented the same SIDH pro-
tocol on PC (x86-64) and ARM (ARMv7) platforms [19].
Their implementation is between 18-26% faster depending
on the security level. In 2016, Costello et al. presented a
high-speed implementation of SIDH, which is more than 2.5
times faster than the previous SIDH software results [20].
The first hardware implementation of SIDH was recently
proposed, targeting a Virtex-7 Field Programmable Gate
Array (FPGA) [21], and is 1.5 times faster than the best
software implementation for the 512-bit SIDH scheme.

In the recent studies [22] [23], it is found that the Mont-
gomery reduction for the primes of special structure used in
isogeny based cryptography is not optimal. There are special
moduli can be used for faster implementations. In SIDH,
the prime, p, is in the form, p = f · 2a3b − 1, where f is a



small number. Similar to other public key cryptosystems,
the modular multiplication plays a very important role.
In [24], Karmakar et al. proposed an efficient finite field
multiplication (EFFM) algorithm, in which the prime field
has a special structure.

In this paper, we improve upon EFFM [24] and pro-
pose two new algorithms. The first algorithm proposed,
referred to as the improved EFFM (FFM1), improved upon
the original EFFM by reducing the number of operands.
The second new finite field multiplication (FFM2) algorithm
proposed is very different from the original EFFM and the
FFM1, and allows for larger operand sizes while reducing
the number of operations. Both proposed algorithms speed
up the computation significantly. Hardware architectures for
both proposed algorithms are also proposed. The hardware
implementation results are provided and compared with
implementations of original EFFM algorithm. This paper is
an extension of previous research by the authors in [25]. It
improves on [25] as follows:

(1) A more detailed description of the two proposed
algorithms is given with a brief review of Barrett Division;

(2) A new modular multiplication algorithm (FFM2) is
proposed;

(3) A hardware architecture for the FFM2 algorithm is
proposed;

(4) The hardware results of the FFM2 algorithm are
provided and compared with original EFFM algorithm and
the FFM1 algorithm in [25]. The hardware results show that
the FFM2 algorithm is the fastest;

(5) A complete SIDH hardware/software (HW/SW)
codesign result using the proposed FFM2 is provided and
compared with the best SIDH software implementation.

The rest of the paper is organized as follows. Section
2 reviews the original EFFM algorithm with the special
primes, the Barrett reduction algorithm and the Barrett
Division algorithm. The two proposed algorithms are pre-
sented in details in Section 3 and Section 4, respectively,
where hardware architectures are also provided. Section 5
presents hardware implementation results for both the pro-
posed modular multiplication algorithms, and provides a
comparison with the previously proposed EFFM algorithm.
A SIDH HW/SW codesign using the proposed FFM2 is also
provided in this section. Section 6 concludes the paper.

2 REVIEW

2.1 Efficient Finite Field Multiplication (EFFM) Algorith-
m for SIDH

One of the main computational bottlenecks in SIDH is
computing arithmetic modulo p = f · 2a3b − 1, where
the value of f is fixed to 2 and b is even. a and b for
the prime p are chosen in such a way that 2a ≈ 3b. For
instance, the prime p = 2 · 23863242 − 1 is 771 bits in [12] to
guarantee 128-bit post-quantum security. [24] proposes an
algorithm using a special structure of the prime to optimize
the modular multiplication and reduction. This algorithm is
briefly reviewed in this section.

Assume that p = 2 · 2a3b − 1, where a and b are even. By
using a radix R = 2a/23b/2, a field element A ∈ Fp can be
represented as follows:

A = a1 ·R2 + a2 ·R+ a3, a1 ∈ {0, 1} , a2, a3 ∈ [0, R) (1)

The field elements are converted once at the start and
once at the end of the algorithm in the above representation
from the radix R. Suppose there are two numbers A and B
in the representation of Eq. (1). By multiplying them we can
get the product C as follows:

C = a1b1 ·R4 + (a1b2 + a2b1) ·R3

+ (a1b3 + a2b2 + a3b1) ·R2

+ (a2b3 + a3b2) ·R+ a3b3

(2)

As 2a3b = 2−1(mod p), R2 and R4 can be replaced by
2−1(mod p) and 2−2(mod p), respectively, or 0, which can be
precomputed for a fixed prime. Therefore, we can get Eq. (3),
where 4 multiplication operations are required: a2b2, a2b3,
a3b2 and a3b3. The other products multiplied by either a1 or
b1 can be computed by simply selecting the correct result.
Therefore, C can be rewritten as C = c1 ·R2+ c2 ·R+ c3. As
c2 and c3 are in the range of

[
0, R2

)
, they need to be further

reduced by improved Barrett reduction.

C = (a1b3 + a2b2 + a3b1)(mod 2) ·R2

+ (⌊(a1b2 + a2b1)/2⌋+ (a2b3 + a3b2)) ·R

+ (2−2(mod p)a1b1 + ((a1b2 + a2b1)(mod 2)) · R
2

+ ⌊(a1b3 + a3b1 + a2b2/2)⌋+ a3b3)

(3)

The original EFFM algorithm is shown in Algorithm 1,
where the Barrett Division is the improved Barrett reduction
used in [24].

Algorithm 1: The EFFM Algorithm [24]

Input: A,B ∈ Fp, A = a1 ·R2 + a2 ·R+ a3 and
B = b1 ·R2 + b2 ·R+ b3, 2−2(mod p) is
precalculated.

Output: C = A ·B(mod p) =
c1 ·R2 + c2 ·R+ c3, (R = 2a/23b/2).

1 c1 = 0, c2 = 0, c3 = 0;
2 c3 = a1b1 · 2−2(mod p) + a3b3;
3 c2 = a2b3 + a3b2;
4 t = a1b2 + a2b1, c2 = c2 + ⌊t/2⌋ , c3 = c3 + t[0] · R

2 ;
5 t = a1b3 + a2b2 + a3b1, c3 = c3 + ⌊t/2⌋ , c1 = t [0];
6 Barrett Division(c3) ⇒ c3 = r, c2 = c2 + r;
7 Barrett Division(c2) ⇒ c2 = r, c1 = c1 + r;
8 c3 = c3 + ⌊c1/2⌋ , c1 = c1 [0];

2.2 Barrett Reduction
According to Euclids division lemma, it is known that there
exists q and r such that a = q · b + r, r ∈ [0, b) for any two
positive integers a and b. Therefore, we have a = r(mod b).
In order to get such a q and r, one division is required.
However, division is a very expensive operation, which is
more complex and much slower than multiplication. Thus,
to speed up the division, it can be converted to a multipli-
cation by Barrett reduction [26], i.e., ×1/b. Furthermore, 1/b
can also be expressed as follows:



1

b
=

2k/b

b · 2k/b
=

2k/b

2k
≈ x

2k
(4)

Generally, the value x is taken as x =
⌊
2k/b

⌋
. However,

an error (denoted as e) is produced from the approximation
of 1/b, which equals 1/b − x/2k. To make sure the final
result is correct, q must be smaller than 1. This condition
can be met when k = log2 a. The whole process is shown in
Algorithm 2.

Algorithm 2: Barrett Reduction Algorithm [26]

Input: Two numbers a and b, parameter k, x =
⌊
2k/b

⌋
Output: a(mod b)

1 q = (a× x) ≫ k;
2 r = a− q × b;
3 if r > b then
4 r = r − b;
5 end
6 return r;

2.3 Barrett Division

An efficient division algorithm was proposed in [24]. The
algorithm can divide a number ci ∈ [0, 2a3b) by 2a/23b/2

and calculate the quotient q and remainder r in an efficient
way. As division by two is a simple right shift operation,
the division can be performed by 2a/23b/2 according to the
following steps:

Step 1: Extract the a/2 least significant bits of ci and store
them in a variable r1;

Step 2: Right shift ci by a/2 bits to obtain c
′

i;
Step 3: Divide c

′

i by 3b/2 to get the quotient q and rema-
inder r2.

Therefore, ci can be rewritten as follows:

ci = q · 2a/23b/2 + (r22
a/2 + r1) = q · 2a/23b/2 + r (5)

The division by 3b/2 in Step 3 is more complex than the
division by 2a/2. As b is a fixed integer, it is possible to
speed up the division by performing multiplication similar
to the Barrett reduction technique, as shown in Algorithm 3.
Therefore, this efficient division algorithm is referred to as
the Barrett Division in this paper.

Once the quotients and remainders are obtained, it is
easy to represent c = c1 · 2a3b + c2 · 2a/23b/2 + c3 with
desired finite field element.

3 THE FFM1 ALGORITHM AND ITS HARDWARE
ARCHITECTURE

Improving upon [24], it is found that the modular multipli-
cation with the special field can be further simplified based
on the fact that:

(p−A)(p−B) = A ·B(mod p) (6)

The improvement is further explained in detail in the fol-
lowing subsections.

Algorithm 3: The Barrett Division Algorithm [24]

Input: 2 numbers Q ∈ [0, 2a3b) and P = 2a/23b/2 and
log2P ≈ 2log2Q. P

′
= P/2a/2 precomputed

x = 2k/P
′
, k is as described in Section 2.2

Output: q and r such that Q = q · P + r

1 t =
⌊
Q/2a/2

⌋
, s = Q(mod p);

2 q = t× x ≫ k;
3 r = t− P

′ × q;
4 r = r × 2a/2 + s;
5 if r > P then
6 r = r − P ;
7 q = q − 1;
8 end
9 return q, r

3.1 The FFM1 Algorithm
Assume A ∈ Fp, which is in the form of Eq. (1). Then we
get a number A′ ∈ Fp as follows:{

A′ = A, a1 = 0
A′ = p−A, a1 = 1

(7)

When a1 = 1, A can be written as A = R2 + a2R + a3
with a radix R = 2a/23b/2, and p can be written as p =
R2 + (R− 1) ·R+ (R− 1), so we have:

a
′

i = R− 1− ai, i ∈ {2, 3} (8)

Therefore, A′ can be represented in the following form:

A′ = a
′

2 ·R+ a
′

3, a
′

2, a
′

3 ∈ [0, R) (9)

Suppose two numbers A and B are in the form of Eq. (1).
A′ and B′ are in the form of Eq. (7). Due to the fact that Eq.
(6) holds, the following relationship between A · B(mod p)
and A′ ·B′(mod p) can be obtained as follows:

A ·B(mod p) = A′ ·B′(mod p) · (−1)a1
⊕

b1 (10)

The transforming process of the operands is shown in
the Fig. 1.

According to Eq. (10), we can get the result of A ·
B(mod p) by computing A′ ·B′(mod p), which saves about
5 additions. The product of A′ and B′ can be expressed as
follows:

A′ ·B′ = a
′

2b
′

2 ·R2 + (a
′

2b
′

3 + a
′

3b
′

2) ·R+ a
′

3b
′

3 (11)

A′ ·B′ = (a
′

2b
′

2(mod 2)) ·R2 + (a
′

2b
′

3 + a
′

3b
′

2) ·R

+ (a
′

3b
′

3 +
⌊
a

′

2b
′

2/2
⌋
)

= c
′

1 ·R2 + c
′

2 ·R+ c
′

3

(12)

Rewriting Eq. (11) by replacing the coefficients, we can
get Eq. (12). As c

′

2 and c
′

3 can be larger than R, they need
to be further reduced by the Barrett reduction as described
in Section 2.2. The proposed algorithm is presented in
Algorithm 4.
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Fig. 1: The transforming process of the operands, where the
radix is: R = 2a/23b/2.

Algorithm 4: The FFM1 Algorithm

Input: A′, B′ ∈ Fp,A = a
′

2 ·R+ a
′

3 and B = b
′

2 ·R+ b
′

3

Output: C ′ = A′ ·B′(mod p) =
c
′

1 ·R2 + c
′

2 ·R+ c
′

3, (R = 2a/23b/2).
1 c

′

1 = 0, c
′

2 = 0, c
′

3 = 0;
2 c

′

1 = a
′

2b
′

2 [0];
3 c

′

3 = a
′

3b
′

3 +
⌊
a

′

2b
′

2/2
⌋

;

4 Barrett Division(c
′

3) ⇒ c
′

3 = r, c
′

2 = c
′

2 + r;
5 Barrett Division(c

′

2) ⇒ c
′

2 = r, c
′

1 = c
′

1 + r;
6 c

′

3 = c
′

3 +
⌊
c
′

1/2
⌋
, c

′

1 = c
′

1 [0];

The difference between the original EFFM [24] and the
FFM1 is as follows. The two algorithms both need to com-
pute 4 multiplications: a2×b2, a2×b3, a3×b2 and a3×b3 in
the EFFM and a

′

2×b
′

2, a
′

2×b
′

3, a
′

3×b
′

2 and a
′

3×b
′

3 in the pro-
posed algorithm. However, the EFFM has 5 multiplication
terms to get a1 × b1 × 2−2(mod p), a1 × b2, a1 × b3, b1 × a2
and b1×a3; while our improved one can get a

′

2, a
′

3, b
′

2 and b
′

3

by at most 4 subtractions. Before the Barrett reduction, the
EFFM algorithm has 6 to 9 additions/subtractions, 2 right-
shifts to calculate the coefficients c1, c2 and c3; while the pro-
posed algorithm only needs 2 additions and 1 right-shift to
get c

′

1, c
′

2 and c
′

3. The EFFM needs to precalculate and store
2−2(mod p) using 21 registers while the proposed algorithm
only needs 16 registers. Most importantly, the terms with
R2 have been removed in the proposed algorithm, which
saves on the number of operations significantly. A detailed
comparison with the hardware implementations is further
discussed in Section 5.

3.2 The Proposed Hardware Architecture for FFM1
We also propose a hardware architecture of the improved
modular multiplication with the special field, which is
shown in Fig. 2. In this architecture, there is one N/2-bit
multiplier, one 5N/2-bit adder and one 2N-bit subtractor.
An adder and subtraction that support large word lengths
are used to reduce the number of clock cycles. The whole

modular multiplication process is controlled by a finite state
machine (FSM).

× 
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REG_B

REG_C
- 

Value P

FSM

+
 

<<

N/2

N/2

N

N/2

N

5N/2

5N/2

N

5N/2
2N

2N

5N/2 

5N/2 

2N

Fig. 2: The proposed hardware architecture for FFM1.

The operands are stored in pipeline registers that are
inserted between arithmetic units to further increase the per-
formance. The inputs of the multiplier, adder and subtractor
are selected by MUXs, which are controlled by the FSM.

The process of a full binary multiplication is shown in
Fig. 3. Two N/2-bit operands are multiplied by the N/2-bit
multiplier, and then partial products are accumulated by the
5N/2-bit adder.

Fig. 3: The pipeline structure of a full multiplication.

There are three kinds of multiplications in the algorithm,
which have different input sizes, namely, N ×N/2, N ×N ,
and 3N/2×3N/2. In the 3N/2×3N/2 multiplication, one of
the inputs is a constant, whose most significant N/2 digits
always equal to 2 and remain unchanged during the process.
Therefore, the 3N/2× 3N/2 multiplication is performed by
a 3N/2×N multiplication and a shift operation. This can be
performed by the circuit as shown in Fig. 3. We can get the
most significant N/2 digits of the final result in the second
clock cycle. On the next clock cycle, the lower N/2 digits
can be obtained subsequently. Depending on the weights of
the partial products, the summation is shifted.

For example, using only 5 clock cycles, we can get the
product of an N ×N multiplication. For the 4 N ×N multi-
plications at the start of the algorithm, it only takes 17 clock
cycles. Otherwise, if the multiplication is not pipelined, 20
clock cycles are required.

4 THE FFM2 ALGORITHM AND ITS HARDWARE
ARCHITECTURE

As we mentioned in Section 2, the modulo p = f · 2a3b − 1
is chosen in that: (a) f is a small number, such as 1 or 2;
(b) 2a ≈ 3b. In fact, the number of p that satisfy the above
conditions is finite. In addition, the original algorithm in [24]
provides rules on how to choose appropriate parameters so
that the p is suitable for SIDH. It fixes f to 2 and makes sure
that b must be even. For example, the modulo used in the



[24] is p = 2 · 23863242 − 1. However, in the proposed FFM2,
there is no such limitation on f or b.

In the original EFFM algorithm [24], to prevent the c2
and c3 values from increasing beyond the size of the modu-
lus, they proposed efficient Barrett Division, as discussed in
Section 2.3. Since Barrett Division uses the fact that division
by two is a simple right shift operation, it can replace
the complex division by simple shifting, multiplication and
addition operations. Inspired by this fact, we notice that
there exists a factor f ·2a3b in the modulo p. Thus, a division
whose divider is f · 2a3b can be performed by the Barrett
Division algorithm. If the modulo is p = f · 2a3b, we can
complete the modular multiplication by only using Barrett
Division. This form of modulo is an ideal modulo while a
practical modulo is the ideal modulo plus or minus 1. In fact,
there exists a relationship between the modular multiplica-
tion with an ideal modulo and the modular multiplication
with a practical modulo, which will be discussed in the
following subsections.

4.1 The FFM2 Algorithm

The ideal modulo equals to the practical modulo plus or mi-
nus 1. For these two cases, assume the following equations:

C = A×B (13)

C ÷ (f · 2a3b) = q · · · r (14)

In Eq. (13), C represents the product of A and B. In
Eq. (14), q and r represent the quotient and remainder,
respectively, of the division C ÷ (f · 2a3b).

4.1.1 First Case: The Practical Modulo Equals the Ideal
Modulo Minus 1
In this case, we get:

f · 2a3b = p+ 1 (15)

Then, the operation C mod p can be expressed as follows:

C ≡ q · (p+ 1) + r ≡ qp+ q + r ≡ (q + r)mod p (16)

Eq. (16) shows that the result of the modular multiplica-
tion with a practical modulo can be performed by adding
the quotient and remainder of the modular multiplication
with an ideal modulo. However, there is a good chance that
the sum of the quotient and remainder may be longer than
the modulus length. So we need to check the range of the
sum, which determines the performance of the algorithm.
According to Eq. (14), r is the remainder, so we can get:

r < f · 2a3b (17)

In this case,
p = f · 2a3b − 1 (18)

Thus,
r 6 p (19)

As

A ∈ [0, p− 1]

B ∈ [0, p− 1]
(20)

We have
C = A×B 6 (p− 1)2 (21)

Moreover,
f · 2a3b = p+ 1 (22)

Thus, we can get

q =
⌊
C/(f · 2a3b)

⌋
< p (23)

By considering both Eq. (19) and Eq. (23), we have:

r + q < 2p (24)

It shows that the sum of the quotient and remainder lies
in the range [0, 2p). In conclusion, when the sum r + q is
larger than p, we need to perform another subtraction to
get the final result, which is similar as the final step of the
Montgomery algorithm [27].

4.1.2 Second Case: The Practical Modulo Equals the Ideal
Modulo Plus 1
In this case, we have:

f · 2a3b = p− 1 (25)

Then, C mod p can be expressed as follows:

C ≡ q · (p− 1) + r ≡ qp− q + r ≡ (r − q)mod p (26)

Eq. (26) shows that the result of the modular multi-
plication with a practical modulo can be performed by
subtracting the remainder from the quotient of the modular
multiplication with an ideal modulo.

Similar to above, the result may be longer than the
modulus, hence we need to check the range of the difference.
We know that r is the remainder, so Eq. (17) holds.

As
p = f · 2a3b + 1 (27)

We have:
r < p (28)

As Eqs. (19) and (20) hold, and

f · 2a3b = p− 1 (29)

We have:
q =

⌊
C/(f · 2a3b)

⌋
6 p (30)

As r and q are positive, we have

r − q ∈ [−p, p) (31)

If the difference is smaller than 0, we need to perform
another addition.

Referring to Algorithm 5, we can see that there are
three main steps in implementing FFM2. The first step is
to calculate the product of A and B. Then, we use Barrett
Division to get the r and q. Finally, according to the practical
modulo p, we may need to perform an extra subtraction or
addition to obtain the correct result. Once the modulo p is
determined, i.e., p equals either f ·2a3b+1 or f ·2a3b−1, no
more than 4 steps are required in Algorithm 5. In conclusion,
the FFM2 is much simpler than the EFFM and the FFM1. It
has less steps and less complex operations. In particular, the
FFM2 only needs to perform the Barrett Division once while
the other two algorithms need to perform it twice.



Algorithm 5: The FFM2 Algorithm

Input: A,B ∈ Fp, p = f · 2a3b ± 1
Output: C = A×B(mod p)

1 C = A×B;
2 q, r → BarrettDivision(C, f · 2a3b);
3 if p = f · 2a3b − 1 then
4 C = q + r;
5 if C > p then
6 C = C − p;
7 end
8 end
9 else

10 C = r − q;
11 if C < 0 then
12 C = C + p;
13 end
14 end
15 return C;

4.2 The Proposed Hardware Architecture for FFM2

In order to have a comprehensive comparison, we also
propose a hardware architecture for the FFM2, which is
shown in Fig. 4. It is made of one N-bit multiplier, one 5N-
bit adder and one 4N-bit subtractor. Similar as the FFM1
hardware architecture, the modular multiplication process
is controlled by a FSM.

REG_A

REG_B

REG_C

Value P1

FSM

<<

N

Value P2

Value P2

N

5N

N

5N

5N

2N

4N
5N

5N

2N

Fig. 4: The proposed hardware architecture for FFM2.

Compared with the EFFM and the FFM1, the FFM2 does
not require the radix in the form, R = 2a/23b/2. Thus, the
lengths of inputs of multiplier, adder and subtractor are
doubled. There is one 2N ×N multiplication, one 2N × 2N
multiplication and one 3N × 3N multiplication. All three
multiplications can be converted into a summation of sever-
al N×N multiplications. If we do not break-up the multipli-
cation, at most three additions and subtractions need to be
performed, which is very simple. During the whole process,
we only need 8 registers to store the precomputed values
and intermediate values. Moreover, we use less MUXs to
choose the different inputs. There are two dashed blocks in
Fig. 4, which represent two different cases: p = f · 2a3b ± 1.
In the hardware design, only one MUX exists. The values
P1 and P2 in Fig. 4 represent the precomputed value in the
Barrett Division, and the practical modulo p, respectively.

4.3 Comparison of Hardware Architectures with Differ-
ent Sizes of Multipliers

In the hardware implementation of the FFM2, we explore
the impact of the operand sizes of the multipliers on the
algorithm. We use two kinds of multipliers: one has the size
of N×N as mentioned in the Section 4.2, while the other one
has the size of N/2 ×N/2. In other words, we explore two
ways to break large size multiplication into smaller ones.
In this work, we break a 2N × 2N multiplication into the
following ways, as shown in Fig. 5 and Fig. 6.

 

  A   B   C      

  a2 a1 × b2 b1 = c4 c3 c2 c1   

  R
1 

R
0 

 R
1 

R
0 

 R
3 

R
2 

R
1 

R
0 

  

Fig. 5: Breaking 2N × 2N multiplication into N ×N
multiplications: R = 2N .
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Fig. 6: Breaking 2N × 2N multiplication into N/2×N/2
multiplications: R = 2N/2.

In our design, there is only one multiplier no matter
how large the size of the multiplier is. Thus, the smaller
the multiplier, the greater the number of cycles needed
to complete the operation. We know that for a 2N × 2N
multiplication, only 4 cycles are needed when we use the
N ×N multiplier, while we need 16 cycles when we use the
N/2×N/2 multiplier. However, the operating frequency is
lower and more resources are consumed when we use the
larger multiplier. It is clear that there is a trade-off between
throughput and hardware resources. We replace the N ×N
multiplier of the hardware architecture outlined in Section
4.2 with an N/2 × N/2 multiplier, without changing other
parts. We compare the hardware implementations of these
two forms of multipliers, as shown in Table 1. It can be seen
that the hardware architecture with the N × N multiplier
needs less time to finish a full multiplication than the one
with the N/2×N/2 multiplier. However, it requires double
the number of LUTs and quadruple the number of DSPs.

TABLE 1: The Comparison of Hardware Architectures with
Different Sizes of Multiplier of the FFM2

Size N/2×N/2 N ×N

FFs 11585 11632
LUTs 17706 33049
DSPs 122 529

Frequency(MHz) 48 25
Operations 48 MP 12 MP
Time (µs) 1.33 1.12



5 RESULTS AND COMPARISON

The proposed algorithms FFM1 and FFM2 are implemented
in hardware and compared with the original EFFM algorith-
m [24]. We also apply the FFM2 hardware architecture in the
HW/SW codesign implementation of the complete SIDH
and compare it with the best SIDH software implementation
[20] in this section.

5.1 Hardware Implementations of the Proposed FFMs
The proposed algorithms and the EFFM [24] are implement-
ed using Vivado 16.4 on the KC705 evaluation board (with
Kintex 7 FPGA chip, i.e., xc7k325tffg900-2). The proposed
hardware architecture is applied. In order to have a fair
comparison, we choose the same finite field, i.e., the field
generated by the prime p = 2 · 23863242 − 1, which is
consistent with that in [24].

The hardware comparison with [24] is showed in Table 2.
The proposed hardware architecture for the FFM1 algorithm
uses 9,688 flip-flops (FFs), 17,247 LUTs and 122 DSP48s,
which consumes 2%, 8% and 15% of the resources available
in the FPGA. One complete modular multiplication takes
only 64 clock cycles and takes 1.16µs. The operating frequen-
cy is 55MHz. Compared with the hardware implementation
in [24], our proposed FFM1 design is over 6.56 times faster.

As the hardware architecture for FFM2 with the N ×N
multiplier is faster than that with the N/2×N/2 multiplier
as shown in Table 1, it is chosen to compare with other
designs. It uses 11,632 flip-flops(FFs), 33,501 LUTs and 529
DSPs. It is the fastest design among all hardware implemen-
tations for the modular multiplication.

TABLE 2: Comparison of FFM Hardware Results

Algorithms EFFM [24] FFM1 FFM2

FFs 11924 9675 11632
LUTs 12970 16629 33051
DSPs 0 122 529

Frequency (MHz) 31 55 25
Cycle 236 64 28

Time (µs) 7.61 1.16 1.12

5.2 HW/SW Codesign Implementation of the SIDH
To evaluate the performance of the SIDH protocol using
the proposed modular multiplier algorithm and hardware
architecture, the FFM2 hardware is use for performing
modular multiplications in the protocol. To compare with
the previous best SIDH software implementation [20], the
same prime of 23723239−1 is chosen and the same processor
(1.7GHz Intel i5-4210U processor) is used for both the soft-
ware and the HW/SW codesign implementations. However,
for a higher performance codesign, the Zynq FPGA with
ARM processor can be considered. FFM1 is not used as it is
slower than FFM2 in hardware and also it requires that b in
the prime should be even, which cannot be applied in the
comparison. The complete SIDH protocol is implemented in
the software except the modular multiplications which are
performed in hardware (on Kintex 7 FPGA).

The results of both software and HW/SW codesign
results are provided in Table 3. It can be seen that the
SIDH codesign implementation using the proposed FFM2
hardware is 31.98% faster than the software implementation.

TABLE 3: Comparison of the SIDH Software and HW/SW
Codesign Implementations

Work Platform Total Time (ms)

Costello’s Work [20] i5-4210U@1.7GHz 295.89

This Work Kintex 7 FPGA+
i5-4210U@1.7GHz 224.18

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed two new modular multiplication
algorithms that exploit the special structure of primes, i.e.,
p = 2 · 23863242 − 1, which can be applied in SIDH. One
is improved from the original EFFM algorithm in [24] and
the other one is a whole new algorithm, which differs
in structure to the previous two algorithms. Building on
the properties of the previous two algorithms, a mathe-
matical transformation is applied to reduce the number of
operations in the first new algorithm (FFM1). A hardware
architecture is also proposed. The proposed FFM2 is over
6 times faster than the previous EFFM in hardware. The
hardware implementation of the FFM2 algorithm is the
fastest among the three algorithms. Furthermore, the FFM2
algorithm can be applied to a wide range of modulo, which
is limited in the EFFM algorithm and the FFM1 algorithm.
The FFM2 hardware is also applied in the complete SIDH
HW/SW codesign implementation, which is over 31% faster
than the best SIDH software implementation. Future work
will look at the optimized modular multiplication on Fp2 as
suggested in [23].
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