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Abstract—The performance of cooperative relaying networks can be
significantly enhanced by using constellation rearrangement (CoRe). In
CoRe, the base-station and the relay-station use different constellations,
each having the same number of signal points, to communicate with the
user terminal. A number of CoRe schemes have been proposed in the
literature based on uniform quadrature-amplitude modulation (QAM)
constellations. However, it is still unclear whether nonuniform QAM con-
stellations can further enhance the performance of CoRe. Toward this end,
we investigate the problem of designing the optimum nonuniform QAM
constellations for CoRe. Our motivation is that nonuniform constellations
have the potential to outperform their uniform counterparts because the
set of nonuniform constellations is a superset of uniform constellations.
Nonuniform QAM constellations can be categorized as either decompos-
able or nondecomposable. Unlike nondecomposable QAM constellations,
decomposable QAM constellations are generated from the Cartesian prod-
uct of two pulse-amplitude modulation (PAM) constellations. We formulate
an optimization problem to find the nonuniform constellations that have
the minimum union bound on the uncoded symbol error rate (SER).
Using convex analysis, we devise a search method to find globally optimum
nonuniform decomposable constellations. We also devise a simple heuristic
to find good locally optimum nonuniform nondecomposable constellations,
which perform better than their decomposable counterparts.

Index Terms—Convex optimization, cooperative relay networks,
nonuniform constellation rearrangement (CoRe).

I. INTRODUCTION

Cooperative relaying is widely accepted as an enabling technology
that is designed to meet the increasing demand for ubiquitous high-
data-rate coverage. In cooperative relaying, the signal reaches its
destination in multiple hops through intermediate relays. Instead of
solely relying on the signal from the last hop, the receiver terminal
properly combines all signals from the intermediate hops [3]. The
performance of cooperative relaying networks can be further enhanced
by using constellation rearrangement (CoRe) [4]–[6], which is a tech-
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Fig. 1. Uniform and nonuniform CoRe (4-PAM).

nique that uses different constellations for different retransmissions
without changing the modulation level. In CoRe, the source uses a
constellation that is different from that used by the relay, and both
constellations have the same number of constellation points. This
technique is also called trans-modulation [4], constellation change [5],
and symbol mapping diversity [7], but in this paper, we use the term
“CoRe.” The key question in designing CoRe is to find the optimum
constellations for two (or more) transmissions.

There are multiple ways to find constellations for CoRe. One way is
to keep the same constellation in both transmissions but to remap the
symbols in the constellations. For example, in Fig. 1, we show two
uniform pulse-amplitude modulation (PAM) constellations that are
different only in their assignment of symbols to constellation points.
The constellation points are uniformly spaced on the real line; thus,
we call these types of constellations uniform constellations.

Remapping symbols for different transmissions was originally pro-
posed for hybrid automatic repeat request (HARQ) with soft com-
bining [8], [9]. In the HARQ context, if the destination receives an
erroneous packet, it asks the source for a retransmission and keeps
the erroneous packet to combine it with the retransmitted packet.
Since combining transmissions received at different times is a common
feature in both HARQ and cooperative relaying, CoRe was also
proposed for cooperative relaying applications [4]–[6]. To the best of
our knowledge, all of the existing CoRe schemes remap uniform PAM
or uniform quadrature-amplitude modulation (QAM) constellations.

Despite the progress made in CoRe, it is still unclear whether
nonuniform constellations can further increase the gain achieved by
CoRe. Toward this end, we study the problem of finding the optimum
nonuniform CoRe. In the case of nonuniform PAM constellations, the
symbols are allowed to be anywhere on the real axis while taking
energy restrictions into account (see Fig. 1). Allowing free floating
of symbols adds another dimension to the problem, beyond what is
currently in the literature. Finding the optimum nonuniform CoRe
not only requires optimizing the symbol mappings for different trans-
missions but also requires optimizing the constellations themselves.
Our motivation is that nonuniform constellations have the potential to
outperform their uniform counterparts because the set of nonuniform
constellations is a superset of uniform constellations.

The idea of using nonuniform constellations has been proposed
for applications other than CoRe. For example, in [10], the authors
use nonuniform signal constellations in ARQ (without combining
transmissions at the receiver or changing the signal constellation at
the transmitter) to adapt the data rate to the received signal-to-noise
ratio (SNR) in a fading channel, without using channel state feedback
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Fig. 2. Nonuniform decomposable and nondecomposable constellations
(16-QAM).

or incremental redundancy. As far as we know, the use of nonuniform
constellations for CoRe has not yet been investigated.

We further categorize QAM constellations into decomposable and
nondecomposable constellations. Decomposable QAM constellations
are those generated from the Cartesian product of two real PAM
constellations. For example, the nonuniform decomposable 16-QAM
constellation in Fig. 2 is the Cartesian product of the nonuniform
4-PAM constellation for the second transmission shown in Fig. 1 with
itself. The real and imaginary parts of decomposable constellations are
independent and can be separately decoded, which reduces decoding
complexity.

Nondecomposable constellations are not necessarily constructed
from the Cartesian product of two real PAM constellations. In Fig. 2,
we show an example of a nonuniform nondecomposable 16-QAM con-
stellation. Nondecomposable constellations need a more complicated
decoder than decomposable constellations. However, as we will show
later, the gains achieved by using nondecomposable constellations may
well be worth the additional complexity.

We start by formulating the optimization problem to find the op-
timum nonuniform constellations that minimize the union bound on
the uncoded SER. Using convex analysis, we show that, in the case of
nonuniform decomposable constellations, the space of constellations
can be partitioned in a way that results in a finite number of convex
optimization problems. Based on this observation, we devise a search
method to find the best possible decomposable constellations over all
the partitions.

For the case of nonuniform nondecomposable constellations, the
optimization problem is not convex, meaning that we cannot find
its global minimum efficiently. Nevertheless, the convex optimization
techniques still allow us to find local minima, which can lead to good
solutions, provided that the solver is given a good initial point. We use
optimum nonuniform decomposable constellations as initial points for
the solver; thus, the local minima obtained by the solver will be at least
as good as the optimum nonuniform decomposable constellations.

II. RELATED WORK

In this Section, we give an overview of the key CoRe schemes
that have been proposed in the literature. The first CoRe scheme was
proposed for HARQ [8], [11]. The key idea in this CoRe scheme is
to average the variations in bit reliabilities inherited in Gray-coded
multilevel modulation schemes (such as PAM and QAM). This scheme
was also proposed for cooperative relaying in [5].

In [9], the authors observed that the CoRe scheme proposed in
[11] is designed in an “ad hoc” way without an optimization. By
considering the modulation level and number of retransmissions as
an augmented signal space, the authors proposed a CoRe scheme that
maximizes the minimum distance in this augmented signal space. This

CoRe scheme is also extended for multiple retransmissions combined
with space–time block coding in [12].

In [13], the authors proposed the use of uniform M -QAM constel-
lations in the first transmission and the subsequent (�log2 M/2� − 1)
retransmission(s) and the use of nonuniform constellation in the further
retransmissions. The nonuniform constellation used is in effect a
quadrature phase-shift keying (QPSK) constellation that carries 2 bits/
symbol, and the rest of the bits (log2 M − 2) are not transmitted.
Since conventional QAM and QPSK constellations are used, where
the constellation points are evenly spaced, these constellations are
“nonuniform” in a different sense than those described in this paper.

In [7], the authors assumed that the transmitter has full channel state
information (CSI) and that it adapts its constellation according to the
instantaneous SNR. The authors proposed their scheme for HARQ.
They formulated the union bound as an upper bound for the bit error
rate (BER), and they found the constellations that minimize this bound.
However, having full CSI at the transmitter adds significant complexity
due to the requirement for a fast feedback channel to report the CSI to
the transmitter.

Since combining retransmissions is a common feature in both
HARQ and cooperative relaying, CoRe was also proposed for cooper-
ative relaying [4]–[6]. In [4], a CoRe scheme was proposed to improve
the performance of cooperative relaying. The authors formulated a
bound on the symbol error rate (SER), but they concluded that finding
the constellations that minimize the bound is extremely complex, and
they provided a heuristic solution.

In [6], the authors adopted an approach that is similar to [7] but for
cooperative relaying without CSI at the transmitter. Using exhaustive
search, the authors found the constellations that minimize the union
bound on the uncoded BER in Rayleigh fading. Simulation results
show that the CoRe scheme that was proposed in [6] outperforms the
other existing CoRe schemes with comparable complexity.

It is worth repeating that uniform constellations are used in all
existing CoRe schemes. In this paper, we extend the CoRe concept
to nonuniform constellations.

III. SYSTEM MODEL

We consider a network that consists of a base station (BS), a relay
station (RS), and a receiving user terminal (UT), each using a single
antenna. The RS assists the UT, which suffers from poor channel
conditions. The RS uses the decode-and-forward strategy—it fully
decodes the signal it receives from the BS before reencoding and
forwarding it to the UT.

The RS operates in half-duplex mode, on orthogonal channels. To
facilitate the discussion, we assume that half-duplexing at the RS is
achieved with time-division duplexing (TDD).

Transmitters use M -QAM constellations, where M is the number
of constellation points. Without any loss of generality, the M -QAM
constellation has an average energy per symbol equal to unity. In the
conventional setup, both the BS and the RS use the same constellations
for all transmissions, whereas in CoRe, the BS and the RS use different
constellations. We denote the signal constellation points used in the
first transmission with {s(1)

1 , s
(1)
2 , . . . , s

(1)
M } and the signal constella-

tion points used in the second transmission with {s(2)
1 , s

(2)
2 , . . . , s

(2)
M }.

For example, if the symbol s
(1)
3 is to be transmitted to the UT, s

(1)
3

will be transmitted in the first transmission, whereas s
(2)
3 will be

transmitted in the second transmission. The constellation points, which
are complex numbers, are denoted by

s
(1)
k

�
= x

(1)
k + jy

(1)
k and s

(2)
k

�
= x

(2)
k + jy

(2)
k

where j
Δ
=

√
−1.
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To simplify the discussion, the system model is abstracted to the
generic case where the UT receives two copies of the same information
symbol but using different constellations. A specific relaying protocol
that fits this generic case is discussed in Section V-A.

In one frame, the signals received by the UT in the first and second
time slots are given by

r(1) = α(1)s(1) + z(1) and r(2) = α(2)s(2) + z(2)

respectively, where α(1) and α(2) are the channel coefficients, captur-
ing the effects of path loss and small-scale fading, and z(1) and z(2)

are additive white Gaussian noise samples.
Channel coefficients α(1) and α(2) are assumed to be known at the

receiver for coherent detection. Coefficients |α(1)| and |α(2)| are mod-
eled as independent Rayleigh random variables. Noise samples z(1)

and z(2) are independent and identically distributed circularly symmet-
ric complex Gaussian random variables with zero mean and variance
N0/2. The average SNRs in the first and second transmissions are
γ̄(1) = E[|α(1)|2]/N0 and γ̄(2) = E[|α(2)|2]/N0, respectively.

The UT utilizes signals received from the two independent branches
and achieves spatial diversity. Similar to [4], [6], and [9], a maximum-
likelihood (ML) decoder is assumed at the UT, which reduces to a
minimum-distance detector.

We consider decomposable and nondecomposable M -QAM con-
stellations. Decomposable M -QAM constellations are constellations
that are generated from the Cartesian product of two real

√
M -PAM

constellations. In other words, log2

√
M bits are encoded in the real

part of the constellation, and the other log2

√
M bits are encoded

in the imaginary part of the constellation. As a result, the real and
imaginary parts of the constellation points are independent and can
be separately decoded, which reduces the complexity of the ML
decoder. On the other hand, nondecomposable constellations are not
necessarily constructed from the Cartesian product of two real

√
M -

PAM constellations.
The ML decoder estimates the transmitted symbol from r(1) and

r(2) as ŝ = s
(1)

î
, where

î = arg min
i=1,...,M

{∣∣∣r(1) − α(1)s
(1)
i

∣∣∣2 +

∣∣∣r(2) − α(2)s
(2)
i

∣∣∣2
}

. (1)

For a complex number x, x∗ is the conjugate of x, and |x|2 = x∗x.
The previously described detector requires a total of M computations
to decode one symbol.

For the special case of decomposable constellations, decoding com-
plexity is significantly simplified by decoding the real and imaginary
parts separately,1 as ŝ = x

(1)

î
+ jy

(1)

ĵ
, where

î = arg min
i=1,...,M

{(
R

(
r̃(1)

)
−

∣∣α(1)
∣∣x

(1)
i

)2

+
(
R

(
r̃(2)

)
−

∣∣α(2)
∣∣x

(2)
i

)2
}

ĵ = arg min
i=1,...,M

{(
I

(
r̃(1)

)
−

∣∣α(1)
∣∣ y

(1)
i

)2

+
(
I

(
r̃(2)

)
−

∣∣α(2)
∣∣ y

(2)
i

)2
}

(2)

r̃(1) = e−j∠α(1)
r(1), r̃(2) = e−j∠α(2)

r(2), R(x) (I(x)) is the real
(imaginary) part of a complex number x, and ∠x is the angle of a

1We assume that the bits encoded in the real (imaginary) part by the BS are
also encoded in the real (imaginary) part by the RS.

complex number x in radians. Since the constellation in this case is
formed by a Cartesian product of two

√
M -PAM constellations, each

of the sets {x(t)
1 , . . . , x

(t)
M } and {y(t)

1 , . . . , y
(t)
M }, for t ∈ {1, 2}, con-

sists of
√

M distinct elements. Consequently, finding î (or ĵ) requires√
M computations, which means that the ML decoder for decom-

posable constellations requires only 2
√

M computations per symbol
instead of M computations per symbol.

IV. OPTIMUM NONUNIFORM CONSTELLATION REARRANGEMENT

We formulate the optimization problem that searches for the com-
plex numbers corresponding to constellation points that have the min-
imum union bound on the uncoded SER. The optimization problem is
given as

minimize
s
(1)
i

,s
(2)
i

∀i∈{1,...,M}

M∑
i=1

M∑
j=i+1

2C∣∣∣s(1)
i − s

(1)
j

∣∣∣2
∣∣∣s(2)

i − s
(2)
j

∣∣∣2
(3a)

subject to
1

M

M∑
i=1

∣∣∣s(t)
i

∣∣∣2 ≤ 1 ∀t (3b)

s
(1)
i , s

(2)
i ∈ C ∀i (3c)

where C = 16 (Mγ̄(1)γ̄(2))−1 is a constant related to SNRs; variables
s
(1)
i and s

(2)
i (for 1 ≤ i ≤ M ) correspond to the constellation points

used in the first and second transmissions, respectively; and C is the
set of complex numbers. Objective function (3a) minimizes the SER
bound2 and was directly derived by applying the union bound on the
pairwise symbol error probability [6, eq. (6)].3 Constraints (3b) limit
the average energy per symbol in each transmission to unity. Constraint
(3c) implies that the constellation points can take any values in the
complex space, allowing nonuniform constellations. We tackle (3) for
decomposable and nondecomposable constellations separately.

A. Decomposable Constellations

Since designing decomposable M -QAM constellations is equiva-
lent to designing

√
M -PAM, we formulate the optimization problem

for
√

M -PAM constellations. The optimum decomposable M -QAM
constellation is then the Cartesian product of the optimum

√
M -

PAM constellation with itself. Let R denotes the set of real numbers,
using the optimization given by (3), finding the optimum nonuniform
decomposable QAM constellations can be expressed as

minimize
s
(1)
i

,s
(2
i

∀i∈{1,...,
√

M}

√
M∑

i=1

√
M∑

j=i+1

2C(
s
(1)
i − s

(1)
j

)2 (
s
(2)
i − s

(2)
j

)2
(4a)

subject to
1√
M

√
M∑

i=1

(
s
(t)
i

)2

≤ 1 ∀t (4b)

s
(1)
i , s

(2)
i ∈ R ∀i. (4c)

2This bound is derived assuming that the source symbols are equally likely;
however, one can also derive a similar bound if the source symbols are not
equally likely using the approach explained in [14].

3One can get a tighter bound on the pairwise error probability than that given
in [6, eq. (6)] by using the Q-function expression given in [15, eq. (9)] instead
of the Chernoff bound and get a smaller constant C̃ = (3/16)C. However,
since C is a constant, it is irrelevant in the optimization. While the union bound
is expected to be conservative, it is applicable to all possible CoRe schemes.
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Optimization (4) is not a convex optimization problem since the
objective function is not convex (although the power constraints are
convex). Nevertheless, we can partition the feasible set into a finite
number of mutually exclusive convex sets in which the objective
function is always convex. Partitioning is done using binary variables
o
(t)
ij ∈ {0, 1}, which relate pairs of symbols s

(t)
i and s

(t)
j for any

i, j ∈ {1, . . . ,
√

M} and a fixed t. We define these binary variables
such that o

(t)
ij = 1 implies s

(t)
i > s

(t)
j and o

(t)
ij = 0 implies s

(t)
i < s

(t)
j .

Each fixed set of binary variables {o(t)
ij : i, j ∈ {1, 2, . . . ,

√
M}, t ∈

{1, 2}} corresponds to one of the mutually exclusive convex sets. The
following proposition shows that the objective function is convex in
each of these convex sets.

Proposition 1: The objective function in (4) is a convex function on
a convex set Ψ if, for any set of fixed binary variables {o(t)

ij : i, j ∈
{1, . . . ,

√
M}, t ∈ {1, 2}}, Ψ is given by

Ψ =
{

s
(1)
1 , . . . , s

(1)√
M

, s
(2)
1 , . . . , s

(2)√
M

: s
(t)
i ∈ R,

−
(
1 − o

(t)
ij

)
L < s

(t)
i − s

(t)
j < o

(t)
ij L,

o
(t)
ij = 1 − o

(t)
ji , o

(t)
ij ∈ {0, 1},

∀i, j ∈
{
1, . . . ,

√
M

}
,∀t ∈

{
1, 2

}}

where L is a large positive number.
Proof: We start by the writing the objective function as

f0

(
s
(1)
1 , . . . , s

(1)√
M

, s
(2)
1 , . . . , s

(2)√
M

)
= 2C

√
M∑

i=1

√
M∑

j=i+1

fij

where

fij

(
s
(1)
i , s

(2)
i , s

(1)
j , s

(2)
j

)
=

(
s
(1)
i −s

(1)
j

)−2

×
(

s
(2)
i −s

(2)
j

)−2

.

Since convexity is preserved over addition [16, p. 79], the proof is
reduced to proving that fij(·) is convex ∀i, j ∈ {1, . . . ,

√
M}. Taking

the logarithm of fij(·), we get

log fij

(
s
(1)
i , s

(2)
i , s

(1)
j , s

(2)
j

)
= − log

(
s
(1)
i − s

(1)
j

)2

− log
(

s
(2)
i − s

(2)
j

)2

.

Since d2(− log(x2))

dx2 = (2/x2) > 0, − log(x2) is convex on
(0,+∞) and convex on (−∞, 0). However, − log(x2) is neither
convex on R, because it has singularity at x = 0, nor convex on the set
{x : x 	= 0}, because it is not a convex set. It follows that − log(s

(t)
i −

s
(t)
j )2 is convex on {s(t)

i , s
(t)
j : s

(t)
i > s

(t)
j } and convex on {s(t)

i , s
(t)
j :

s
(t)
i < s

(t)
j }, for t ∈ {1, 2}, because it is a composition of the convex

function − log(x2) with an affine function (s
(t)
i − s

(t)
j ). Equivalently,

each term in the log fij’s addition is convex on {s(t)
i , s

(t)
j : s

(t)
i , s

(t)
j ∈

R,−(1 − o
(t)
ij )L < s

(t)
i − s

(t)
j < o

(t)
ij L, o

(t)
ij = 1 − o

(t)
ji }. To see the

equivalence, consider the following cases:

Case I: if o
(t)
ij = 1 ⇒ 0 < s

(t)
i − s

(t)
j < L

⇒ s
(t)
i > s

(t)
j .

Case II: if o
(t)
ij = 0 ⇒ − L < s

(t)
i − s

(t)
j < 0

⇒ s
(t)
i < s

(t)
j .

Note that o
(t)
ij = 1 − o

(t)
ji since log fij is not convex on the set

{s(t)
i , s

(t)
j : s

(t)
i , s

(t)
j ∈ R, s

(t)
i 	= s

(t)
j }.

Being the sum of convex functions, log fij(·) is convex. Hence,
fij(·) is log-convex. Since fij(·) is log-convex, then it is also convex
[16, p. 104] if the conditions of the proposition are met. �

Using Proposition 1 in (4), we pose the following (0,1) mixed-
integer programming problem:

minimize
s
(1)
i

,s
(2)
i

∀i∈{1,...,
√

M}

√
M∑

i=1

√
M∑

j=i+1

2C(
s
(1)
i − s

(1)
j

)2 (
s
(2)
i − s

(2)
j

)2
(5a)

subject to
1√
M

√
M∑

i=1

(
s
(t)
i

)2

≤ 1, ∀t (5b)

s
(t)
i − s

(t)
j ≤ o

(t)
ij L, ∀i, j, t (5c)

s
(t)
j − s

(t)
i ≤

(
1 − o

(t)
ij

)
L, ∀i, j, t (5d)

o
(t)
ij = 1 − o

(t)
ji , o

(t)
ij ∈ {0, 1}, ∀i, j, t (5e)

where we introduced binary variables o
(t)
ij to partition the feasible set

according to the proposition. We note that the objective function pre-
vents the equalities in partitioning constraints (5c) from being active.
Thus, the constraints in the optimization are strictly true for optimal
solutions, consistent with the proposition. In (5c), L can be set to
any positive number greater than 2M1/4 since s

(t)
i − s

(t)
j < 2M1/4,

∀i, j ∈ {1, . . . ,
√

M}, ∀t ∈ {1, 2} to satisfy power constraints (5b).
The new partitioning constraints given by (5c) separate the opti-

mization into multiple optimizations defined on mutually exclusive
convex sets. Each of these optimization problem is defined by one
set of fixed o

(t)
ij variables. Taking the proposition into consideration,

each of these optimization problems is convex and can be efficiently
solved. Therefore, a convex optimizer is used to solve each of the
convex optimization problems. Each solution is a local minimum of
the original optimization problem. Then, we find the global minimum
by taking the minimum of these local minimum points.

We found several computational shortcuts that are based on remov-
ing vast portions of unneeded space of all possible binary variables.
Due to space limitations, the shortcuts are not described in the paper.
Nevertheless, we discuss the number of total convex optimizations
to give an idea of the time required to obtain one optimal set of
constellations.

With all of our optimizations, we need to solve
√

M ! optimization
problems. For example, finding the optimum 4-PAM constellations
(in-phase component of 16-QAM constellation) requires solving 24
problems, and finding the optimum 8-PAM constellations (in-phase
component of 64-QAM constellation) requires solving 40320 prob-
lems. However, with the extremely efficient convex optimization al-
gorithms, each convex optimization problem is solved on the order of
milliseconds on a desktop computer. Since the problem is an “offline”
optimization where the solution needs to be found only once, we found
this optimization technique sufficient to solve the problem optimally.

B. Nondecomposable Constellations

For decomposable QAM constellations, the optimization problem
was significantly simplified by designing optimal

√
M -PAM real

constellations. However, this simplification does not hold for nonde-
composable constellations, and thus, optimizing over complex constel-
lations is inevitable.
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We start by reformulating the optimization given by (3) in terms of
real numbers as

minimize
x
(1)
i

,y
(1)
i

,x
(2)
i

,y
(2)
i

∀i∈{1,...,M}

M∑
i=1

M∑
j=i+1

2C
2∏

t=1

[(
x

(t)
i −x

(t)
j

)2

+
(

y
(t)
i −y

(t)
j

)2
]

(6a)

subject to
1

M

M∑
i=1

((
x

(t)
i

)2

+
(

y
(t)
i

)2
)
≤1, ∀t (6b)

x
(1)
i , y

(1)
i , x

(2)
i , y

(2)
i ∈ R, ∀i (6c)

where constraints (6b) and (6c) are obtained by direct substitution.
We note that objective function (6a) is differentiable and that the

constraints are convex. However, the objective function itself is not
convex (as we proved in [2]), precluding the possibility of finding
a globally minimum solution with a standard solver. Nevertheless,
we devise a simple heuristic that allows us to find local minima and
provides very good solutions.

Although the objective function is not convex, we can still use an
off-the-shelf solver to find local minima due to its differentiability.
In this paper, we use the “fmincon” solver, which is part of the
MATLAB optimization toolbox. In general, these solvers use gradient-
based methods to get a local minimum. The local minimum found by
the solver depends on the initial starting point; thus, a good starting
point is essential to obtain good local minima. We use the optimum
decomposable constellations found in Section IV-A as the starting
point for the solver. Although the local minimum found using this
starting point is not a global minimum, we are assured that it will
perform at least as well as the optimum decomposable constellations.
Indeed, simulations show that the constellations obtained this way
outperform the optimum decomposable constellations.

V. SIMULATION RESULTS

The optimized nonuniform CoRe schemes, which were explained
in Section IV, can be applied to the generic system model explained
in Section III. Here, we first explain one possible relaying protocol in
Section V-A, which fits the generic system model. Then, we present
simulation results in Section V-B.

A. Simulation Setup

The BS transmits a packet of L bits in the first slot to the RS. Due
to the broadcast nature of the wireless channel, the UT receives the
packet from the BS. The RS fully decodes the packet and checks
to determine if the packet is correctly decoded with the help of a
cyclic redundancy check (CRC) code.4 If the packet is successfully
decoded, the RS retransmits the packet to the UT in the second time
slot. Otherwise, the RS refrains from retransmission and sends a 1-bit
negative acknowledgment to the BS, indicating that it failed to decode
the packet correctly, and the BS will use the second time slot to
send the packet again to the UT. Finally, the UT utilizes the two
transmissions to decode the packet in a symbol-by-symbol manner.
With this protocol, detection errors made by the RS are not propagated
to the UT.

Since the RS is fixed and can be installed at a strategic location
where line-of-sight transmissions exist in most cases, the channel

4Using CRC does not imply an increase in the overhead since all the current
and presumably future standards employ CRC anyway as a means to check the
integrity of the received packets.

between the BS and the RS is modeled as a Rician random variables
with a K-factor of 10 dB. On the other hand, the channel between
the BS and the UT and that between the RS and the UT are modeled
as independent Rayleigh random variables due to the nonline-of-
sight transmission from the BS and the RS to the UT. The average
SNRs in BS–RS, RS–UT, and BS–UT links are denoted by γ̄(BS−RS),
γ̄(RS−UT), and γ̄(BS−UT), respectively.

B. Results

We use the algorithms described in Sections IV-A and IV-B to find
16-QAM and 64-QAM nonuniform decomposable and nonuniform
nondecomposable constellations. We also obtain an optimized uniform
CoRe scheme by the Cartesian product of optimum uniform PAM
constellations found using the method outlined in [6].

Table I shows the optimized uniform, the optimized nonuniform
decomposable, and the locally optimized nonuniform nondecompos-
able CoRe schemes. For the case of 16-QAM, the difference between
the optimized nonuniform decomposable scheme and the optimum
uniform scheme is small. Thus, we expect that the gain achieved by
the optimized nonuniform decomposable scheme over the optimum
uniform scheme to be small as well. On the other hand, the optimized
nonuniform nondecomposable constellations are very different from
the optimized uniform constellations, which suggests that they have
the potential to achieve higher gains than their decomposable counter-
parts. For the case of 64-QAM, the signal points for both the optimized
nonuniform decomposable and nondecomposable schemes are very
different from the optimized uniform scheme. Therefore, one would
expect higher performance gains than in the case of 16-QAM.

The optimized nonuniform decomposable and nondecomposable
CoRe schemes are plotted in Fig. 3 for the case of 16-QAM. While
the nonuniform decomposable constellation points form an irregularly
spaced grid, the nonuniform nondecomposable constellation points do
not form a grid, since by definition, these constellations are not a
Cartesian product of two real constellations.

We simulate the performance of different CoRe schemes for the pro-
tocol described in Section V-A. We assume the size of the packet to be
188 bytes (video packet). We present the SER5 comparison curves for
γ̄(BS−RS) = γ̄(BS−UT) = γ̄(RS−UT) (symmetric case), γ̄(BS−RS) =
γ̄(RS−UT) + 15 dB, and γ̄(BS−UT) = γ̄(RS−UT) − 15 dB (the UT is
closer to the RS than the BS). We also observed similar gains for
different packet sizes and different average SNR values.

Fig. 4(a) shows the SER performance of 16-QAM for different
CoRe schemes. It includes the SER of the conventional scheme
(“conventional”), where the same constellation is used by both the
BS and the RS, the optimized uniform CoRe scheme (“optimized
uniform”), the optimized nonuniform decomposable CoRe scheme
(“optimized nonuniform decomposable”), and the locally optimized
nonuniform nondecomposable CoRe scheme (“optimized nonuniform
nondecomposable”). In all of these CoRe schemes, optimality is
defined as minimizing the union bound on the uncoded SER. We
have found that the optimized uniform scheme outperforms all other
uniform CoRe schemes described in the literature; thus, we only show
its results. The optimized nonuniform decomposable scheme yields a
gain of 2.8 dB over the conventional scheme and a modest gain of
0.2 dB over the optimum uniform scheme, at SER = 10−3. We note,
however, that this gain is achieved with no penalty on complexity. On
the other hand, the optimized nonuniform nondecomposable scheme
yields a 2.8-dB gain over the conventional scheme and a 0.5-dB gain
over the optimum uniform CoRe scheme, at SER = 10−3, at the cost
of increased decoding complexity.

5Packet error ratio results can be derived from SER results.
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TABLE I
OPTIMIZED M -QAM CoRe CONSTELLATIONS
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Fig. 3. Optimized nonuniform CoRe schemes for the case of 16-QAM.
(a) Signal constellations used at the BS. (b) Signal constellations used at
the RS.

Fig. 4(b) shows the SER performance results for the case of
64-QAM, for the same CoRe schemes. The optimized nonuniform
decomposable scheme yields a gain of 4.3 dB over the conventional
scheme and a gain of 0.6 dB over the optimized uniform scheme, at
SER = 10−3. This gain comes at no extra complexity. On the other
hand, the optimized nonuniform nondecomposable scheme yields a
4.7-dB gain over the conventional scheme and a 0.9-dB gain over
the optimum uniform CoRe scheme, at SER = 10−3, at the cost of
increased decoding complexity.

From the simulation results, the following design guidelines can
be made. For scenarios where decoding complexity is less of an
issue, nonuniform nondecomposable CoRe schemes should be used
for both cases of 16- and 64-QAM. On the other hand, for scenarios
where decoding complexity should be kept at minimum, optimized
uniform CoRe should be used for the case of 16-QAM, and optimized
nonuniform decomposable CoRe should be used for the case of
64-QAM.

VI. CONCLUSION

In the literature, CoRe is restricted to uniform constellations
with regularly spaced signal points. In this paper, we have investi-

Fig. 4. SER performance results for different CoRe schemes. (a) 16-QAM.
(b) 64-QAM.

gated the problem of designing optimum nonuniform CoRe schemes.
Nonuniform QAM constellations can be categorized as either decom-
posable or nondecomposable. Unlike nondecomposable QAM constel-
lations, decomposable QAM constellations are generated from the
Cartesian product of two PAM constellations.

Using convex analysis, we have shown that the problem of finding
the minimum SER nonuniform decomposable CoRe can be cast as
a series of convex optimization problems. Using this insight, we
have obtained the optimum nonuniform decomposable 16-QAM and
64-QAM constellations that minimize the union bound on the un-
coded SER.

Although the problem of finding the minimum SER nonuniform
nondecomposable QAM constellation is not a convex optimization
problem, we can still use a convex solver to find good locally optimum
constellations. We take the optimum decomposable constellations as
the starting point to the optimization so that the solver always finds
constellations that are at least as good as the optimum decomposable
constellations but with some increase in decoding complexity.

Considering the gain and decoding complexity of each scheme, the
following design guidelines can be made. For scenarios where decod-
ing complexity is less of an issue, nonuniform nondecomposable CoRe
schemes should be used for both cases of 16-QAM and 64-QAM.
On the other hand, for scenarios where decoding complexity should be
kept at minimum, optimized uniform CoRe should be used for the case
of 16-QAM, and optimized nonuniform decomposable CoRe should
be used for the case of 64-QAM.
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There are a number of interesting open research problems related
to nonuniform CoRe. Designing optimum nonuniform CoRe schemes
for coded systems is the next natural step. For the cases of trellis-coded
modulation systems, these problems may be tackled by combining the
approach explained in this paper and those proposed in [17] and [18].
The use of nonuniform CoRe may also be fruitful in multiantenna
systems.
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Hybridizing Biogeography-Based Optimization
With Differential Evolution for Optimal Power

Allocation in Wireless Sensor Networks
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Abstract—This paper studies the performance of a wireless sensor
network (WSN) in the context of binary detection of a deterministic signal.
This paper aims to develop a numerical solution for the optimal power
allocation scheme via a variation of the biogeography-based optimization
(BBO) algorithm, which is called the constrained BBO-DE algorithm. This
new stochastic optimization algorithm is a hybridization of a very recently
proposed stochastic optimization algorithm, i.e., the BBO algorithm, with
another popular stochastic optimization algorithm called the differential
evolution (DE) algorithm. The objective is to minimize the total power
spent by the whole sensor network under a desired performance crite-
rion, which is specified as the detection error probability. The proposed
algorithm has been tested for several case studies, and its performances
are compared with those of two constrained versions of the BBO and DE
algorithms.

Index Terms—Biogeography-based optimization (BBO) algorithm, dif-
ferential evolution (DE) algorithm, optimal power allocation, wireless
sensor network (WSN).

I. INTRODUCTION

A wireless sensor network (WSN) is an infrastructure comprising
spatially distributed sensor nodes with the abilities of sensing (mea-
suring), computing, and communicating through the wireless channels.
The development of WSNs was motivated by many application areas
such as environment monitoring, health, security, and detection of
remote parameters [1].

In a distributed detection system, every sensor node performs some
preliminary processing of data and transmits a local decision to the
fusion center. Based on the received data, the fusion center is respon-
sible for the final decision making [2]. The distributed schemes offer
the possibility for drastic reductions in communication requirements,
at the expense of some performance degradation [3].

The key motivation of this paper is to optimize the performance
of the system with respect to a desired performance criterion, which
is specified as the detection error probability at the fusion center.
The decision rule at the fusion center, along with the local sensor
decision rules, needs to be jointly designed to optimize the specified
performance criterion.

This paper aims at developing a numerical solution for optimal
power scheduling in WSNs for correlated observations. Two con-
strained variants of the biogeography-based optimization (BBO) al-
gorithm have been proposed to address this issue. They are known as
CBBO with the conventional BBO-based operators and CBBO-DE,
which incorporates the mutation procedure inherited from differential
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