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Optimized Monte Carlo Data Analysis 

Alan M. Ferrenberg and Robert H. Swendsen 

The use of Monte Carlo (MC) methods to study 
physical systems was introduced by Metropolis et al. I 
over 35 years ago. Since that time, MC methods have 

been used extensively in the study of phase transitions,2 

lattice gauge theories,3 and chemical and biological 
systems.4

-6 MC simulations yield estimates for the average 
values of thermodynamic quantities at particular values of 
external parameters such as the temperature, magnetic 
field, and chemical potential. Since we are usually 
interested in studying the behavior of the system over 
ranges of the external parameters, it is necessary, using 
standard MC methods, to perform many simulations for 
each desired value of the external parameters. The result 
for each average is a set of discrete points that is usually 
shown as a continuous line "drawn to guide the eye." 

For systems whose behavior depends on more than 
one external parameter, it is necessary to perform enough 
simulations to cover a multidimensional region of param­
eter space. Using standard techniques, a multiparameter 
scan is extremely time consuming for two parameters and 
impractical for three or more. 

The availability of averages at only particular values 
of the external parameters is particularly limiting for 
systems near first- and second-order phase transitions 
where the system exhibits narrow peaks in various 
thermodynamic functions. The positions and heights of 
the peaks provide important information about the nature 
of the transition but, because standard MC techniques 
provide only a set of discrete points, the position of these 
peaks can be determined only approximately. 

An additional problem in the study of phase 
transitions is that the correlation time can become large if 
the system is near the transition. This problem was 
discussed by Harvey Gould and Jan Tobochnik in the 
July/August 1989 issue of Computers in Physics. 

The approach we discuss here is the use of histograms 
to extract more information from a Monte Carlo 
simulation. The idea is to use our knowledge of the 
equilibrium probability distribution at one value of a 
parameter to determine the probability distribution at 
another value of the parameter. The application of this 
idea to MC simulations dates back to 1959. Salsburg et al. 7 

were the first to discuss how a single histogram of an ob­
servable could be used to evaluate any function of that 
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quantity at a neighboring value of the corresponding 
parameter. However, they used the histogram only at the 
temperature of the original simulation and did not obtain 
additional information. Chesnut and Salsburg8 described 
the use of histograms to obtain information over a range of 
continuously varying parameters, but they also did not 
implement this idea. 

To the best of our knowledge, McDonald and Singer9 

were the first workers to use a single histogram method to 
evaluate thermodynamic functions over a continuous 
range of temperatures. (They also introduced an alterna­
tive to the Metropolis importance sampling method. Their 
sampling method involves making random changes of the 
system configuration subject only to an upper limit on the 
total energy of the system.) They recognized that the 
range of temperatures for which a single histogram would 
give reliable results was limited by the width of the 
measured histogram, although they did not obtain this 
relationship. They also noticed that the range of tempera­
tures decreased as the system size was increased. From 
these observations it was concluded, incorrectly as we 
shall see, that a single histogram was not useful for the 
study of phase transitions. 

In order to understand the single histogram method, 
we consider a MC simulation of the Ising model. For 
simplicity, we assume that the external magnetic field is 
zero so that the only relevant external parameter is the 
temperature T. Suppose that we do a standard MC run at 
T = TI and measure the histogram HI (E), the number of 
configurations that have energy E during a run of NI MC 
steps per spin. The probability P E (P I) that the system has 
energy E at PI = 1IkB TI is given by 

PE(PI) = HI (E)/NI = W(E) [e-/3,E/Z(PI)], (1) 

where WeE) is the density of states at energy E. The parti­
tion function Z(PI ) is given by 

Z(PI) = L e-/3,E = L W(E)e-/3,E. (2) 
E 

Since the histogram HI (E) is proportional toPE' a MC es­
timate for WeE) is given by 

W(E)=a IH I (E)ef3,E, (3) 

where al is a proportionality constant. Since WeE) is 
independent of T, the probability that the system has 
energy E at P = 11 kB T takes the form 

PEep) =HI (E)e-(/3-/3,)E 

X (~HI (E)e- (/3-/3,)E) -I. (4) 
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Since f3 is a continuous variable, we can estimate the 300000 ,-------------------, 

temperature dependence of the average value of any 
function of E, e.g., 

(A) = IA(E)PE ({3). (5) 
E 

The form of the histogram at T= 21ln(1 +..j2) for a 
16 X 16 square lattice is shown in Fig. 1. 

In Ref. 10 we showed that the single histogram 
method is much more efficient for studying phase 
transitions than had been previously believed. We were 
able to demonstrate that the range of validity of a single 
histogram taken at the critical point scales in the same 
way as the finite-size scaling region so that information 
about the transition does not deteriorate with increasing 
system size. Hence information about a phase transition 
can usually be obtained with a single simulation without 
the need for multistage sampling (described below). We 
also demonstrated that histogram techniques provide the 
most accurate method for determining the position and 
height of peaks associated with a phase transition. 

An effort to overcome the limitations of the single 
histogram method and to use multiple histograms was 
made in 1972 by Valleau and Card. II They introduced the 
idea of multistage sampling in which supplemental or 
bridging distributions are used to provide information in 
the wings of the original distribution. They recognized 
that the proportionality constant a I in (3) cannot be 
obtained from a run at a single temperature, but a second 
histogram can be generated at a different temperature Tz. 
If TI and Tz are not too different, the corresponding 
histograms HI (E) and Hz(E) will overlap over a range of 
values of E and the ratio az/a l can be determined by 
integrating over the overlap region. This procedure can be 
repeated if additional runs are performed and determines 
the entire set of OJ values to within a mUltiplicative 
constant. If enough bridging distributions are generated, 
overlap with the histogram from an infinite temperature 
simulation can be attained. In this limit the total number 
of states available to the system can usually be found 
exactly and the proportionality constant 0 0 can be 
determined. The determination of 0 0 fixes all the other OJ 

values so that the partition function and the absolute free 
energy can be obtained. 

An important contribution was made in 1976 by 
Bennett,IZ although the relevance of his work to the 
problem of linking MC simulations for use in multistage 
sampling was not immediately recognized. Bennett con­
sidered the problem of computing free-energy differences 
between two different temperatures and derived equations 
based on optimized contributions to the estimate of the 
density of states from each simulation at each value of the 
energy. The result has the form of expectation values of 
Fermi functions, with the free-energy difference playing 
the role of the chemical potential. 

In 1977, Torrie and Valleau13 introduced the method 
of "umbrella sampling" in order to generate probability 
distributions wider than the Boltzmann distribution. The 
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FIG. 1. The energy dependence ofthe histogram H (E) for the Ising model 
on a 16X16 square lattice at T=2!1n(1+vi2). A total of 8Xl06 Monte 
Carlo steps per spin was used. 

problem is that importance sampling typically generates a 
narrow distribution centered about the average value. 
Hence, in order to use multistage sampling, it is necessary 
either to perform many runs, or to rely on the overlap ot 
the tails of the distributions where the statistics are poor. 
Umbrella sampling was used13 in a study of a Lennard­
Jones system by simulating only the repulsive part of the 
interaction. Although the method led to an increased 
width, the simulation became much less efficient and the 
results using umbrella sampling showed little improve­
ment over those obtained with simple multistage sam­
pling. 

An important application of histograms for the study 
of phase transitions was made in 1982 by Falcioni and co­
workers l4 and in 1984 by Marinari. 15 These workers used 
the single histogram method, but extended it to complex 
temperatures. In this way they were able to compute the 
zeros of the partition function in the complex temperature 
plane, and hence obtain additional information about the 
critical behavior at phase transitions. 16 

Bhanot and co-workers I7-zo wrote a series of papers 
in 1987 on the application of a combination of MC 
methods. They used a multistage sampling approach, II 
including the method of matching overlap regions, and a 
simple sampling method9 with an upper bound on the 
total energy. They also introduced a lower bound so that 
each simulation covered only a narrow range of energies. 
Karliner et aFI developed a modification of this approach 
and maintained a narrow energy range, but reintroduced 
importance sampling within this range. The use of 
importance sampling resulted in increased efficiency and 
lower statistical errors. 

Recently, we22 introduced a new method of opti­
mized multiple histogram data analysis that builds on the 



multistage sampling method of Valleau and Card. II Our 
approach is similar to that adopted by Bennettl2 for 
calculating free-energy differences. In our multiple histo­
gram method, the data from each simulation are com­
bined to form an estimate for the density of states which is 
optimized for each value of the energy. For simplicity, we 
will consider only a one-parameter Hamiltonian with T 
the relevant external parameter. The main result of the 
method is summarized in (13) and (14). 

Suppose that we do R MC simulations. The ith 
simulation, with N j MC updates, is performed at T = T; 
and yields a histogram H; (E). The histogram provides an 
estimate for the equilibrium probability distribution, 
which we write in the form 

P(E) =H;(E)IN; = W(E)e- fJ1E +I" (6) 

where /; is a parameter related to the free energy at T; by 
/; = /3;F(/3;). (The parameter/; is related to the unknown 
values of a; in the multistage sampling method.") 
Equation (6) can be inverted to obtain an estimate for the 
density of states: 

Wee) = [H;(E)IN;JefJ1E -I,. (7) 

Of course, due to statistical errors, the estimate (7) from 
one run will be reliable only over some range of E values. 
Since each of the R simulations will yield a different 
estimate for Wee), an improved estimate for W can be de­
termined as a weighted sum over each individual estimate 
for the density of states: 

R 

Wee) = L p;(E)H;(E)N ;_I~IE-I,. (8) 
;=1 

This estimate for Wee) can be optimized for each value of 
E, by choosingp; (E) so as to minimize the error in the es­
timate for W. The uncertainty in the histogram values is 
given by 

(9) 

where the bar indicates the expectation value with respect 
to all MC simulations of duration N;. If the successive MC 
configurations are independent, then g; = 1; otherwise, we 
have23 

(10) 

where 1'; is the correlation time. 
If we minimize the error in the resultant estimate for 

Wee), we obtain 

We define 

P(E,/3) = W(E)e- fJE (12) 

and write the essential multiple histogram equations as 

( 13) 

where 

e -I, = L P(E,/3;). (14) 
E 

Equations (13) and (14) can be iterated to determine the 
values of /; self-consistently. The convergence can be 
accelerated by making use of derivatives of/values on one 
iteration with respect to those of the previous iteration. If 
we extend the histograms to sufficiently low or high T 
where the free energy can be determined exactly, the 
absolute free energies can be computed. 

(As with other Monte Carlo techniques for calculat­
ing free energies, (13) and (14) determine the free energy 
to within an additive constant. For convenience, we can 
set It = 0 and then determine the other / values with 
respect to /1') 

The statistical error in P(E,/3) is given by 

( )

-1/2 

8P(E,/3) = ~g;-IH;(E) P(E,/3). (15) 

From (15) we see that the method always reduces the sta­
tistical errors when additional MC simulations are added 
to the analysis. This expression also provides a clear guide 
for planning a series of simulations. The positions and 
heights of peaks in the relative error, plotted as a function 
of E, give a direct quantitative indication of the optimum 
locations and durations of additional MC simulations. 

Once the values of /; are determined, (13) can be 
used to calculate the average value of any function of E as 
a function of /3, 

(A ) = ~ A (E) P(E,/3) (~P(E,/3)) - I (16) 

In particular, the specific heat C is given by 

VC(T) = (l/kB T2)«E2) - (E)2), (17) 

where V is the volume of the system. The multiple 
histogram method has already been applied to several MC 
studies of phase transitions. For the d = 2 Ising model the 
results obtained22 compared favorably to the exact 
solution for finite lattices.24 New results for the three-state 
antiferromagnetic Potts model, including zero-tempera­
ture entropies, were recently obtained by Wang et al.25 

using the mUltiple histogram method. Other recent 
applications include an SU (2) lattice gauge calculation 
and calculations for several lattice dimer models. 

Since the multiple histogram method is able to 
combine MC simulation data from different sources to 
increase the total accuracy of the results, it could be used 
to combine data from different groups working on large 
problems, such as those encountered in lattice gauge 
theories. Because there are no limitations on the method 
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of simulation, we also expect this method to be useful for 
simulations in chemistry and biology. 

Suggestions for Further Study 
1. Use the single histogram method to show that the 

free-energy difference can be expressed as 

(32F«(32) - (3IF«(3I) = -In I, PeEle - (P, -P,)E, 
E 

(18) 

whereP(E) = H(E)IN,. (The unknown constant a l does 
not appear in the free-energy difference.) 

2. Write a program to simulate the d = 2 Ising model 
on a L X L square lattice at a temperature T in a zero mag­
netic field. As a check on your program, compare your re­
sults for L = 2 to the results obtained by an exact 
enumeration of the 16 possible states. Then choose L = 4 
and compute H(E) at the critical temperature of the 
infinite system, Te = 211n(1 +.J2) ;::::2.269. Use the single 
histogram method to estimate PEat various T up to 
T= 3.13. How do your predicted results for PE compare 
to the results for PE when measured directly? What is the 
approximate range of applicability of the single histogram 
method? Use the single histogram at T = Te to estimate C 
in the critical region. How do your results for L = 4 
compare with the exact solution?24 Is the temperature at 
which C is a maximum above or below Te? Repeat the 
above measurements of H(E) at T = Te for L = 8 and 
L = 16 and determine the L dependence of the maximum 
of C and applicability of the single histogram method. 

3. Consider the Gaussian probability distribution 

P
E 

= (llu) (11.J21T)e- E - (E»'/2a', (19) 

where ~ = (E2) - (E )2. Assume that the histogram has 
the Gaussian form (19) at T = T, and show that this form 
implies that qn = TiIT 2C(T, ). 

4. Choose L = 16 and compute H(E) at T = Te. 
Would it be preferable to use a cluster-flip or single-flip al­
gorithm to obtain new configurations? How well can this 
histogram be fitted by a Gaussian function? Why would a 
Gaussian yield a better fit away from Te? 

5. Use the multiple histogram equations (13) and 
(14) to combine the results from runs at different 
temperatures. The correlation times can be computed as 
discussed in the Julyl August issue of Computers in 
Physics. 

6. A system of particles interacting via the interparti­
cle potential VCr) = €Culr) 12 can be characterized by a 
single dimensionless parameter r = (3V(r = a), where 
41Tna3/3 = 1 and n is the particle density. Since the energy 
of the system is a continuous variable, how can the 
histogram be computed? Use the multiple histogram 
method to compute the mean energy and other thermody­
namic quantities for r in the range 0.1-300. Compare 
your results with the MC results of Ref. 26. Can the 
multiple histogram method be used to determine the 
fluid-solid boundary? (Although computer time can be 
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saved by considering only 32 particles, this problem is 
computer intensive.) 

7. Use the multistage sampling method" to combine 
the histograms of two simulations. Compare the results 
with those obtained using the multiple histogram method. 
Which method produces better results? 

The success of this column depends on reader input. 
Please send us your results, comments, and suggestions for 
future columns. Regular columnists Gould and Toboch­
nik will be back next issue. Messages can be sent via email 
to hgould@clarku or tobochnik%heyl.dnet@gw.wmi­
ch.edu. 
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