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Optimized Multi-Agent Formation Control Based on
an Identifier–Actor–Critic Reinforcement

Learning Algorithm
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Abstract—The paper proposes an optimized leader–follower for-
mation control for the multi-agent systems with unknown nonlin-
ear dynamics. Usually, optimal control is designed based on the
solution of the Hamilton–Jacobi–Bellman equation, but it is very
difficult to solve the equation because of the unknown dynamic
and inherent nonlinearity. Specifically, to multi-agent systems, it
will become more complicated owing to the state coupling prob-
lem in control design. In order to achieve the optimized control,
the reinforcement learning algorithm of the identifier–actor–critic
architecture is implemented based on fuzzy logic system (FLS) ap-
proximators. The identifier is designed for estimating the unknown
multi-agent dynamics; the actor and critic FLSs are constructed
for executing control behavior and evaluating control performance,
respectively. According to Lyapunov stability theory, it is proven
that the desired optimizing performance can be arrived. Finally,
a simulation example is carried out to further demonstrate the
effectiveness of the proposed control approach.

Index Terms—Fuzzy logic systems (FLSs), identifier–actor–critic
architecture, multi-agent formation, optimized formation control,
reinforcement learning (RL).

Manuscript received July 30, 2017; revised October 19, 2017 and December
18, 2017; accepted December 19, 2017. Date of publication December 27,
2017; date of current version October 4, 2018. This work was supported in
part by the Doctoral Scientific Research Staring Fund of Binzhou University
under Grant 2016Y14, in part by the National Natural Science Foundation
of China under Grants 61572540, 61603094 and 61603095, in part by the
China Scholarship Council under Grant 201707870005, in part by the Macau
Science and Technology Development Fund under Grant 019/2015/A, Grant
024/2015/AMJ, and Grant 079/2017/A2, and in part by the University Macau
MYR Grants. (Corresponding author: Guoxing Wen.)

G. X. Wen is with the College of Science, Binzhou University, Binzhou
256600, China (e-mail: gxwen@live.cn).

C. L. P. Chen is with the Department of Computer and Information Science,
Faculty of Science and Technology, University of Macau, Macau 99999, China,
with Dalian Maritime University, Dalian 116026, China, and also with the State
Key Laboratory of Management and Control for Complex Systems, Institute
of Automation, Chinese Academy of Sciences, Beijing 100080, China (e-mail:
philip.chen@ieee.org).

J. Feng is with the College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing 210000, China, and also
with the Department of Information Engineering, Binzhou University, Binzhou
256600, China (e-mail: fengjunImportant@163.com).

N. Zhou is with the Faculty of Science and Engineering, University of Gronin-
gen, Groningen 9747 AG, The Netherlands, and also with the College of Com-
puter and Information Sciences, Fujian Agriculture and Forestry University,
Fuzhou 350002, China (e-mail: zhouning2010@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2017.2787561

I. INTRODUCTION

IN THE multi-agent cooperation community, formation con-
trol is one of the most interesting and attractive research

topics because of its broad applications, such as cooperative con-
trol of unmanned aerial vehicles, satellite clusters, autonomous
underwater vehicles, and mobile sensor networks. In brief, for-
mation control is to design the appropriate protocol or algorithm
such that the multi-agent system arrives and maintains a prede-
fined geometrical shape, for example, a chain or wedge. In the
recent decades, formation control has been well developed, and
several published results receive the considerable and increasing
attention, such as leader–follower [1], behavior [2], virtual struc-
ture [3], and potential function based approaches [4], where the
leader–follower approach is the most popular one due to its sim-
plicity and scalability. The basic idea is that a leader is designed
as a reference for the agent group, and all agents as followers are
controlled to maintain the desired separation and relative bear-
ing with the leader. The main advantage is that group behavior
is specified by a single quantity (the leader’s motion).

Ever since optimal control, which means that cost function is
minimized, was formally developed about five decades ago by
Bellman [5] and Pontryagin [6], optimization became a funda-
mental design idea and principle in modern control theory. In
recent years, the optimal problem has been addressed in forma-
tion control of multi-agent systems, and several approaches have
been published [7]–[9]. In [7], the finite-time optimal formation
problem of multi-agent systems on the Lie group SE(3) is in-
vestigated. In [8], the finite time optimal formation is applied to
multivehicle systems. In [9], the centralized optimal multi-agent
coordination problem under tree formation constraints is stud-
ied. These published optimal formation methods are achieved
based on the solution of the Hamilton-Jacobi-Bellman (HJB) or
Hamiltonian equation. In practice, the HJB equation is solved
difficultly by analytical approaches owing to the inherent non-
linearities and unknown dynamics.

In order to overcome the difficulty coming from solving the
HJB equation, a reinforcement learning (RL)-based function
approximation strategy is usually considered. The basic idea is
that appropriate actions are taken by evaluating feedback from
environment [10]. One of the most popular means to perform
RL algorithms is the actor–critic architecture, where the actor
performs certain actions by interacting with environment and the
critic evaluates the actions and gives feedback to the actor [11].
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However, most of the RL-based optimal approaches require
complete knowledge of system dynamics, and it is difficult to
be satisfied for practical situations. In order to release the strict
requirement, an effective solution is the identifier–actor–critic
method because the unknown dynamics are estimated by the
identifier for RL [12].

It is well known that fuzzy logical systems (FLSs) have excel-
lent approximation ability, which can approximate any contin-
uous function to the desired accuracy over a compact set. In the
recent years, many frequently used control techniques have been
well developed based on the FLS approximator, such as back-
stepping, optimizer, small-gain approach, and dead-zone con-
trol [13]–[16], and widely applied to various nonlinear systems,
such as [17]–[22]. However, a common challenge and difficulty
in adaptive fuzzy control is the stability proof because there pos-
sibly exists the undesirable drift in the online learning. Recently,
several stability analysis approaches are published to gain the
extensive attention [23]–[25], they are the effective ways for
solving the difficulty. Nevertheless, for multi-agent system con-
trol, stability analysis becomes more challenging and difficult
owing to the state coupling in the control design. To the opti-
mized formation control, stability analysis is turned into a very
complex and intractability problem because RL is performed by
online training both critic and actor simultaneously.

Motivated by the above-mentioned discussion, in this paper,
the RL algorithm of the identifier–actor–critic architecture is
utilized for the optimized formation control. Based on FLS ap-
proximations of the unknown nonlinear dynamic and optimal
value functions, the identifier, actor, and critic are constructed,
where the online learning for them is continuous and simulta-
neous. The main contributions are listed in the following.

1) The optimized formation control approach can efficiently
solve the tracking problem by segmenting an error term
from the optimal value function. Owing to the diffi-
culty in the convergence analysis of tracking errors, ex-
isting optimization control methods rarely involve the
tracking problem. The proposed optimization strategy
can well carry out tracking control; therefore, it can
guarantee that the leader–follower formation control is
fulfilled.

2) The RL of the identifier–actor–critic architecture is ap-
plied to multi-agent control so that the excellent control
performance can be guaranteed. Most of the existing RLs
are designed based on a common assumption that the
system dynamics are completely known, such as [26] and
[27]. However, this assumption is impractical or very strict
for many practical situations. The proposed RL algorithm
can release the strict assumption because the adaptive
identifier is employed to estimate the system uncertain-
ties, it can meet the practical requirements for real-world
engineering.

3) The strict proofs for the stability and convergence analyses
are given. In most of the existing RL control literature,
Lyapunov function for stability analysis is designed to
contain the infinite horizon value function, such as [12]
and [28]. Because the function’s derivative is negative, it
cannot guarantee that the strict analyses are performed for
stability and convergence.

For convenience, the following notations are used throughout
the paper.

1) R represents the real number; Rn denotes the
real n-dimensional vector space; Rn×m is the
n×m-dimensional matrix space; and In is the n× n
identity matrix.

2) |·| denotes the absolute value; ‖·‖ represents the 2-norm;
and Ω represents the set.

3) T is the transposition symbol; and ⊗ denotes the
Kronecker product.

II. PRELIMINARIES

A. Fuzzy Logic Systems

It has been proven that FLSs have the universal approximation
and learning abilities. A FLS is composed of four parts, which
are the knowledge base, fuzzifier, fuzzy inference engine, and
defuzzifier.

The knowledge base is a collection of fuzzy If-Then rules
described in the following:

Rj : If x1 is Fj
1 and x2 is Fj

2 . . . and xn is Fj
n

Then y is Gj , j = 1, 2, . . . , N

where x = [x1 , . . . , xn ]T is the input; y is the output; Fj
i and

Gj are the fuzzy sets associated with fuzzy membership func-
tions μF j

i
(xi) ∈ R and μGj (y) ∈ R, respectively; and N is the

number of rules.
The singleton fuzzifier, product inference engine, and center-

average defuzzifier are defined as

y(x) =

∑N
j=1

(

θj
n∏

i=1
μF j

i
(xi)

)

∑N
j=1

(
n∏

i=1
μF j

i
(xi)

) (1)

where θj = max
y∈R

μGj (y).

Define the fuzzy basis function as

ϕj (x) =

n∏

i=1
μF j

i
(xi)

∑N
j=1

(
n∏

i=1
μF j

i
(xi)

) (2)

the FLS (1) can be re-expressed as

y(x) = ΘT ϕ(x) (3)

where Θ = [θ1 , . . . , θN ]T is viewed as the adjustable parame-
ter vector and ϕ(x) = [ϕ1(x), . . . , ϕN (x)]T is the fuzzy basis
function vector.

It has been proven that the FLS can uniformly approximate
any continuous nonlinear function to the desired accuracy over a
compact set. This property is described by the following lemma.

Lemma 1: [29] Any real continuous function h(x) ∈ R is
well defined on a compact set Ωh ∈ Rn , there exists the FLS
described by (3) such that

sup
x∈Ωh

|h(x) − y(x)| < ε

where ε > 0 is an arbtrary positive number.
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According to Lemma 1, for any continuous vector-valued
function f(x) = [f1(x), . . . , fm (x)]T ∈ Rm defined on the
compact set Ωf ∈ Rm , there exists an optimal parameter matrix
Θ∗
f = [Θ∗

f 1 , . . . ,Θ
∗
fm ] ∈ RN×m such that

f(x) = Θ∗T
f ϕ(x) + εf (x) (4)

where εf (x) ∈ Rm is the approximation error satisfying
‖εf (x)‖ ≤ δ, δ is a positive constant. The optimal parameter
vector Θ∗

f is defined as

Θ∗
f := arg min

Θ∈RN ×m

{

sup
x∈Ωf

∥
∥f (x) − ΘT

f ϕ(x)
∥
∥

}

(5)

where Θf = [Θf 1 , . . . ,Θfm ] ∈ RN×m is the adjustable param-
eter matrix. It should be mentioned that Θ∗

f needs to be estimated
because it is an “artificial” quantity just for analysis purposes.

B. Algebraic Graph Theory

The interconnection topology of a multi-agent system
can be depicted by a graph G = (Υ,Ξ, A), where Υ =
{υ1 , υ2 , . . . , υn}, Ξ ⊆ Υ × Υ and A = [aij ] are the node set,
edge set, and adjacency matrix, respectively. Let ξij = (υi, υj )
denote the edge connecting both agents i and j, then ξij ∈ Ξ if
and only if there is an information flow from agent j to agent
i. Agent j is called as a neighbor of agent i if ξij ∈ Ξ, and the
neighbor set of agent i is denoted by Λi = {υj‖ (υi, υj ) ∈ Ξ}.
The adjacency element aij denotes the communication weight
corresponding to the edge ξij , which satisfies ξij ∈ Ξ ⇔ aij =
1 and otherwise aij = 0. A graph G is called undirected if
aij = aji . An undirected graph is called connected if any a pair
of distinct nodes can be connected by an undirected path. The
Laplacian matrix L = [lij ] ⊂ Rn×n of the weight graph G is
defined as

L = D −A (6)

where d = diag{d1 , . . . , dn}, di =
∑n

j=1 aij .
Let bi denote the connection weight between agent i and the

leader. If there is the information communication between agent
i and the leader, then bi = 1, otherwise bi = 0. It is assumed that
at least one agent connects with the leader, i.e., b1 + b2 + · · · +
bn > 0.

C. Supporting Lemmas

Lemma 2: [30] An undirected graph G is connected if and
only if its Laplacian is irreducible.

Lemma 3: [30] Let Q = [qij ] ∈ Rn×n be an irreducible ma-
trix such that qij = qji ≤ 0 for i 
= j and qii = −∑n

j=1 qij for
i = 1, 2, . . . , n. Then all eigenvalues of the matrix

⎡

⎢
⎣

q11 + q̄1 · · · q1n
...

. . .
...

qn1 · · · qnn + q̄n

⎤

⎥
⎦

are positive, where q̄1 , q̄2 , . . . , q̄n are non-negative constants
satisfying q̄1 + q̄2 + · · · + q̄n > 0.

Lemma 4: [30] Let Φ(t) ∈ R be a continuous positive func-
tion with bounded initial value Φ(0). If Φ̇(t) ≤ −αΦ(t) + β

is held, where α and β are positive constants, then there is the
following result:

Φ(t) ≤ e−αtΦ(0) +
β

α

(
1 − e−αt

)
. (7)

III. MAIN RESULTS

A. Problem Formulation

Consider the multi-agent system modeled in the following:

ẋi(t) = fi (xi(t)) + ui, i = 1, . . . , n (8)

where xi(t) ∈ Rm is the state; ui ∈ Rm is the control input;
and fi (·) :Rm → Rm with fi(0) = 0n is the unknown non-
linear continuous vector-value function. These terms fi (xi) +
ui, i = 1, 2, . . . , n, are assumed Lipschitz continuous on
the set containing origin so that the solution of differential
equation (8) is unique for any bounded initial state xi(0). The
system (8) is assumed stabilizable, i.e., there exists the contin-
uous control ui such that the system is asymptotically stable.
The communication graph G is assumed to be an undirected
connected graph.

Let xd(t), ẋd(t) ∈ Rm denote the desired trajectory and ve-
locity of the formation movement, which are assumed known
and bounded. Define the tracking error variable for agent i as

zi(t) = xi(t) − xd(t) − ηi, i = 1, 2, . . . , n (9)

where ηi = [ηi1 , ηi2 , . . . , ηim ]T is the relative position vector
between agent i and the leader, which depicts the predefined
formation pattern.

Definition 1: [31] The multi-agent system (8) is said to
achieve the desired formation if its solutions satisfy

lim
t→∞ ‖xi(t) − xd(t) − ηi‖ = 0, i = 1, . . . , n

for the bounded initial conditions.
Based on (8), the following error dynamic can be yielded:

żi(t) = fi (xi) − ẋd(t) + ui, i = 1, . . . , n. (10)

Define the formation errors as

ei(t) =
∑

j∈Λ i

aij (xi(t) − ηi − xj (t) + ηj )

+ bi (xi(t) − xd(t) − ηi) , i = 1, . . . , n (11)

where aij is the ith row and jth column element of adjacency
matrix A; and bi is the connection weight between agent i and
the leader. Inserting (9) into (11), the following equation can be
yielded:

ei(t) =
∑

j∈Λ i

aij (zi − zj ) + bizi , i = 1, . . . , n. (12)

Based on the multi-agent dynamic (8), time derivative of the
formation error is

ėi(t) = cifi(xi) + ciui − biẋd(t) −
∑

j∈Λ i

aij ẋj (t) (13)

where ci =
∑

j∈Λ i
aij + bi .

Define the infinite horizon value function as

V (e(t)) =
∫∞
t r (e(τ), u(e)) dτ (14)
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where r (e, u) = eT (t)e(t) + uT (C ⊗ Im )u = zT (t)(L̃T L̃⊗
Im )z(t) + uT (C ⊗ Im )u is the cost function, where eT (t) =
[eT1 , . . . , e

T
n ]; u =

[
uT1 , . . . , u

T
n

]T
; z =

[
zT1 , . . . , z

T
n

]T
; C =

diag{c1 , . . . , cn}; and L̃ = L+B. It should be mentioned that
L̃ is a positive definite matrix in accordance with Lemma 3.

Let ri (ei, ui) = eTi ei + ciu
T
i ui and Vi(ei) =

∫∞
t ri

(
ei(τ),

ui(ei)
)
dτ , the value function (14) can be re-expressed as

V (e) =
n∑

i=1

Vi(ei) =
n∑

i=1

∫ ∞

t

ri (ei(τ), ui(ei)) dτ. (15)

Definition 2: [32] The multi-agent formation control
ui, i = 1, . . . , n, is said to be admissible associating with
(10) on a set Ω̄, which is denoted by ui=1,··· ,n ∈ Ψ

(
Ω̄
)
, if

ui, i = 1, . . . , n, is continuous with ui(0) = 0, ui stabilizes
(10) and V (e) is finite.

The optimized formation problem for the multi-agent system
(8) is to find the admissible control policies ui, i = 1, . . . , n,
such that the infinite horizon value function (14) can be mini-
mized.

The control objective. Based on the RL algorithm of the
identifier–actor–critic architecture, design the optimized forma-
tion control ui, i = 1, . . . , n, for multi-agent system (8) such
that 1) all signals are semiglobally uniformly ultimately bounded
(SGUUB); and 2) the leader–follower formation control can be
achieved.

Based on the infinite horizon value function (14), the follow-
ing Hamiltonian function is derived:

H

(

e, u,
∂V

∂e

)

= r (e, u) +
∂V (e)
∂eT

ė(t)

= eT e+ uT (C ⊗ Im )u+
n∑

i=1

(
∂Vi(ei)
∂eTi

ėi(t)
)

=
n∑

i=1

(

‖ei(t)‖2 + ci ‖ui‖2 +
∂Vi(ei)
∂eTi

ėi(t)
)

(16)

where ∂V (e)
∂e and ∂Vi (ei )

∂ei
denote the gradient of V (e(t)) and

Vi(ei) corresponding to e(t) and ei(t), respectively.

Let u∗ =
[
u∗T1 , . . . , u∗Tn

]T
be the optimal formation control,

then the optimal value function can be yielded as

V ∗(e) = min
ui= 1 , ··· , n ∈Ψ(Ω)

∫ ∞

t

r (e, u) dτ =
∫ ∞

t

r (e, u∗) dτ

=
n∑

i=1

V ∗
i (ei) =

n∑

i=1

min
ui ∈Ψ(Ω)

∫ ∞

t

ri (ei, ui) dτ

=
n∑

i=1

∫ ∞

t

ri (ei, u∗i ) dτ (17)

where V ∗
i (ei) =

∫∞
t ri (ei, u∗i ) dτ , Ω ⊂ Rm is a compact set

containing origin.

Integrating both (16) and (17), the HJB equation is yielded as

H

(

e, u∗,
∂V ∗

∂e

)

= r (e, u∗) +
∂V ∗(e)
∂eT

ė(t)

=
n∑

i=1

(

‖ei‖2 + ci ‖u∗i ‖2 +
∂V ∗

i (ei)
∂eTi

ėi(t)
)

= 0. (18)

Associated with (13) and (18), the distributed HJB equation
can be derived as

Hi

(

ei, u
∗
i ,
∂V ∗

i

∂ei

)

= ‖ei‖2 + ci ‖u∗i ‖2 +
∂V ∗

i (ei)
∂eTi

(

cifi(xi)

+ ciu
∗
i − biẋd(t) −

∑

j∈Λ i

aij ẋj (t)

⎞

⎠ = 0, i = 1, . . . , n.

(19)

Obviously, if the distributed HJB equations (19) are held, the
HJB equation (18) is held. Assuming the solution of (19) is
existent and unique, the following optimal formation control u∗i
can be obtained by solving ∂Hi(ei, u∗i ,

∂V ∗
i

∂ ei
)/∂u∗i = 0:

u∗i = −1
2
∂V ∗

i (ei)
∂ei

, i = 1, . . . , n. (20)

Substituting (20) into (19) yields

‖ei(t)‖2 +
∂V ∗

i

∂eTi

⎛

⎝cifi(xi) − biẋd(t) −
∑

j∈Λ i

aij ẋj (t)

⎞

⎠

− ci
4
∂V ∗

i

∂eTi

∂V ∗
i

∂ei
= 0, i = 1, . . . , n. (21)

In order to achieve the optimal formation control (20), the term
∂V ∗

i (ei )
∂ei

is required, which is expected to obtain by solving (21).
However, due to the unknown dynamics and inherent nonlinear-
ities, the equation is impossible or very difficult to be solved.
Therefore, the RL algorithm of the identifier–actor–critic archi-
tecture can be considered to realize the control.

B. FLS Identifier Design

Since these dynamic functions fi(xi), i = 1, . . . , n, of
multi-agent system (8) are unknown, the FLS-based identifiers
are established to estimate the unknown functions for achieving
the optimized formation scheme.

For xi ∈ Ω where i = 1, . . . , n, the function fi(xi) can be
approximated by the FLS in the following:

fi(xi) = Θ∗T
f i ϕf i (xi) + εf i(xi), i = 1, . . . , n (22)

where Θ∗
f i ∈ Rp1 ×m is the optimal parameter matrix;

ϕf i (xi) ∈ Rp1 is the fuzzy basis function vector; p1 is the
fuzzy rule number; εf i(xi) ∈ Rm is the approximation error
satisfying ‖εf i(xi)‖ ≤ δf i , and δf i is a positive constant.

Since the optimal parameter matrix Θ∗
f i is the unknown con-

stant matrix that cannot be applied directly, it needs to be esti-
mated. Let Θ̂T

f i(t) denote the estimation, the adaptive identifier
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is built as

˙̂xi(t) = −kix̃i(t) + Θ̂T
f i(t)ϕf i (xi) + ui,

i = 1, . . . , n (23)

where x̂i(t) ∈ Rm is the identifier state, and x̃i(t) = x̂i(t) −
xi(t) is the identification error.

Design the updating law for Θ̂f i(t) as

˙̂Θf i(t) = Γi
(
−ϕf i(xi)x̃Ti (t) − σiΘ̂f i(t)

)
,

i = 1, . . . , n (24)

where Γi ∈ Rp1 ×p1 is the positive definite gain matrix and σi is
the positive design parameter.

Based on (8), (22), and (23), the identifier error dynamics can
be yielded as

˙̃xi(t) = −kix̃i(t) + Θ̃T
f i(t)ϕf i (xi) − εf i(xi),

i = 1, . . . , n (25)

where Θ̃f i(t) = Θ̂f i(t) − Θ∗
f i is the estimation error.

Theorem 1: If the proposed identifier (23) with updating law
(24) is used for identifying the multi-agent (8), then 1) the
errors Θ̃f i(t) and x̃i(t) are SGUUB; 2) the identification error
x̃i(t) can arrive to the desired accuracy by making the design
parameters ki, i = 1, . . . , n, large enough.

Proof: 1) Consider the Lyapunov candidate as following:

E1(t) =
1
2

n∑

i=1

x̃Ti (t)x̃i(t) +
1
2

n∑

i=1

Tr
(
Θ̃T
f iΓ

−1
i Θ̃f i

)
. (26)

Taking the time derivative along (24) and (25) is

Ė1(t) =
n∑

i=1

x̃Ti (t)
(
−kix̃i(t) + Θ̃T

f i(t)ϕf i (xi) − εf i(xi)
)

−
n∑

i=1

Tr
(
Θ̃T
f i(t)ϕf i(xi)x̃

T
i (t) + σiΘ̃T

f i(t)Θ̂f i(t)
)
. (27)

According to the property of trace operator Tr(baT ) = aT b
where a, b ∈ Rn , there is the following fact:

Tr
[
Θ̃T
f i(t)ϕf i(xi)x̃

T
i (t)

]
= x̃Ti (t)

(
Θ̃T
f i(t)ϕf i(xi)

)
. (28)

Substituting (28) into (27), we obtain

Ė1(t) = −
n∑

i=1

ki ‖x̃i(t)‖2 −
n∑

i=1

x̃Ti (t)εf i(xi)

−
n∑

i=1

σiTr
(
Θ̃T
f i(t)Θ̂f i(t)

)
. (29)

According to the Cauchy–Buniakowsky–Schwarz inequality
[33] (

∑n
k=1 akbk )

2 ≤ (
∑n

k=1 a
2
k )(

∑n
k=1 b

2
k ) and Young’s in-

equality [34] ab ≤ a2

2 + b2

2 , there is the following result:

− x̃Ti (t)εf i(xi) ≤ 1
2

∥
∥x̃Ti (t)

∥
∥2

+
1
2
δ2
f i . (30)

Based on the fact that Tr(Θ̃T
f iΘ̂f i) = 1

2 Tr(Θ̃T
f iΘ̃f i) +

1
2 Tr(Θ̂T

f iΘ̂f i) − 1
2 Tr(Θ∗T

f i Θ
∗
f i), the following equation can be

obtained:

− σiTr
(
Θ̃T
f i(t)Θ̂f i(t)

)
≤ −σi

2
Tr

(
Θ̃T
f i(t)Θ̃f i(t)

)

+
σi
2

Tr
(
Θ∗T
f i Θ

∗
f i

)
. (31)

Substituting (30) and (31) into (29) yields

Ė1(t) ≤ −
n∑

i=1

(

ki − 1
2

)

‖x̃i‖2 −
n∑

i=1

σi
2

Tr
(
Θ̃T
f iΘ̃f i

)
+ β1

≤ −
n∑

i=1

(

ki − 1
2

)

‖x̃i(t)‖2 −
n∑

i=1

σi

2λmax(Γ−1
i )

× Tr
(
Θ̃T
f i(t)Γ

−1
i Θ̃f i(t)

)
+ β1 (32)

where β1 = 1
2

∑n
i=1(σiTr(Θ∗T

f i Θ
∗
f i) + δ2

f i); and λmax(Γ−1
i ) de-

notes the maximal eigenvalue of Γ−1
i .

Let α1 = min{2(k1 − 1
2 ), . . . , 2(kn − 1

2 ), σ1
λmax(Γ−1

1 ) , . . . ,
σn

λmax(Γ−1
n ) }, (32) can be rewritten as

Ė1(t) ≤ −α1E1(t) + β1 . (33)

According to Lemma 4, the following inequality can be ob-
tained:

E1(t) ≤ e−αe tE1(0) +
βe
αe

(
1 − e−αe t

)
(34)

it implies that the identifier and estimation errors are SGUUB.
2) Let Ex(t) = 1

2

∑n
i=1 x̃

T
i (t)x̃i(t), its time derivative along

(25) is

Ėx(t) ≤
n∑

i=1

(
−ki ‖x̃i‖2 + x̃Ti Θ̃T

f iϕf i (xi) − x̃Ti εf i

)
.(35)

Inserting the following facts:

x̃Ti (t)Θ̃T
f i(t)ϕf i(xi) ≤

1
2
‖x̃i(t)‖2 +

1
2

∥
∥
∥Θ̃T

f i(t)ϕf i(xi)
∥
∥
∥

2
,

− x̃Ti (t)εf i(xi) ≤ 1
2
‖x̃i(t)‖2 +

1
2
δ2
f i

to (35) yields

Ėx(t) ≤ −
n∑

i=1

(ki − 1) ‖x̃i(t)‖2 + ψx(t) (36)

where ψx(t) = 1
2

∑n
i=1(‖Θ̃T

f i(t)ϕf i(xi)‖2 + δ2
f i).

Since these estimation errors Θ̃T
f 1(t), . . . , Θ̃

T
f n (t) are

bounded, which are proven by part 1, the termψx(t) is bounded.
Let α2 = min

i=1,...,n
{ki − 1} and β2 = sup

t≥0
{ψx(t)}, (36)

becomes

Ėx(t) ≤ −α2Ex(t) + β2 . (37)

Applying Lemma (4), we obtain the following equation:

Ex(t) ≤ e−α2 tEx(0) +
β2

α2

(
1 − e−β2 t

)
. (38)

The above-mentioned inequality means that the identifier error
can arrive the desired accuracy by making α2 large enough. �
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C. Optimized Formation Control Design

Since the multi-agent dynamic function fi(xi) is unknown,
the identifier (23) plays an essential role in the formation control
design. Define the identifier tracking and identifier formation
errors as

ẑi(t) = x̂i(t) − xd(t) − ηi,

êi(t) =
∑

j∈Λ i

aij (x̂i(t) − ηi − x̂j + ηj ) + bi ẑi (t) . (39)

Based on the identifier dynamic (23), the following error dy-
namics can be yielded:

˙̂zi(t) = −kix̃i(t) + Θ̂T
f i(t)ϕf i (xi) − ẋd(t) + ui, (40)

˙̂ei(t) = −kicix̃i(t) + ciΘ̂T
f i(t)ϕf i (xi) + ciui − biẋd

−
∑

j∈Λ i

aij ˙̂xj (t), i = 1, . . . , n. (41)

Similar to (14)–(19), the optimal value function for the error
dynamic (41) is

V ∗(ê) = min
ui= 1 , ··· , n ∈Ψ(Ω)

∫ ∞

t

r (ê(τ), u(ê)) dτ

=
n∑

i=1

V ∗
i (êi) =

n∑

i=1

min
ui ∈Ψ(Ω)

∫ ∞

t

ri (êi(τ), ui(êi)) dτ

=
n∑

i=1

∫ ∞

t

ri (êi(τ), u∗i (êi)) dτ (42)

where ê(t) = [êT1 (t), êT2 (t), . . . , êTn (t)]T . Then the distributed
HJB equation associated with (41) can be yielded as

Hi

(

êi , u
∗
i ,
∂V ∗

i

∂êi

)

= ‖êi(t)‖2 + ci ‖u∗i ‖2 +
∂V ∗

i (êi)
∂êTi

˙̂ei

= ‖êi(t)‖2 + ci ‖u∗i ‖2 +
∂V ∗

i (êi)
∂êTi

(

− kici x̃i(t) + ciu
∗
i

+ ciΘ̂T
f i(t)ϕf i (xi) − biẋd −

∑

j∈Λ i

aij ˙̂xj (t)
)

= 0,

i = 1, . . . , n. (43)

Assume the solution of (43) to be existent and unique. By
solving ∂Hi(êi , u∗i ,

∂V ∗
i

∂ êi
)/∂u∗i = 0, the optimal formation con-

trol u∗i can be obtained as

u∗i = −1
2
∂V ∗

i (êi)
∂êi

, i = 1, . . . , n. (44)

Segment the optimal value function (42) into two parts as

V ∗
i (êi) = γi ‖êi(t)‖2 + V o

i (êi), i = 1, . . . , n (45)

where γi is a positive design constant, and V o
i (êi) =

−γi ‖êi(t)‖2 + V ∗
i (êi). Inserting (45) into (44), the optimal for-

mation control can become

u∗i = −γiêi(t) − 1
2
∂V o

i

∂êi
, i = 1, . . . , n. (46)

Since V o
i (êi) is the continuous function, for êi ∈ Ω where

i = 1, . . . , n, V o
i (êi) can be approximated by FLS as

V o
i (êi) = Θ∗T

i ϕi (êi) + εi(êi), i = 1, . . . , n (47)

where Θ∗
i ∈ Rp2 is the optimal parameter matrix; ϕi (êi) ∈

Rp2 is the fuzzy basis function vector; p2 is the fuzzy rule
number; and εi(êi) ∈ R is the approximation error to satisfy
|εi(êi)| ≤ δi where δi is a constant.

Based on the FLS approximation (47), the optimal value func-
tion (45) and optimal control (46) can be rewritten as

V ∗
i (êi) = γi ‖êi(t)‖2 + Θ∗T

i ϕi (êi) + εi(êi), (48)

u∗i = −γiêi(t) − 1
2
∂T ϕi (êi)
∂êi

Θ∗
i −

1
2
∂εi(êi)
∂êi

,

i = 1, . . . , n (49)

where ∂ϕi (ê i )
∂ êi

and ∂εi (ê i )
∂ êi

are the gradients with respect to êi .
Substituting (48) and (49) into (43), we obtain the following

equation:

Hi

(

êi , u
∗
i ,
∂V ∗

i

∂êi

)

= −(γ2
i ci − 1) ‖êi(t)‖2 + 2γiêTi (t)

×
⎛

⎝ciΘ̂T
f iϕf i (xi) − kici x̃i(t) − biẋd −

∑

j∈Λ i

aij ˙̂xj (t)

⎞

⎠

+ Θ∗T
i

∂ϕi (êi)
∂êTi

(
ciΘ̂T

f iϕf i (xi) − γici êi(t) − kici x̃i(t)

−biẋd(t) −
∑

j∈Λ i

aij ˙̂xj (t)

⎞

⎠− ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

+ εi(t) = 0 (50)

where

εi(t) =
∂εi(êi)
∂êTi

(
ciu

∗
i − kici x̃i(t) + ciΘ̂T

f iϕf i(xi) − biẋd

−
∑

j∈Λ i

aij ˙̂xj (t)
)

+
ci
4

∥
∥
∥
∥
∂εi(êi)
∂êi

∥
∥
∥
∥

2

.

The term εi(t) is bounded because all terms are bounded.
Since the optimal parameter matrix Θ∗

i is unknown, the op-
timal formation controller (49) cannot be applied directly. In
order to obtain the available control scheme, the following actor–
critic RL algorithm is constructed based on the FLS approxima-
tion (47), of which actor and critic FLSs are utilized to imple-
ment the control behavior and evaluate the control performance,
respectively:

V̂ ∗
i (êi) = γi ‖êi(t)‖2 + Θ̂T

ci(t)ϕi (êi) , (51)

ui = −γiêi(t) − 1
2
∂T ϕi (êi)
∂êi

Θ̂ai(t), i = 1, . . . , n

(52)
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where V̂ ∗
i (êi) denotes the estimations of V ∗

i (êi); and Θ̂ci(t) ∈
Rp2 and Θ̂ai(t) ∈ Rp2 are the critic and actor parameter vectors,
respectively.

Using (51) and (52), the approximated HJB equation can be
obtained as

Hi

(

êi , ui ,
∂V̂ ∗

i

∂êi

)

= ‖êi‖2 + ci

∥
∥
∥
∥−γiêi −

1
2
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2

+
(

2γiêTi + Θ̂T
ci(t)

∂ϕi (êi)
∂êTi

)(
ciΘ̂T

f i(t)ϕf i(xi) − kici x̃i(t)

−γici êi − ci
2
∂T ϕi (êi)
∂êi

Θ̂T
ai(t) − biẋd −

∑

j∈Λ i

aij ˙̂xj

⎞

⎠ ,

i = 1, . . . , n. (53)

Define the Bellman residual error φi(t) as

φi(t) = Hi

(

êi , ui ,
∂V̂ ∗

i

∂êi

)

−Hi

(

êi , u
∗
i ,
∂V ∗

i

∂êi

)

= Hi

(

êi , ui ,
∂V̂ ∗

i

∂êi

)

, i = 1, . . . , n. (54)

Let Φi(t) = 1
2φ

2
i (t), the critic updating law can be yielded based

on the gradient descent algorithm for minimizing the Bellman
residual error:

˙̂Θci(t) = − κci

1 + ‖ξi(t)‖2
∂Φi(t)
∂Θ̂ci(t)

= − κciξi(t)
1 + ‖ξi(t)‖2

(

ξTi (t)Θ̂ci(t) − (γ2
i ci − 1) ‖êi(t)‖2

+ 2γiêTi

⎛

⎝ciΘ̂T
f i(t)ϕf i(xi) − kicix̃i − biẋd −

∑

j∈Λ i

aij ˙̂xj

⎞

⎠

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2 )

, i = 1, . . . , n (55)

where κci > 0 is the critic learning rate; and

ξi(t) =
∂ϕi (êi)
∂êTi

(
ciΘ̂T

f i(t)ϕf i(xi) − kicix̃i − γici êi

−ci
2
∂T ϕi (êi)
∂êi

Θ̂ai(t) −biẋd(t) −
∑

j∈Λ i

aij ˙̂xj (t)

⎞

⎠ .

The actor weight updating law is designed as

˙̂Θai(t) =
1
2
∂ϕi (êi)
∂êTi

êi(t) − κaici
∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

+
κcici

4
(
1 + ‖ξi(t)‖2

)
∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

× Θ̂ai(t)ξTi (t)Θ̂ci(t), i = 1, . . . , n (56)

where κai > 0 is the actor learning rate.

Assumption 1: [28] Persistence of excitation (PE): the signs
of ξi(t)ξTi (t), i = 1, 2, . . . , n, are required persistent excita-
tion over the interval [t, t+ ti ], i.e., there exist constants ςi > 0,
ζi > 0, t̄i > 0 for all t satisfying the following condition:

ςiIp2 ≤ ξi(t)ξTi (t) ≤ ζiIp2 (57)

where Ip2 ∈ Rp2 ×p2 is the identity matrix.

D. Stability Analysis

Theorem 2: Consider the multi-agent system (8) with
bounded initial conditions and reference signal. If the opti-
mized multi-agent formation control (52) is performed based
on the identifier–critic–actor RL algorithm, where the identifier,
actor, and critic are online trained by the adaptive laws (24),
(55), and (56), respectively, then by choosing appropriate de-
sign parameters, the optimized formation control can guarantee
that

1) all error signals are SGUUB; and
2) the leader–follower formation control can be achieved.
Proof: 1) Choose the Lyapunov function candidate as

E(t) =
1
2
ẑT (t)(L̃⊗ Im )ẑ(t) +

1
2

n∑

i=1

Θ̃T
ai(t)Θ̃ai(t)

+
1
2

n∑

i=1

Θ̃T
ci(t)Θ̃ci(t) (58)

where Θ̃ai(t) = Θ̂ai(t) − Θ∗, Θ̃ci(t) = Θ̂ci(t) − Θ∗. The time
derivative along (40), (55), and (56) is

Ė(t) =
n∑

i=1

êTi (t)
(
−kix̃i(t) + Θ̂T

f i(t)ϕf i (xi) − ẋd(t) + ui

)

+
n∑

i=1

Θ̃T
ai(t)

(
1
2
∂ϕi (êi)
∂êTi

êi − κaici
∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai

+
κcici

4
(
1 + ‖ξi(t)‖2

)
∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)ξTi (t)Θ̂ci(t)

⎞

⎠

+
n∑

i=1

Θ̃T
ci(t)

(

− κciξi(t)
1 + ‖ξi‖2

(
ξTi (t)Θ̂ci − (γ2

i ci − 1) ‖êi‖2

+ 2γiêTi (t)

⎛

⎝ciΘ̂T
f i(t)ϕf i (xi) − kicix̃i − biẋd −

∑

j∈Λ i

aij ˙̂xj

⎞

⎠

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2
)

. (59)
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According to Young’s and Cauchy–Buniakowsky–Schwarz
inequalities, there are the following facts:

− kiê
T
i (t)x̃i(t) ≤ ki ‖êi(t)‖2 +

ki
4
‖x̃i(t)‖2 ,

êTi (t)Θ̂T
f i(t)ϕf i (xi) ≤

1
2
‖êi(t)‖2 +

1
2

∥
∥
∥Θ̂T

f i(t)ϕf i
∥
∥
∥

2
,

− êTi (t)ẋd(t) ≤ 1
2
‖êi(t)‖2 +

1
2
‖ẋd(t)‖2 . (60)

Inserting the above-mentioned inequalities and control law (52)
into (59), we obtain

Ė(t) ≤ −
n∑

i=1

(γi − ki − 1) ‖êi‖2 +
n∑

i=1

(

−1
2
êTi
∂T ϕi (êi)
∂êi

Θ̂ai

+
1
2
Θ̃T
ai

∂ϕi (êi)
∂êTi

êi − κaiciΘ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

+
κcici

4
(
1 + ‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)ξTi Θ̂ci(t)

⎞

⎠

+
n∑

i=1

Θ̃T
ci(t)

(

− κciξi

1 + ‖ξi‖2

(
ξTi Θ̂ci(t) − (γ2

i ci − 1) ‖êi‖2

+ 2γiêTi

⎛

⎝Θ̂T
f i(t)ϕf i (xi) − kici x̃i − biẋd −

∑

j∈Λ i

aij ˙̂xj

⎞

⎠

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2
)

+
n∑

i=1

(
ki
4
‖x̃i‖2 +

1
2
‖ẋd‖2

+
1
2

∥
∥
∥Θ̂T

f i(t)ϕf i (xi)
∥
∥
∥

2
)

. (61)

Based on the fact that Θ̃ai(t) = Θ̂ai(t) − Θ∗
i , there are the fol-

lowing equations:

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

êi − êTi (t)
∂T ϕi (êi)
∂êi

Θ̂ci = −êTi
∂T ϕi (êi)
∂êi

Θ∗
i ,

− κaiciΘ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) = −κaici
2

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t) − κaici
2

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) +
κaici

2
Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ∗
i .

Substituting the above-mentioned equations into (61) yields

Ė(t) ≤ −
n∑

i=1

(γi − ki − 1) ‖êi‖2 − 1
2

n∑

i=1

êTi
∂T ϕi (êi)
∂êi

Θ∗
i

−
n∑

i=1

κaici
2

Θ̃T
ai

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai −
n∑

i=1

κaici
2

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) +
n∑

i=1

κcici

4
(
1 + ‖ξi‖2

)

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)ξTi (t)Θ̂ci(t) +
n∑

i=1

Θ̃T
ci(t)

(

− κciξi(t)
1 + ‖ξi(t)‖2

(
ξTi Θ̂ci(t) − (γ2

i ci − 1) ‖êi‖2 + 2γiêTi (t)

⎛

⎝Θ̂T
f i(t)ϕf i (xi) − kici x̃i − biẋd −

∑

j∈Λ i

aij ˙̂xj

⎞

⎠

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2
)

+
n∑

i=1

(
ki
4
‖x̃i(t)‖2 +

1
2
‖ẋd(t)‖2

+
1
2

∥
∥
∥Θ̂T

f i(t)ϕf i(xi)
∥
∥
∥

2
+
κaici

2
Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ∗
i

)

.

(62)

According to (50), the following equation can be obtained:

− (γ2
i ci − 1) ‖êi(t)‖2 + 2γiêTi (t)

(
ciΘ̂T

f i(t)ϕf i (xi) − kicix̃i

−biẋd(t) −
∑

j∈Λ i

aij ˙̂xj (t)

⎞

⎠ = −ξTi (t)Θ∗
i −

ci
2

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) +
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

− εi(t). (63)

Applying (63) and the fact that

− 1
2
êTi (t)

∂T ϕi (êi)
∂êi

Θ∗
i ≤ ‖êi‖2 +

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

(64)

(62) can be rewritten as

Ė(t) ≤ −
n∑

i=1

(γi − ki − 2) ‖êi‖2 −
n∑

i=1

κaici
2

Θ̃T
ai

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai −
n∑

i=1

κaici
2

Θ̂T
ai

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai

+
n∑

i=1

κcici

4
(
1 + ‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

ξTi (t)Θ̂ci(t) +
n∑

i=1

Θ̃T
ci(t)

(

− κciξi(t)
1 + ‖ξi(t)‖2

(
ξTi (t)Θ̃ci(t)

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2

− ci
2

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) +
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

− εi

))

+
n∑

i=1

(
ki
4
‖x̃i‖2
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+
1
2

∥
∥
∥Θ̂T

f i(t)ϕf i(xi)
∥
∥
∥

2
+
κaici + 2

2

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

+
1
2
‖ẋd‖2

)

. (65)

Using the fact that

ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2

− ci
2

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

=
ci
4

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

− ci
4

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t) (66)

(65) can be rewritten as

Ė(t) ≤ −
n∑

i=1

(γi − ki − 2) ‖êi(t)‖2 −
n∑

i=1

κaici
2

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t) −
n∑

i=1

κci

1 + ‖ξi‖2 Θ̃T
ci(t)ξiξ

T
i Θ̃ci(t)

+
n∑

i=1

κcici

4
(
1 + ‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)ξTi Θ̂ci

−
n∑

i=1

ciκci

4
(
1 + ‖ξi‖2

) Θ̃T
ci(t)ξiΘ̃

T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai

+
n∑

i=1

ciκci

4
(
1 + ‖ξi‖2

) Θ̃T
ci(t)ξiΘ

∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t)

+
n∑

i=1

κci

1 + ‖ξi‖2 Θ̃T
ci(t)ξiεi(t) −

n∑

i=1

κaici
2

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) +
n∑

i=1

(
ki
4
‖x̃i(t)‖2 +

1
2

∥
∥
∥Θ̂T

f iϕf i(xi)
∥
∥
∥

2

+
1
2
‖ẋd‖2 +

κaici + 2
2

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2
)

. (67)

Substituting the facts that

n∑

i=1

κcici

4
(
1 + ‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)ξTi Θ̂ci(t)

−
n∑

i=1

ciκci

4
(
1 + ‖ξi‖2

) Θ̃T
ci(t)ξiΘ̃

T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

=
n∑

i=1

ciκci

4
(
1+‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

Θ∗T
i ξi

∂T ϕi (êi)
∂êi

Θ̂ai(t),

κci

1 + ‖ξi‖2 Θ̃T
ci(t)ξiεi(t) ≤

κci

2(1 + ‖ξi‖2)
Θ̃T
ci(t)ξiξ

T
i Θ̃ci(t)

+
κci

2(1 + ‖ξi‖2)
ε2i (t)

into (67) yields

Ė(t) ≤ −
n∑

i=1

(γi − ki − 2) ‖êi(t)‖2 −
n∑

i=1

κaici
2

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t) −
n∑

i=1

κci

2
(
1 + ‖ξi‖2

) Θ̃T
ciξiξ

T
i Θ̃ci

+
n∑

i=1

ciκci

4
(
1 + ‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

Θ∗T
i ξi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

+
n∑

i=1

ciκci

4
(
1 + ‖ξi‖2

) Θ̃T
ci(t)ξiΘ

∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t)

−
n∑

i=1

κaici
2

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) + ψe(t) (68)

where

ψe(t) =
n∑

i=1

(
ki
4
‖x̃i(t)‖2 +

1
2
‖ẋd(t)‖2

+
κci

2(1 + ‖ξi(t)‖2)
ε2i (t) +

1
2

∥
∥
∥Θ̂T

f i(t)ϕf i
∥
∥
∥

2

+
(
1 +

κaici
2

)∥∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2
)

.

Using Young’s and Cauchy–Buniakowsky–Schwarz inequal-
ities, we obtain the following results:

κcici

4
(
1 + ‖ξi(t)‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

Θ∗T
i ξi(t)

∂T ϕi (êi)
∂êi

Θ̂ai(t)

≤ ci
32

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

Θ∗T
i ξi(t)ξTi (t)Θ∗

i

∂T ϕi (êi)
∂êi

Θ̃ai(t)

+
κ2
cici
2

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t),

κcici

4
(
1 + ‖ξi(t)‖2

) Θ̃T
ci(t)ξi(t)Θ

∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t)

≤ ci

32
(
1 + ‖ξi(t)‖2

) Θ̃T
ci(t)ξi(t)Θ

∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ∗
i ξ
T
i (t)Θ̃ci(t) +

κ2
cici
2

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t).
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Inserting the above-mentioned facts into (68) yields

Ė(t) ≤ −
n∑

i=1

(γi − ki − 2) ‖êi‖2 −
n∑

i=1

(
κaici

2
− κ2

cici
2

− ci
32

Θ∗T
i ξi(t)ξTi (t)Θ∗

i

)
Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t)

−
n∑

i=1

1
(
1 + ‖ξi‖2

)

(
κci
2

− ci
32

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ∗
i

)

Θ̃T
ci(t)ξiξ

T
i Θ̃ci(t) −

n∑

i=1

(
κaici

2
− κ2

cici
2

)

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) + ψe(t). (69)

Make the design parameters to satisfy the following conditions:

γi ≥ ki + 2, κci ≥ ci
16

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ∗
i ,

κai ≥ κ2
ci +

ζi
16

Θ∗T
i Θ∗

i . (70)

Based on the PE condition (see Assumption 1), (69) can be
written as

Ė(t) ≤ −
n∑

i=1

(γi − ki − 2) ‖êi(t)‖2 −
n∑

i=1

(
κaici

2
− κ2

cici
2

−ζici
32

Θ∗T
i Θ∗

i

)

λmin
i Θ̃T

ai(t)Θ̃ai(t) −
n∑

i=1

(
κciςi

2
− λmax

i ςici
32

Θ∗T
i Θ∗

i

)
Θ̃T
ci(t)Θ̃ci(t) + ψe(t) (71)

where λmax
i and λmin

i are the maximum and minimum eigen-

values of ∂ϕi (ê i )
∂ êTi

∂ T ϕi (ê i )
∂ êi

.

Let γ = min
i=1,...,n

{γi − ki − 2}, κa = min
i=1,...,n

{(κa i ci2 − κ2
c i ci
2

− ζi ci
32 Θ∗T

i Θ∗
i )λ

min
i }, κc = min

i=1,...,n
{κc i ςi2 − λm a x

i ςi ci
32 Θ∗T

i Θ∗
i },

and βe = sup
t≥0

{ψe(t)}, (71) can be redescribed as

Ė(t) ≤ −γ
n∑

i=1

‖êi(t)‖2 − κa

n∑

i=1

Θ̃T
ai(t)Θ̃ai(t)

− κc

n∑

i=1

Θ̃T
ci(t)Θ̃ci(t) + βe. (72)

Furthermore, according to (80) (in Remark 1), the above-
mentioned inequality can be written as

Ė(t) ≤ − γ

λmax
ẑT (t)(L̃⊗ Im )ẑ(t) − κa

n∑

i=1

Θ̃T
ai(t)Θ̃ai(t)

− κc

n∑

i=1

Θ̃T
ci(t)Θ̃ci(t) + βe ≤ −αeE(t) + βe (73)

where αe = min{ 2γ
λm a x

, 2κa , 2κc}.

According to Lemma 4, there is the fact that

≤ e−αe tE(0) +
βe
αe

(
1 − e−αe t

)

From the above-mentioned inequality, it can be concluded
that all error signals zi(t), W̃ci(t), W̃ai(t), i = 1, . . . , n are
SGUUB.

2) Let Ez (t) = 1
2 ẑ

T (t)(L̃⊗ Im )ẑ(t), its time derivative
along (40) is

Ėz (t) =
n∑

i=1

(
−kiêTi (t)x̃i(t) + êTi (t)Θ̂T

f i(t)ϕf i (xi)

−êTi (t)ẋd(t) + êTi (t)ui
)
. (74)

Performing the control (52) to the above-mentioned equation
yields

Ėz (t) = −
n∑

i=1

γi ‖êi(t)‖2 +
n∑

i=1

(
êTi (t)Θ̂T

f i(t)ϕf i (xi)

−kiêTi (t)x̃i(t) − 1
2
êTi
∂T ϕi (êi)
∂êi

Θ̂ai(t) − êTi (t)ẋd

)

. (75)

Applying (60) and the following inequality

−1
2
êTi (t)

∂T ϕi (êi)
∂êi

Θ̂ai(t) ≤ ‖êi(t)‖2 +
∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2

to (75) has

Ėz (t) ≤ −γ ‖ê(t)‖2 + ψz (t) (76)

where

ψz (t) =
n∑

i=1

(
1
2
‖ẋd‖2 +

ki
4
‖x̃i‖2 +

1
2

∥
∥
∥Θ̂T

f i(t)ϕf i (xi)
∥
∥
∥

2

+
∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2
)

.

From Theorem 1 and part 1, it can be concluded that all terms
of ψz (t) are bounded. Therefore, there exists a constant βz such
that ψz (t) ≤ βz . Furthermore, based on (80) (in Remark 1),
there is the following equation:

Ėz (t) ≤ − γ

λmax
ẑT (t)(L̃⊗ Im )ẑ(t) + βz

= −αzEz (t) + βz (77)

where αz = 2γ
λm a x

.
According to Lemma 4, the following result can be obtained:

Ez (t) ≤ e−αz tEz (0) +
βz
αz

(
1 − e−αz t

)
. (78)

The above-mentioned inequality implies that the tracking errors
can arrive at the desired accuracy by making αz large enough,
as a result, the desired control performance can be obtained. �

Remark 1: Since L̃ is a positive definite matrix in accordance
with Lemma 2, it has n positive eigenvalues that are denoted
by λ1 , λ2 , . . . , λn . Let χ1 , χ2 , . . . , χn denote the eigenvectors
associated with these eigenvalues. According to matrix theory,
χ1 , χ2 , . . . , χn can be chosen to be a set of orthogonal bases. Let
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Q = [χ1 , χ2 , . . . , χn ] ∈ Rn×n and P = diag{λ1 , λ2 , . . . , λn},
there are the facts that QT Q = QQT = In and L̃ = QT PQ.
Then the term ẑT (t)(L̃⊗ Im )ẑ(t) can be reexpressed as

ẑT (t)(L̃⊗ Im )ẑ(t) = ẑT (t)
(
(QT PQ) ⊗ Im

)
ẑ(t)

= ẑT (t)
(
(QT PQQT P−1QQT PQ) ⊗ Im

)
ẑ(t)

= ẑT (t)(L̃⊗ Im )T
(
(QT P−1Q) ⊗ Im

)
(L̃⊗ Im )ẑ(t)

= êT (t)
(
(QT P−1Q) ⊗ Im

)
ê(t). (79)

From the above-mentioned inequality, the following result can
be yielded:

λmin ‖ê(t)‖2 ≤ ẑT (t)(L̃⊗ Im )ẑ(t) ≤ λmax ‖ê(t)‖2 (80)

where λmin and λmax denote the minimum and maximum eigen-
values of QT P−1Q.

IV. SIMULATION EXAMPLE

In order to further demonstrate the effectiveness of the pro-
posed formation methods, a numerical multi-agent formation
consisting of four agents is carried out. In this example, the four
agents move on the two-dimensional plane and the multi-agent
is molded by the following dynamic:

ẋi(t) = −αixi(t) −
[

0.5xi1 cos2(βixi1)
xi2 − sin2(βixi2)

]

+ ui,

i = 1, 2, 3, 4 (81)

where αi=1,2,3,4 = 0.7,−3.1, 6.5,−11 and βi=1,2,3,4 =
0.5, 0.4,−5.5,−10, respectively. The initial positions
are xi=1,2,3,4(0) = [6, 6]T , [−6, 6]T , [6,−6]T , [−6,−6]T ,
respectively.

The desired reference signal is

xd(t) = [2 sin (0.7t), 2 cos (0.7t)]T (82)

of which the initial state is xd(0) = [−1, 1]T . The formation
pattern is ηi=1,2,3,4 = [4; 4]T , [−4; 4]T , [4;−4]T , [−4;−4]T .

The adjacency matrix is

A =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎤

⎥
⎥
⎦ .

The connection weight matrix between agents and leader is
B = diag {1, 0, 0, 0}.

The identifier design: The fuzzy membership functions for
agent i, i = 1, 2, 3, 4, are chosen as

μiF j (xi) = exp

(

−
∥
∥xi − [6, 6]T + [2j − 1, 2j − 1]T

∥
∥2

2

)

j = 1, . . . , 6. (83)

Then the fuzzy basis function vector is obtained as ϕf i(xi) =

[ϕ1
f i(xi), . . . , ϕ

6
f i(xi)], where ϕjf i(xi) =

μi
F j (xi )

∑ 6
j = 1 μ

i
F j (xi )

, j =

1, . . . , 6. Based on (23), the adaptive identifier is built in

Fig. 1. Multi-agent formation performance.

the following by choosing the design parameters ki=1,2,3,4 =
24, 20, 18, 16; Γi=1,2,3,4 = 0.4I6 ; and σi=1,2,3,4 = 0.6:

˙̂xi(t) = −kix̃i(t) + Θ̂T
f i(t)ϕf i (xi) + ui,

˙̂Θf i(t) = 0.4
(
−ϕf i(xi)x̃Ti (t) − 0.6Θ̂f i(t)

)
(84)

where

˙̂Θf i(0) =
[

0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1

]T
.

The optimized formation control design: The fuzzy member-
ship functions for the distributed controller of agent i, i =
1, 2, 3, 4, are chosen as

μiF j (ei) = exp

(

−
∥
∥ei − [6, 6]T + [2j − 1, 2j − 1]T

∥
∥2

2

)

j = 1, . . . , 6. (85)

The fuzzy basis function vector is yielded as ϕi(ei) =

[ϕ1
i (ei), . . . , ϕ

6
i (ei)], where ϕji (ei) =

μi
F j (ei )

∑ 6
j = 1 μ

i
F j (ei )

. For the

actor and critic adaptive laws (55) and (56), the design
parameters are chosen as κai = 0.1 and κci = 0.2, i =
1, 2, 3, 4; the initial values for adaptive adjusting vec-
tors are Θ̂ai(0) = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]T and Θ̂ci(0) =
[0.2, 0.2, 0.2, 0.2, 0.2, 0.2]T , i = 1, 2, 3, 4. The control pa-
rameters are chosen as γi=1,2,3,4 = 26, 24, 22, 20, respectively.
According to (52), the controller is described in the following:

ui = −γiêi(t) − 1
2
∂T ϕi (êi)
∂êi

Θ̂ai(t), i = 1, 2, 3, 4. (86)

Simulation results are shown in Figs. 1–6. Fig. 1 displays the
multi-agent formation performance. Fig. 2 shows the identifier
errors. The boundedness of identifier parameter matrices, critic,
and actor parameter vectors is displayed in Figs. 3–5. The cost
functions are shown in Fig. 6. The simulation results further
demonstrate that the proposed optimized formation scheme can
guarantee the control objective to be achieved.
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Fig. 2. Norm ‖x̃i‖ , i = 1, 2, 3, 4, of the adaptive identifier error.

Fig. 3. Norm
∥
∥Θ̂f i

∥
∥ , i = 1, 2, 3, 4, of the identifier parameter matrix.

Fig. 4. Norm
∥
∥Θ̂a i

∥
∥ , i = 1, 2, 3, 4, of the actor parameter vector.

Fig. 5. Norm
∥
∥Θ̂c i

∥
∥ , i = 1, 2, 3, 4, of the critic parameter vector.

Fig. 6. Cost function ri (xi , ui ), i = 1, 2, 3, 4.

V. CONCLUSION

The paper proposes an optimized control scheme for leader–
follower formation of nonlinear multi-agent systems with un-
known dynamics. In order to achieve the control objective, the
identifier–actor–critic RL algorithm is employed based on the
universal approximation property of FLS, in which the identifier
is utilized to estimate the unknown dynamic of the multi-agent
system; the actor FLS is utilized to carry out the control be-
havior; and the critic FLS is utilized to evaluate the optimizing
performance and return the evaluation to the actor training. Ac-
cording to the Lyapunov stability theory, it is proven that the
proposed scheme can achieve the control objective. Simula-
tion results display the effectiveness of the proposed control
approach.
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