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Previous approaches to texture analysis and segmentation use multichannel filtering by applying a set of filters in the frequency
domain or a set of masks in the spatial domain. This paper presents two new texture segmentation algorithms based on multi-
channel filtering in conjunction with neural networks for feature extraction and segmentation. The features extracted by Gabor
filters have been applied for image segmentation and analysis. Suitable choices of filter parameters and filter bank coverage in the
frequency domain to optimize the filters are discussed. Here we introduce two methods to optimize Gabor filter bank. First, a
Gabor filter bank with a flat response is implemented and the optimal feature dimension is extracted by competitive networks.
Second, a subset of Gabor filter bank is selected to compose the best discriminative filters, so that each filter in this small set
can discriminate a pair of textures in a given image. In both approaches, multilayer perceptrons are employed to segment the
extracted features. The comparisons of segmentation results generated using the proposed methods and previous research using
Gabor, discrete cosine transform (DCT), and Laws filters are presented. Finally, the segmentation results generated by applying
the optimized filter banks to textured images are presented and discussed.

Keywords and phrases: filter bank, Gabor, DCT, multilayer perceptron, competitive network, texture segmentation.

1. INTRODUCTION

Texture segmentation and analysis is an important aspect of
pattern recognition and digital image processing. In image
analysis, textures have been used to perform scene segmenta-
tion for object and region recognition, surface classification,
and shape recognition. Texture segmentation involves accu-
rately partitioning an image into sections according to the
textured regions or recognizing the borders between differ-
ent textures in the scene or image.

Several researchers in this field [1, 2, 3, 4, 5, 6] have pro-
posed texture segmentation and analysis methods using a fil-
ter bank model which is based on the human vision system’s
(HVS) unique capabilities for texture segmentation [7, 8]. In
this model, a set of filters in the frequency domain (or a set
of masks in the spatial domain) are applied in parallel to an
input image which decomposes it into a set of filtered images.
The set of filtered images are used directly as feature images,

or they are processed and/or combined to extract the fea-
tures. Eventually extracted features are used for the segmen-
tation of the input image. Each individual filter in the bank is
designed to focus on a specific local spatial region and a spe-
cific range of frequency to make spatial/spatial-frequency de-
composition possible. The joint spatial/spatial-frequency de-
composition, unlike Fourier analysis, considers the local fre-
quency variations that vary with position in the image. Tex-
tured images that are encoded in narrow spatial frequencies
and orientation channels can be recognized and segmented
by filtered images that carry out the texture features. These
features describe local spatial-frequencies and orientations to
which the channels are tuned. Therefore, texture can be re-
garded as carrying region information and the local structure
of a texture can be characterized by the frequencies and ori-
entations of the carrier that is contained in the channel out-
puts.
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There are several suitable ways to implement filter banks
which can be used for textured images. From a practical point
of view, some filters may be more useful for specific texture
segmentation tasks but may not be suitable for others. Ex-
ponentially and/or sinusoidally modulated Gaussian filters,
also known as Gabor filters, have proven to be very useful
for texture analysis [1, 2, 9, 10]. While other filter banks can
perform joint spatial/spatial-frequency decomposition, a fil-
ter bank using a Gabor base function is one of the most at-
tractive. This set of filters has an optimal localization in the
joint spatial/spatial-frequency domain according to the un-
certainty principle [1, 2]. These selective bandpass filters with
different radial spatial frequencies and orientations have an
optimum resolution in the time and frequency domains that
resembles the simple visual cortical cell characteristics [7, 8].

This paper describes two texture segmentation ap-
proaches using the general multichannel decomposition ap-
proach and employing neural networks both for feature re-
duction and classification. By applying a Gabor filter bank to
the input image with suggested radial frequencies and orien-
tations, a set of filtered images is generated. The multichan-
nel decomposition is accomplished by estimating the local
energy in the filter outputs. Having five radial frequencies
and eight orientations generates forty feature images. To re-
duce the features and obtain an optimal feature dimension,
we trained a competitive network (CN) with an unsuper-
vised learning method. The weight vectors of the trained net-
work are used to reduce the feature dimension. Eventually
the resultant reduced features are used to train a multilayer
perceptron with a supervised learning method to segment
the input image.

This paper is organized as follows. In Section 2, previ-
ous works using Gabor filter banks and the multichannel de-
composition by Gabor filters are presented. Section 3 gives a
detailed description of the first proposed method using Ga-
bor filter bank in conjunction with a competitive network
(GCN).

In Section 4, the second proposed method using a subset
of Gabor filter bank is explained. In Sections 5 and 6, both
the results and conclusion are presented.

2. GABOR FILTER BANK AND MULTICHANNEL
DECOMPOSITION

Considerable research has been performed using Gabor fil-
ters for texture segmentation and analysis [1, 3, 4, 9, 11]. A
brief overview of the previous work is presented in this sec-
tion as following.

2.1. Previous works using Gabor filter bank

The research involving the use of Gabor filters for texture seg-
mentation can be divided into three major disciplines:

(1) investigating the best frequencies and orientations
(bandwidth) according to the characteristics of a specific tex-
tured image;

(2) inventing robust feature extraction and feature reduc-
tion methods;

(3) employing the best classification and segmentation
methods to devote to the optimal extracted features.

Bovik et al. [1] have proposed a computational approach
for analyzing visible textures. In their method, boundaries
are detected between textures by comparing the channel am-
plitude responses and detecting discontinuities in the texture
phase by locating large variations in the channel phase re-
sponses. Dunn and Higgins have investigated the optimal
Gabor filters [2] and argued that Gabor filter outputs can
be presented as a Rician model. They have developed an al-
gorithm to select optimal filter parameters to discriminate
texture pairs. Jain and Farrokhnia proposed a filter selection
method [3] based on reconstruction of the input image from
the filtered images. They also proposed the optimum radial
frequencies and orientations for different channels. These
have been used widely by many researchers. Unser and Eden
described an unsupervised texture segmentation method [9]
using the Karhunen-Loeve transform on the resulting fea-
tures of Gabor filters to reduce the feature vector dimension.
Weldon et al. presented a method [10] to design a single Ga-
bor filter for multitextured image segmentation. Clausi and
Jernigan investigated and compared different techniques [11]
used to extract texture features and Jain and Karu proposed
a neural network texture classification method [12] as a gen-
eralization of the multichannel filtering method. Despite all
the research on optimizing Gabor filters for texture segmen-
tation, this area is still developing rapidly. Since there are sev-
eral unknowns in Gabor filter implementation, a more accu-
rate selection from a wide range of values for each parameter
and combination of these values have a crucial importance
in designing a filter bank for a specific texture segmentation
problem. On the other hand, despite its very attractive fea-
tures, a Gabor filter bank does not provide a flat frequency
response, and some frequency bands are not covered ade-
quately. Hence, implementing a Gabor filter bank with a flat
response not only would utilize the attractive features of a
Gabor filter bank, but also would provide better segmenta-
tion results by including the usually missed frequency bands.
The proposed algorithm is implemented to optimize Gabor
filter bank for texture segmentation and is successfully ap-
plied to synthetic texture images.

2.2. Multichannel decomposition
by Gabor filter bank

A typical Gabor filter in the spatial and the spatial-frequency
domain is depicted in Figure 1. A Gabor base function is a
Gaussian function modulated with an exponential or sinu-
soidal function that is defined in terms of the product of a
Gaussian and an exponential. Two-dimensional Gabor func-
tions h(x, y) can be written as

h(x, y, θ) = g(x, y) exp
(

2π j f0xθ
)

, (1)

where

g(x, y) = 1

2πσxσy
· exp
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Figure 1: A typical Gabor filter in (a) spatial domain and (b) spatial-frequency domain.

and its frequency response H(u, v) is

H(u, v) = G
(

u− f0, v
)

= exp
{

− 2π2
[

(u− f0)2σ2
x + v2σ2

y

]}

,

(3)

where f 2
0 = u2

0 + v2
0 , θ = tan−1(v0/u0), xθ = x cos θ + y sin θ,

and yθ = −x sin θ + y cos θ.
Gabor functions are bandpass filters which are Gaussian,

centered on ( f0, θ) in the spatial-frequency domain. The pa-
rameters f0, θ, σx, and σy determine the subband Gabor fil-
ter; f0 and θ are center frequency and orientation and σx and
σy are the bandwidths of the filter in the x and y directions
[13]. Equation (1) defines a complete Gabor function con-
sisting of both real and imaginary (or even and odd) compo-
nents. Rotation by θ in the spatial domain (x-y plane) or in
the spatial-frequency domain (u-v plane) provides selective
arbitrary orientation for different channels. We can imple-
ment a Gabor filter bank by using only even-symmetric or
real components as suggested by Jain and Farrokhnia [3] and
can be represented by

h(x, y) = g(x, y) · cos
{

2π f0x
}

, (4)

and H(u, v) is

H(u, v) = G
(

u− f0, v
)

+ G
(

u + f0, v
)

, (5)

and is composed of two Gaussians in the spatial-frequency
domain compared with one Gaussian in the complex ver-
sion.

General multichannel filtering methods as shown in
Figure 2 consist of three major stages: usage of the filter bank
to generate filtered images, local energy estimation for fea-
ture extraction, and classification of extracted features into
different regions for segmentation [14]. In the first step, a
textured input image is decomposed into filtered images.
Typically, in the second stage, a local energy function con-
sisting of nonlinearity and smoothing is applied on the fil-
tered images (the output of the Gabor filter bank) for feature
extraction [1, 3, 10, 11]. The most well-known nonlinearity

Segmented image

Classification

Smoothing
[

Gaussian
LPF

]

Nonlinearity

[square]

Gabor filter bank

Input image

Local
energy

estimation

Figure 2: Multichannel decomposition process.

functions are (1) sigmoid function, (2) rectifying, (3) square
function, (4) magnitude response, and (5) real part. In this
step, each channel corresponding to a different filter is tuned
to a different radial frequency or orientation to capture local
characteristics of different textures in the input image such
as spatial frequency, edge intensity, or direction [15]. After
the second stage, a set of feature images or a feature vector
corresponding to each pixel in the input image is generated.
The dimension of feature vectors is equal to (or multiplied by
an integer) the number of filters in the filter bank. Eventually
the feature vectors should be classified and assigned to dif-
ferent textures. There are several classification methods [16]
to accomplish the segmentation task such as Bayesian classi-
fier, nearest neighbor classifier, multilayer perceptron (MLP),
Fisher linear discriminant (FLD), and learning vector quan-
tization (LVQ).
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Figure 3: GCN method.

3. GABOR FILTER BANK IN CONJUNCTION
WITH COMPETITIVE NETWORK (GCN)

The first proposed method (GCN) as shown in Figure 3 con-
sists of the following stages: multichannel decomposition,
high- and low-frequency component extraction, computing
features, feature vector reduction, and classification by mul-
tilayer perceptron. The detail of each stage is described in this
section.

3.1. Multichannel decomposition

This stage consists of filtering by a Gabor filter bank, applying
a nonlinearity function, and smoothing the results. We used
three sets of Gabor filters composed of 20, 30, and 40 filters.
For all sets, the same five radial frequencies suggested by Jain
and Farrokhnia [3], that is, 4

√
2, 8
√

2, 16
√

2, 32
√

2, 64
√

2, are
used.

The radial frequency bandwidth is one octave, thus the
frequency difference of f1 and f2 is given by log2( f2/ f1), and
is equal to 1. In the first bank for each radial frequency, four
orientations 0◦, 45◦, 90◦, and 135◦ are used to generate the
total number of 20 channels. In the second bank, six orien-
tations 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦ are used that give a
bank of 30 filters, and the third one composed of 40 filters is
obtained by eight orientations for each radial frequency, that
is, 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, and 157.5◦.

The filter banks consisting of 20 and 30 filters using 45◦

and 30◦ orientations, respectively, were used widely in pre-
vious research [3, 4, 11, 12]. Here we introduce the third fil-
ter bank using 22.5◦ angular bandwidths and orientations.
In several experiments with a variety of different textures us-
ing all three filter banks, we computed the preserved energy
in the filtered images. By comparing and sorting the filtered
images according to the preserved energies, we observed that
by dividing the angular bandwidth by two, that is, 22.5◦ in
place of 45◦ and covering the frequency domain by this angu-

lar bandwidth, not only could we catch the textures with 45◦

orientations, that is, 0◦, 45◦, 90◦, and 135◦, but also we could
better discriminate and classify textures with 22.5◦ orienta-
tions, that is, 0◦, 22.5◦, 67.5◦, 112.5◦, and 157.5◦. It was no-
ticed that for some textures, maximum energy is preserved by
filters with 45◦ orientations (and 22.5◦ angular bandwidths)
and filters with 22.5◦ orientations (and 22.5◦ angular band-
widths). By applying 22.5◦ orientations for different radial
frequencies and sorting the filtered images regarding pre-
served energies, we observed that some of the filtered images
with these orientations are among the ten best filters with re-
spect to the preserved energy of the original image. Hence,
for this filter bank, we used eight equally spaced orientations
0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, and 157.5◦ and to en-
sure proper coverage of the spatial-frequency domain, we set
the angular bandwidth to 22.5◦. Orientations and radial fre-
quencies of the ten best filters using the three mentioned fil-
ter banks are presented in Table 1. The best filters are selected
and sorted according to the preserved energies. The results
are obtained by applying three Gabor filter banks to a com-
plex synthetic textured image depicted in Figure 4.

In the second step, a square function is applied to achieve
nonlinearity and it causes the sinusoidal modulations in the
output of a filter bank to be transformed to a square modula-
tion. To smooth out the fluctuations in the specific texture or
noise in the image “Im(x, y),” a Gaussian lowpass filter is ap-
plied to the output of the filter bank. The size of the smooth-
ing function is determined according to the size of the Gabor
bandpass filter. The impulse response of the Gaussian filter is

h(x) = 1√
2πσ

· exp

{

− 1

2

(

x2

σ2

)}

, (6)

where σ = 1/2
√

2 f0 and f0 is the radial frequency of the
bandpass Gabor filter.

3.2. High- and low-frequency component extraction

As depicted in Figure 5, neither this filter bank having 40 Ga-
bor filters nor the two other Gabor filter banks with 20 and
30 filters completely cover the corners of the frequency do-
main along the diagonals. The coverage of the Gabor filter
banks are not perfectly flat, thus there are some regions that
are not covered and as a result do not have a flat response, in-
cluding very high-frequency and very low-frequency regions.
In the proposed method, the spatial implementation of the
Gabor filter bank is optimized by considering the diagonal
high-frequency and very low-frequency components.

The low frequency components that are not included
in the Gabor filter bank are obtained by (4) where radial
frequency f0 is equal to zero and concludes a Gaussian low-
pass filter as follows:

h2(x, y) = g(x, y) · cos
{

2π f0x
}

= g(x, y). (7)

To obtain the optimized filter bank as depicted in Figure 6,
the high-frequency components are computed by using the
Gabor filter bank and Gaussian lowpass filter.
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Table 1: Radial frequencies and orientations of the 10 best filters of the 3 filter banks.

Filter bank Radial frequency and orientation of 10 best filters

1: angular band width = 45◦ 64
√

2 & 90◦, 64
√

2 & 135◦, 64
√

2 & 0◦, 64
√

2 & 45◦, 32
√

2 & 90◦,
32
√

2 & 0◦, 32
√

2 & 135◦, 32
√

2 & 45◦, 16
√

2 & 0◦, 16
√

2 & 45◦

2: angular band width = 30◦ 64
√

2 & 90◦, 64
√

2 & 150◦, 64
√

2 & 0◦, 64
√

2 & 120◦, 64
√

2 & 60◦,
32
√

2 & 90◦, 64
√

2 & 30◦, 32
√

2 & 0◦, 32
√

2 & 60◦, 32
√

2 & 150◦

3: angular band width = 22.5◦ 64
√

2 & 90◦, 64
√

2 & 157.5◦, 64
√

2 & 135◦, 64
√

2 & 67.5◦, 64
√

2 & 112.5◦,
64
√

2 & 0◦, 32
√

2 & 90◦, 64
√

2 & 45◦, 64
√

2 & 22.5◦, 32
√

2 & 67.5◦

Figure 4: Textured image composed of Asphalt.0000, Misc.0002,
Grass.0002, and Concrete.0001 selected from MeasTex Image Tex-
ture Database.

Each high-frequency component is computed by

hd(x, y) = Im(x, y)∗ δ(x, y)− h2(x, y)∗ Im(x, y)

−
L
∑

1

h1(x, y)∗ Im(x, y),
(8)

where hd(x, y) is the diagonal high-frequency component
and is equal to h(x, y) ∗ Im(x, y), h1 is the Gabor filter im-
pulse response, L is the Number of filters in the filter bank,
and h2 is the Gaussian lowpass impulse response.

3.3. Computing features

To compute the feature vector for each pixel of the input im-
age, the mean and variance are computed over a neighbor-
hood window of the pixel [17]. Mean and variance are reli-
able attributes of textures and have small variations over the
same texture when the window size is accurately selected to
cover the texture periodicity. According to the periodicity of
the textures in the input image, the size of the neighborhood
window could change and be determined by the user. For tex-
tured images with smaller periodicity, the window centered
by the regarded pixel would be smaller and would select the
larger window for the textures with larger periodicity. In the
experiments, window sizes from as small as 4 by 4 to as big as
32 by 32 pixels are used depending on texture periodicity.

3.4. Feature vector reduction by
competitive networks

Grouping several neurons in a single layer [18, 19] forms a
competitive network. Each neuron is a single processing ele-
ment that shares its processing functions with other neurons

Figure 5: A bank of 40 Gabor filters.

and responds to a group of input vectors in a different clus-
ter maximally. This layer of neurons can classify any input
vector, since the neuron with the strongest response for a
given input identifies the cluster to which the input vector
is most likely to belong. Since, for this layer there is no ex-
ternal judge to decide which neuron wins, the neurons must
decide this by themselves [18, 19] by using an unsupervised
learning method. This decision-making process needs com-
munication among all neurons in the layer.

To reduce the feature vector dimension a competitive
network is used. In the competitive layer the neurons are
distributed in order to recognize frequently presented input
vectors in an unsupervised manner. The competitive trans-
fer function accepts a net input for each neuron in the layer
and returns neuron outputs of 0 for all neurons except for the
winner, which outputs 1. In a competitive layer each neuron
competes to respond to an input vector p; the neuron whose
weight vector is closest to p gets the highest net input and,
therefore, wins the competition and outputs 1 and all other
neurons output 0.

In the training phase, the winner is moved closer to the
input by adjusting the weights of the winning neuron [18]
with the learning rule as shown by

∆w = λ(p −w), (9)

where p, w, and λ are an input vector, an input weight vector,
and a learning rate, respectively. Since this learning rule al-
lows the weights to learn the input vector, it is useful in recog-
nition applications. Thus, the neuron whose weight vector
is the closest to the input vector will be updated to be even
closer. As a result the winning neuron is more likely to win
the competition when a similar vector is provided, and less
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Figure 6: Optimized filter bank.

likely to win if a very different input vector is provided. Dur-
ing training, as more inputs are presented, each neuron in the
layer closest to a group of input vectors adjusts its weights to
more closely resemble the inputs. Eventually, every cluster of
similar input vectors will have a neuron that identifies the
presented vector if it belongs to the cluster and the competi-
tive network will categorize the input vectors.

To reduce the feature dimension in the GCN method, a
competitive network (CN) as depicted in Figure 7 is used.
The motivation to use competitive networks stems from the
previous research using LVQ for classification [4, 18]. LVQ
consists of one competitive layer and one linear layer, and it is
a supervised learning algorithm. LVQ describes the class bor-
ders by the nearest neighbor rule and its main applications
are in statistical pattern recognition and classification [18].
Despite using a hidden competitive layer, LVQ is restricted
by only learning linear relationships between quantized vec-
tors and desired output vectors. If the network could learn
the nonlinear relationships between the reduced dimension
vectors and desired outputs, improved segmentation results
would possibly be obtained .

On the other hand, applying the resultant weight vec-
tors of a competitive layer to the features prior to feeding
the classifier would reduce the dimensionality of feature vec-
tors as depicted in Figure 7 and faster segmentation would
result. In order to train CN, sample vectors are selected at
random among the extracted feature vectors obtained by the
Gabor filter bank in the previous step. After CN is trained,
the weight vectors of the layer are regarded as quantizing
mask coefficients. These coefficients are the optimum ex-
tracted features of the Gabor filter bank. To select the num-
ber of neurons in the network that is equal to the number of
the most important eigenvectors, 42 neurons (the total num-
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Figure 7: Feature reduction and classification by GCN method.

ber of possible eigenvectors) are selected as the initial value,
then the layer is trained with training samples and the clas-
sification error for the network is computed. By pruning the
neurons in the network, repeating the same approach, and
computing the classification error, the appropriate number
of neurons in the layer is chosen. In our competitive network
according to the classification error and dimension of quan-
tized feature vectors, 21 neurons are selected for CN as the
optimum number of neurons. After selecting the appropri-
ate number of neurons, the competitive layer will be trained
and the estimated eigenvectors (i.e., weight vectors of the net-
work) are obtained and regarded as quantizing mask coeffi-
cients. These coefficients are applied on the extracted feature
vectors by the Gabor filter bank. The resultant weight vectors
of a competitive layer are applied to the features prior to feed-
ing in the classifier and will reduce the dimensionality of fea-
ture vectors.

3.5. Classification by multilayer perceptron

A multilayer perceptron (MLP) has multiple layers with non-
linear transfer functions to learn the nonlinear relationships
between input and output vectors. Feedforward networks
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often have one or more hidden layers of sigmoid neurons fol-
lowed by an output layer [19]. The MLP is trained by adjust-
ing the weights using least-square error (LSE) that minimizes
the mean square error as shown by

E =
∑N

1

(

Rk −Ok

)2

N
. (10)

The total square error between the desired Rk class and the
actual output Ok is calculated for N neurons in output layer
K . To train the neural network, the gradient is determined
by using a backpropagation technique which involves per-
forming computations backwards through the network. Af-
ter the backpropagation network is trained properly, it typ-
ically provides reasonable answers when presented with in-
puts that it has never seen. Commonly, a new input vector
similar to past inputs used during training leads to an out-
put similar to correct values. A 3-layer perceptron, which
is used to accomplish the segmentation task, is depicted in
Figure 7. Our MLP uses the sigmoid transfer function in all
three layers. During training, randomly selected quantized
feature vectors are assigned to proper classes. Although there
are 42 filters in the filter bank, the quantized feature dimen-
sion is 21. After MLP is trained, input images will be seg-
mented by assigning quantized feature vectors to proper re-
gions.

CN and MLP are used in the proposed method for feature
dimension reduction and classification, respectively; there-
fore we need a two-stage training process. In the first stage, an
unsupervised learning using unlabeled samples is employed
to train the competitive network. As an efficient approach
to compute principle component analysis (PCA), the weight
vectors of the trained network are applied to the extracted
Gabor features before classification. In the second stage, a su-
pervised learning is employed to train the MLP, that is, clas-
sifier, by labeled samples. Although in this stage the same set
of training samples as of the first stage are used, the label of
each sample is also required to train MLP. Using labeled sam-
ples, MLP adjusts its weight vectors such that it can effectively
recognize all different classes (labels). Despite having two in-
dependent training stages, the classification performance of
MLP depends on how precise CN approximates PCA which
in turn depends on training samples and initialization of the
weight vectors.

4. ADAPTIVELY SELECTED GABOR FILTER BANK

The number of filters in a filter bank affects classification per-
formance and has a crucial importance. Much research has
been conducted to reduce the number of required filters in
the Gabor filter bank for segmentation. In this section, an al-
gorithm is presented to select an optimized subset of the Ga-
bor filter bank. The proposed method as depicted in Figure 8
consists of three stages: (1) image decomposition, (2) subset
filter selection, and (3) classification. The decomposition and
classification stages are the same as the first approach; hence
the second stage is explained in the following section.

Segmented image

Classification

Subset
Gabor filter bank

Gabor filter bank

Input image

Max

{

Ei
E j

}

For i = 1, 2, . . . , T − 1

j = i + 1, i + 2, . . . , T

Figure 8: Adaptive filter selection.

4.1. Selection of a subset bank of the Gabor filters

In this approach, a set of Gabor filters are selected as the best
Gabor filters, so that each single Gabor filter in this small set
of selected Gabor filters can discriminate a pair of textures in
an image with multiple textures. Assume that an input image
I consists of T different textural classes Tc, c = 1, 2, . . . ,T ,
and let Ic, a subimage of I , be a training sample of the texture
class Tc. Furthermore, assume that Ei is the preserved energy
of the texture class i. The optimal Gabor filter set is selected
based on the energy ratio of each distinct texture pair Ti and
T j , i �= j:

Ei
E j

, i = 1, 2, . . . ,T − 1, j = i + 1, i + 2, . . . ,T. (11)

Therefore, the optimal filter set is given by

Maximum

{

Ei
E j

}

, i=1, 2, . . . ,T − 1, j= i + 1, i + 2, . . . ,T.

(12)

In this approach, the best Gabor filters are selected so that
the corresponding energy ratio is maximum for each pair of
distinct textures in a multiple-textured image. For instance,
having an image composed of two different texture classes
Ti = 1 and T j = 2, the filter set includes only one filter to
discriminate these two textures and has the maximum energy
ratio as Maximum{E1/E2}.

To choose the best filter by obtaining the maximum en-
ergy ratio, the energy ratio Ei/E j is calculated for all 40 Gabor
filters with 22.5◦ angular bandwidth and the following radial
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frequencies:

4
√

2, 8
√

2, 16
√

2, 32
√

2, 64
√

2. (13)

The 40 obtained energy ratios are sorted accordingly and the
filter which has the maximum ratio among them is selected
for each pair of textures:

{

E1

E2

}

f
, f = 1, 2, . . . , 40, (14)

{

E1

E2

}

i
>

{

E1

E2

}

j
> · · · >

{

E1

E2

}

k
, (15)

where, i, j, k = 1, 2, . . . , 40 and i �= j, i �= k, j �= k.
The energy ratio Ei/E j of each texture pair Ti and T j ,

i �= j, for an image containing T different textures is cal-
culated on each filtered image and sorted in decreasing order
so that the maximum ratio is achieved according to (12). The
larger the value of ratio Ei/E j , the better the discrimination
of distinct texture pair i and j. Thus the best discriminative
filter for each pair of different textures according to the max-
imum energy ratio is selected to be included in the subset
filter bank:

findex ∈ SFB {Subset Filter Bank},

if

{

Ei
E j

}

index

>

{

Ei
E j

}

k

∀k ∈ 1, 2, . . . , 40, index �= k,

for i = 1, 2, . . . ,T − 1; j = i + 1, i + 2, . . . ,T.

(16)

The subset filter is composed of N filters:

N = T × (T − 1)

2
. (17)

For instance the size of subset filter for an image containing
4 different textures is

T = 4 =⇒ N = 4× (4− 1)

2
= 6. (18)

5. RESULTS

In several experiments, three sets of filters are used consisting
of 20, 30, and 40 filters with 45◦, 30◦, and 22.5◦ orientations,
respectively. Applying the first method, the segmented results
are obtained using 40 filters with 22.5◦ angular bandwidths.
Two new low-frequency and high-frequency filters are added
to improve the filter bank. This raises the total number of
filters in the filter bank to 42. The increase in the feature di-
mension by using 42 filters in comparison with 20 and 30
filters in the previous published reports is compensated by
feature quantization using competitive network. The dimen-
sion of quantized feature vectors is 21 and it may change de-
pending on the number of textures in the image, that is, if we
have less than 4 textures in the input image, we could use a
smaller dimension for quantized vectors. In the second ap-
proach to segment the textured images, a subset filter bank
is adaptively selected. The Gabor filters which compose this

subset filter are selected so that in a multiple texture image,
the energy ratio of any two distinct textures is maximum. The
number of filters in this subset is variable and depends on the
number of textures in the image.

In this section, some results obtained by applying the
proposed approaches and three widely used approaches for
texture segmentation including Gabor, discrete cosine trans-
form (DCT), and Laws filters are presented. Since the Gabor
filter was outperformed in comparison with the Laws and
DCT in previous research [4], optimized Gabor filter banks
will be compared with these filter banks to evaluate the per-
formance of the proposed methods. As it was explained in
Section 4.1, Ng et al. [5] introduced a 3 by 3 DCT to ex-
tract features from textured images. They suggested using
eight masks excluding the low-frequency component of the
DCT. On the other hand, Laws introduced a separable fil-
ter bank to identify different textures for texture segmenta-
tion. The suggested filter bank by Laws [6] is composed of
25 filters including five filters in each dimension. These one-
dimensional kernels are

L5 = [1, 4, 6, 4, 1], E5 = [−1,−2, 0, 2, 1],

S5 = [−1, 0, 2, 0,−1], W5 = [−1, 2, 0,−2, 1],

R5 = [1,−4, 6,−4, 1].

(19)

By applying the filter bank to the input image, 25 filtered im-
ages are produced. These mnemonics (L, E, S, W , and R)
stand for level, edge, spot, wave, and ripple. Note that all ker-
nels except for L5 have zero sums.

We have obtained the results by applying our proposed
methods, Gabor, DCT, and Laws filters, to the synthetic tex-
tured images. The segmentation results are compared for five
filter banks and are presented in the following section.

5.1. Synthetic textured images

To test the algorithm, a set of synthetic textured im-
ages formed by selected textures from the Brodatz al-
bum [20], MIT Vision and Modeling Database (see
http://vismod.media.mit.edu/vismod), and MeasTex Image
Texture Database (see http://www.cssip.uq.edu.au/meastex/
meastex.html) are used. We used combinations of 2, 3, 4,
and 5 textures as test images. The sample synthetic images
consist of D77, D84, D55, D53, D24, and D17 selected from
the Brodatz album; Fabric.0000, Fabric.0017, Flowers.0002,
Leaves.0006, and Leaves.0013 selected from MIT Vision
and Modeling Database; and Grass.0002, Misc.0002, and
Rock.0005 selected from MeasTex Image Texture Database.

The image presented in Figure 9a is a textured image
consisting of Fabric.0000 from MIT Vision and Modeling
Database. Figure 9b is the true segmentation reference im-
age. Figure 9c shows the segmented result by GCN. Figure 9d
is the segmentation result by AGFB. In Figures 9e and 9f the
segmented result by DCT and Laws filters are depicted, re-
spectively. The classification errors are presented in Table 2.
As we can observe in this table, the classification errors are
0.59% and 2.57% for GCN and AGFB in comparison with
2.91%, 3.42%, and 3.56% which are obtained by DCT, Laws,

http://vismod.media.mit.edu/vismod
http://www.cssip.uq.edu.au/meastex/meastex.html
http://www.cssip.uq.edu.au/meastex/meastex.html
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(a) (b) (c)

(d) (e) (f)

Figure 9: (a) Texture image. (b) The true segmentation reference image. (c) Segmentation results by GCN method; classification error
is 0.59%. (d) Segmentation results by AGFB; classification error is 2.57%. (e) Segmentation results by DCT; classification error is 2.91%.
(f) Segmentation results by Laws filters; classification error is 3.42%.

Table 2: Classification errors for Figure 8.

Method Classification error

GCN 0.59%

AGFB 2.57%

DCT 2.91%

Laws 3.42%

Gabor 3.56%

and the Gabor filters, respectively. The GCN improves the
classification results by 80% and 91% in comparison with the
DCT and Laws filters, respectively. These amounts are 12%
and 58% for AGFB.

The image depicted in Figure 10a is a textured im-
age consisting of Fabric.0000, Fabric.0017, Flowers.0002,
Leaves.0006, and Leaves.0013 selected from MIT Vision and
Modeling Database. Figure 10b is the true segmentation
reference imag. Figure 10c shows the segmented result by
GCN method and Figure 10d shows the segmented result by
AGFB. The segmented results by Laws and DCT are depicted
in Figures 10e and 10f, respectively.

The comparison of the classification errors using our
proposed methods and the segmentation results using Ga-
bor, DCT, and Laws filters for textured image of Figure 10
are shown in Table 3. The proposed GCN method improved
the classification results by 45% and 79% in comparison with
DCT and Laws filters, respectively. These amounts are 12%
and 58% for AGFB.

According to the results obtained in this study which are
shown in Table 3, and the previous research, the proposed
approaches have better classification performances in com-

parison with the other three methods, that is, Gabor, DCT,
and Laws filter bank. The filter parameters for different filter
banks which are used for image segmentation are shown in
Table 3. As depicted in Table 3, the number of filters for Ga-
bor, DCT, and Laws are equal to the feature dimension and
are 20, 8, and 25, respectively. In GCN, despite having 42 fil-
ters in the filter bank, the feature dimension is reduced to 21
and in AGFB, the number of filters is adaptively selected.

6. DISCUSSION AND CONCLUSION

In this paper, two new methods for texture image segmenta-
tion are presented. The two proposed approaches optimize
Gabor filter bank by achieving more accurate results, re-
ducing the classification error, and reducing the filter bank
size. In the first method (GCN), the classification error is
reduced by implementing a Gabor filter bank with narrow
angular bandwidth. Two low-frequency and high-frequency
filters are added to improve the filter bank which made the
total number of filters reach 42. In this approach, neural net-
works is employed for both feature reduction and segmen-
tation. A competitive network is combined with an MLP to
learn the nonlinear relationship between quantized vectors
and desired outputs. The second algorithm uses an energy ra-
tio criterion to select the best discriminative filters adaptively
(AGFB). A few Gabor filters are selected according to the en-
ergy ratio of each texture pair in an image. Extracted feature
vectors which are obtained by applying the subset filter bank
are classified using an MLP. Despite noticeable feature di-
mension reduction, this method provides better results than
DCT and Laws filters.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: (a) Textured image. (b) The true segmentation reference image. (c) Segmentation results by GCN method; classification error
is 8.37%. (d) Segmentation results by AGFB; classification error is 12.62%. (e) Segmentation results by Laws filters; classification error is
25.7%. (f) Segmentation results by DCT; classification error is 15.27%.

Table 3: Number of filters and features for Figure 9.

Method Segmentation improvement (percent) No. of filters No. of features

GCN 8.37 42 21

AGFB 12.62 10 10

DCT 15.27 8 8

Laws 25.7 25 25

Gabor 27.5 20 20

The proposed segmentation algorithms are formulated
as a combinational optimum approach to obtain a better
filter bank, to reduce feature dimension, and to improve
classification. The main advantages of the proposed methods
include the following:

(1) the proposed approaches allow to use a larger filter
bank consisting of a higher number of channels;

(2) both methods permit the use of a larger number of fil-
ter banks while the process compensates for the weak-
ness of a specific filter bank in some frequencies;

(3) the feature quantization and classification component

of this algorithm is a generic approach with the ability
to learn and process different kinds of input vectors
(feature vectors);

(4) both methods are capable of segmenting complex tex-
tured images.

Both GCN and AGFB produce better results for synthetic
images than Gabor, DCT, and Laws filters. The Laws and
DCT provide better results than Gabor filter bank with 20
filters [4], but our optimized Gabor filter banks using two
different methods perform much better than DCT and Laws
filter banks. On the other hand, the complexities of both
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proposed methods are reasonable and almost as complex as
DCT and Laws filters. Among these five filter banks, AGFB is
the fastest because of its small number of filters. As a tradeoff

between the speed and classification error, both of our pro-
posed methods offer more than a 50% improvement in clas-
sification. GCN takes almost the same computation time as
20 Gabor filters. Although the GCN method reduces the fea-
ture dimension using principal component analysis, imple-
menting PCA by means of a competitive network speeds up
the algorithm and is much faster than the conventional PCA.

Designing the Gabor filter bank by accurate parameter
selection and using a different learning method according to
the specific segmentation problem may improve the accuracy
of this algorithm to get better segmentation results based on
the nature of the input images. Minimizing the number of
filters for texture discrimination has crucial importance and
is still an area of active research. Thus, improving the AGFB
method would be part of the future work. The algorithm may
also be extended to problems such as biomedical and satel-
lite image segmentation. Our current goal is to improve the
performance of this algorithm and, in future research, apply
the proposed techniques to segmentation of satellite and syn-
thetic aperture radar (SAR) texture images.
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