
Optimized On-Chip-Pipelining for Memory-Intensive

Computations on Multi-Core Processors with Explicit

Memory Hierarchy

Jörg Keller

(FernUniversität in Hagen, Germany

joerg.keller@fernuni-hagen.de)

Christoph W. Kessler, Rikard Hultén

(Linköpings Universitet, Sweden

chrke@ida.liu.se, rikard.hulten@gmail.com)

Abstract: Limited bandwidth to off-chip main memory tends to be a performance
bottleneck in chip multiprocessors, and this will become even more problematic with
an increasing number of cores. Especially for streaming computations where the ratio
between computational work and memory transfer is low, transforming the program
into more memory-efficient code is an important program optimization.

On-chip pipelining reorganizes the computation so that partial results of subtasks are
forwarded immediately between the cores over the high-bandwidth internal network,
in order to reduce the volume of main memory accesses, and thereby improves the
throughput for memory-intensive computations. At the same time, throughput is also
constrained by the limited amount of on-chip memory available for buffering forwarded
data. By optimizing the mapping of tasks to cores, balancing a trade-off between load
balancing, buffer memory consumption, and communication load on the on-chip net-
work, a larger buffer size can be applied, resulting in less DMA communication and
scheduling overhead.

In this article, we consider parallel mergesort as a representative memory-intensive
application in detail, and focus on the global merging phase, which is dominating the
overall sorting time for larger data sets. We work out the technical issues of applying
the on-chip pipelining technique, and present several algorithms for optimized mapping
of merge trees to the multiprocessor cores. We also demonstrate how some of these
algorithms can be used for mapping of other streaming task graphs.

We describe an implementation of pipelined parallel mergesort for the Cell Broadband
Engine, which serves as an exemplary target. We evaluate experimentally the influence
of buffer sizes and mapping optimizations, and show that optimized on-chip pipelining
indeed speeds up, for realistic problem sizes, merging times by up to 70% on QS20 and
143% on PS3 compared to the merge phase of CellSort, which was by now the fastest
merge sort implementation on Cell.

Key Words: parallel merge sort, on-chip pipelining, multicore computing, task map-
ping, streaming computations

Category: C.1.4, D.1.3, D.3.4, F.1.2, F.2.2

1 Introduction

The new generation of multiprocessors-on-chip derives its raw power from paral-

lelism, and explicit parallel programming with platform-specific tuning is needed

Journal of Universal Computer Science, vol. 18, no. 14 (2012), 1987-2023
submitted: 28/3/12, accepted: 27/7/12, appeared: 28/7/12 J.UCS

to turn this power into performance. Many applications use multiprocessors like

a dancehall architecture: on-chip local memories, which are typically small, are

used like caches, and all cores load and store data from/to the external (off-chip)

main memory. The bandwidth to the external memory is typically much smaller

than the aggregate bandwidth to the on-chip interconnection network. This lim-

its performance and prevents scalability for an entire class of memory-bound

applications. This problem will become more severe as the core count per chip is

expected to increase considerably in the foreseeable future. Hence, scalable par-

allelization on such architectures should prefer direct communication between

the worker cores to reduce communication with off-chip main memory.

In this paper, we consider the important domain of memory-intensive com-

putations. Often, these are streaming computations, an important class of ap-

plications in embedded computing with wide-spread use in image and signal

processing and in embedded control. We investigate the global merging phase of

mergesort on Cell as a challenging case study, for the following reasons:

– The ratio of computation to data movement is low.

– The computational load of tasks varies widely (by a factor of 2k for a binary

merge tree with k levels).

– The computational load of a merge task is not fixed but varies over time.

The value given is an average over a sufficiently large time intervall.

– Memory consumption is not proportional to computational load.

– Communication always occurs between tasks of different computational load.

These factors complicate the mapping of tasks to cores. In total, pipelining a

merge tree is more difficult than task graphs of regular problems such as matrix

vector multiplication.

The task graph of the global merging phase consists of a tree of merge tasks

that should contain, in the lowest layer, at least as many merger tasks as there

are cores available. Previous solutions like CellSort, see [GBY07], and AAsort,

see [IMKN07], process the tasks of the merge tree layer-wise bottom-up in serial

rounds, distributing the tasks of a layer equally over cores (there is no need to

have more than one task per core). Each layer of the tree is then processed in

a dancehall fashion, where each task operates on (buffered) operand and result

arrays residing in off-chip main memory. This organization leads to relatively

simple code but puts a high access load on the off-chip-memory interface.

On-chip pipelining reorganizes the overall computation in a pipelined fashion

such that intermediate results (i.e., temporary stream packets of sorted elements)

are not written back to main memory where they wait for being reloaded in the

1988 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

next layer processing round, but instead are forwarded immediately to a con-

suming successor task that possibly runs on a different core. This will of course

require some buffering in on-chip memory and on-chip communication of in-

termediate results where producer and consumer task are mapped to different

cores, but multi-buffering is necessary anyway in order to overlap computation

with (DMA) communication. It also requires that all merger tasks of the algo-

rithm be active simultaneously; usually there are several tasks mapped to a core,

which are dynamically scheduled by a user-level round-robin scheduler as data

is available for processing.

However, as we would like to guarantee fast context switching on the cores,

the limited size of on-chip memory then puts a limit on the number of buffers

and tasks that can be mapped to a core, or correspondingly a limit on the size

of data packets that can be buffered, which also affects performance. Moreover,

the total volume of intermediate data forwarded on-chip should be low and, in

particular, must not exceed the capacity of the on-chip interconnection network.

Hence, we obtain a constrained optimization problem for mapping the tasks of

streaming computations to the cores of the multiprocessor such that the resulting

throughput is maximized.

In the following, we will describe optimal and approximative mapping al-

gorithms for optimized on-chip pipelining of merge trees. Theoretically, the re-

quired memory bandwidth can be reduced by a factor proportional to the height

of the merge tree. But an implementation on the real processor introduces over-

head related to dynamic scheduling, buffer management, synchronization and

communication delays. We also demonstrate how the optimal mapping algo-

rithms can be used for other streaming applications, and how larger core counts

can be handled.

As our exemplary target architecture we use the Cell Broadband Engine, see

[CRDI07], with a PowerPC core and 8 parallel worker cores called SPEs, each

with a small on-chip local memory (256 KB for both code and data), intercon-

nected by a ring network called the Element Interconnect Bus (EIB). While we

present our results for Cell, the techniques seem applicable to upcoming multi-

core processors as well, as the techniques are not specific for Cell. For example, we

do not make any assumptions about the structure of the on-chip interconnection

network. Furthermore, newer multicore processors face similar problems. For ex-

ample, Intel just introduced the prototype of a 48-core multiprocessor, the SCC,

see [Cor10] [HDV+11], with four on-chip memory controllers to serve 48 cores,

and limited local memory in the form of so-called message passing buffers (MPB).

Also, Tilera processors (www.tilera.com) have a somewhat similar structure.

We detail an implementation of pipelined mergesort for Cell that actually

achieves notable speedup of up to 70% on a QS20 and up to 143% on a PS3 over

the best previous implementation. Also, the results support the hypothesis that

1989Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

on-chip pipelining as an algorithmic engineering option is worthwhile in general

because simpler applications might profit even more.

The remainder of this article is organized as follows. Section 2 develops the

on-chip pipelined merging algorithm. Section 3 presents several algorithms to

compute optimal and approximative mappings of merge trees to the Cell SPEs.

Section 4 gives a short overview of the Cell processor, as far as needed for this

article, and presents technical details of the implementation. Section 5 reports

on the experimental results. Further details are available in [Hul10]. Section 6

reviews related work. Section 7 concludes and identifies issues for future work.

2 On-chip pipelined mergesort

Parallel sorting is needed on every modern platform and hence heavily investi-

gated. Several sorting algorithms have been adapted and implemented on Cell

BE, which we will use as our exemplary target architecture. The highest perfor-

mance is achieved by Cellsort, see [GBY07], and AAsort, see [IMKN07]. Both

sort data sets that fit into off-chip main memory but not into local memories.

Both implementations have similarities.

They work in two phases to sort a data set of size N with local memories of

size N ′. In the first phase, blocks of data of size pN ′ that fit into the combined

local memories of p cores are sorted. In the second phase, those sorted blocks

of data are combined to a fully sorted data set. We concentrate on the second

phase as the majority of memory accesses occurs there and as it accounts for the

largest share of sorting time for larger input sizes (over 70% for inputs beyond

128 MBytes).

In CellSort, see [GBY07], this phase is realized by a bitonic sort because

this avoids data dependent control flow and thus fully exploits the SPE’s SIMD

architecture. Yet, O(N log2 N) memory accesses are needed. With 16 SPEs, the

second phase takes 565 ms for 32M integers (128 MByte). When scaling from 2

to 16 SPEs, the speedup gained is only 3.91 for 0.5GByte of data, see [GBY07,

Fig. 16].

In AAsort, see [IMKN07], mergesort with 4-to-1-mergers is used in the sec-

ond phase. The data flow graph of the merge procedures thus forms a fully

balanced merge quadtree. The nodes of the tree are executed on the cores layer

by layer, starting with the leaf nodes. As each merge procedure on each core reads

from main memory and writes to main memory, all N words are read from and

written to main memory in each merge round, resulting in N log4(N/(8N ′)) =

O(N log4 N) data being read from and written to main memory. With 16 SPEs,

the second phase takes about 150 ms for 16M key-value pairs, consisting of two

integers (128 MByte). When scaling from 1 to 16 SPEs, the speedup gained is

about 12, see [IMKN07, Fig. 13].

1990 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

In [SB09], a global merge is performed as part of indexing on a Cell processor.

There, each SPE implements a multiway merge so that a large number of blocks

can be reduced in two stages to 8 blocks. The multiway merges are realized

via tournament trees. The remaining 8 blocks are merged by a parallel merge

implemented on 8 SPEs, where the blocks are split with the help of histogram

information so that SPE i merges the i-th parts all blocks, and the resulting

blocks can be concatenated. The authors attribute the speed of the global merge

largely to the fact that in indexing, successive entries in blocks often contain

identical values, so that the winner of the next tournament can be announced

immediately. In general however, this will not be true in sorting. The throughput

obtained in the global merging phase is 236 Mbyte/s (cf. Table 1 in [SB09]) for

128 bit tokens, i.e. for 128 MByte of data the merge would take about 540 ms.

Note that sorting fewer items of larger size, with constant size of the data

set, typically reduces sorting time.

In order to decrease the bandwidth requirements to off-chip main memory

and thus increase speedup, we use on-chip pipelining. This means that all merge

nodes of all tree levels1 are active from the beginning, and that results produced

by a merge node are forwarded in packets to the consuming merge node directly

without usage of main memory as intermediate store. Thus, when each merge

node realizes a b-to-1 merge, and those nodes form a k-level complete b-ary tree,

then bk blocks from main memory are merged into one large block written back

to main memory. To achieve this with AAsort, where 4-to-1 mergers read from

and write to main memory, the amount of data to be transferred to and from

main memory would be k · log4(b) times higher.

The decision to forward merged data streams in packets enables follow-up

merge tasks to start work before predecessor mergers have handled their input

streams completely, thus keeping as many merge tasks busy as possible, and

allowing pipeline depths independent of the lengths of data streams. Note that

already the mergers in the AAsort algorithm, see [IMKN07], must work with

buffering and packets.

The requirement to keep all tasks busy is complicated by the fact that the

processing of data streams is not completely uniform over all tasks but depends

on the data values in the streams. A merger node may consume only data from

one input stream for some time, if those data values are much smaller than

the data values in the other input streams. Hence, if all input buffers for those

streams are filled, and the output buffers of the respective predecessor merge

tasks are filled as well, those merge tasks will be stalled. Moreover, after some

time the throughput of the merger node under consideration will be reduced to

the output rate of the predecessor merger producing the input stream with small

1 We assume here that the complete tree can be mapped. For a detailed discussion see
Subsect. 3.3.

1991Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

data values, so that follow-up mergers might also be stalled as a consequence.

Larger buffers might alleviate this problem, but are not possible if too many

tasks are mapped to one core.

Finally, the merger nodes should be distributed over the cores such that

two merger nodes that communicate data should be placed onto the same core

whenever possible, to reduce communication load on the on-chip interconnection

network. As a secondary goal, if they cannot be placed onto the same core, they

might be placed such that different parts of the on-chip interconnection network

might be used in parallel. However, we do not consider this in the research

presented here.

3 Algorithms for Mapping Merge Trees to Multiple Cores

In this section we present several optimal and approximative algorithms that

compute mappings with such properties. We begin by formalizing the problem

in Section 3.1 and derive lower bounds for the optimization goals in Section 3.2.

The height of the merge trees that we consider for on-chip pipelined merging is

a tuning parameter of our mapping algorithms. For simplicity of computational

load balancing, it could be chosen to match the number of cores used, which is

also done in our implementation. In the remainder of this work we focus on this

standard case; Section 3.3 discusses in general how we could adapt the mapping

techniques to also cover the other cases if needed. Section 3.4 presents an integer

linear programming (ILP) model for computing Pareto-optimal mappings, which

can, in practice, yield optimal solutions for merge trees of height up to 7. We

have chosen ILP over evolutionary approaches because the latter in general do

not guarantee to reach an optimum, and also often do not provide advantages

in optimization time. For mapping larger trees, we present a divide-and-conquer

based approximation algorithm in Section 3.5 and an iterative approximation

algorithm in Section 3.6.

3.1 Definitions

We model the target processor as a set P = {P1, . . . , Pp} of p worker cores

connected by an on-chip interconnection network, see Figure 1. The exact type of

interconnection (such as multiple ring networks in the case of the Cell processor)

is not considered here, as on application level each task can communicate with

each other, no matter where they are placed. Thus, in our model, the cores can

be considered completely interconnected.

The application is modelled by a k-level balanced b-ary tree T = (V,E)

directed towards its root, to be mapped onto the cores. Data flows in the tree

from the leaves towards the root, input being fed in at the leaves and output

leaving the tree root. Each node (task) v in the tree processes b designated

1992 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

memory
on−chip

memory
on−chip

memory
on−chip

Interface to

off−chip memory

1P P2 pP

...

On−chip Interconnection Network

Figure 1: Model of a multi-core processor with explicitly accessible on-chip local

memory for each core.

incoming data streams and combines them into one outgoing data stream of

rate 0 < τ(v) ≤ 1. Hence, the incoming data streams on average will have rate

τ(v)/b, if we assume finite buffering within nodes.

The computational load γ(v) that a node v places on the core it is mapped to

is proportional to its output rate τ(v), hence γ(v) = τ(v). The tree root r has a

normalized output rate of τ(r) = 1. Thus, each node v on level i of the tree, where

0 ≤ i ≤ k−1, has τ(v) = b−i on average. The computational load and output rate

may also be interpreted as node and edge weights, respectively. For Tl(v) being

the l-level sub-tree rooted in v, we extend the definitions to τ(Tl(v)) = τ(v) and

γ(Tl(v)) =
∑

u∈Tl(v)
γ(u). Note that γ(Tl(v)) = l ·γ(v), because the accumulated

rates of siblings equal the rate of the parent. For nodes u and v not in a common

sub-tree, τ({u, v}) = τ(u) + τ(v) and γ({u, v}) = γ(u) + γ(v). In particular, the

computational load and output rate of any tree level equals 1.

The memory load β(v) that a node v will place on the processor it is mapped

to may be assumed to be a constant value c = 1 in a simplified setting, assuming

the node needs a fixed amount for buffering transferred data and for the internal

data structures it uses for processing the data. Yet, in order to optimize perfor-

mance, buffer sizes and data structures may be task-specific, so that the memory

load varies from node to node. In particular, the buffer requirements depend on

the mapping itself, as inter-core data transfers require extra buffer space com-

pared to intra-core transfers. Hence, we distinguish between two memory load

models: The simplified memory load model that charges a fixed memory load c

per node, and the mapping-sensitive memory load model that follows the actual

implementation more closely but leads to more complex optimization problem

instances.

We construct a mapping µ : V → P of tree nodes to cores. As we consider the

cores as symmetric and do not take their interconnection network into account,

we can also view µ as a partitioning of the tree nodes into p partitions named

P1 to Pp.

1993Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Under this mapping µ, a core Pi has computational load2

Cµ(Pi) =
∑

v∈µ−1(Pi)

γ(v),

i.e. the sum of the load of all nodes mapped to it, and it has memory load

Mµ(Pi) =
∑

v∈µ−1(Pi)

β(v)

which is c · |µ−1(Pi)| in the simplified setting.

The mapping µ shall have the following properties:

1. The maximum computational load C∗
µ = maxPi∈P Cµ(Pi) among the cores

shall be minimized. This requirement is obvious, because the lower the max-

imum computational load, the more evenly the load is distributed over the

cores. With a completely balanced load, C∗
µ will be minimized.

2. The maximum memory load M∗
µ = maxPi∈P Mµ(Pi) among the cores shall

be minimized. The maximum memory load is roughly proportional to the

number of the buffers. As the amount of memory per processor is fixed, the

maximum memory load determines the buffer size on this processor. If the

buffers are too small, communication performance will suffer.

3. The communication load Lµ =
∑

(u,v)∈E,µ(u) 6=µ(v) τ(u), i.e. the sum of the

edge weights between cores, shall be low. Note that so far we do not take into

account the length of the communication links on the on-chip interconnection

network.

4. As often as possible, sibling nodes (nodes u and v with a common successor

w, i.e. where (u,w) ∈ E and (v, w) ∈ E) should be mapped to the same

processor.

As explained at the end of Sect. 2, a merger should deliver merged data

buffers at an actual output rate that does not significantly fall short of the

average output rate. A drop in the output rate may be caused by phases

of unequal distribution of data in the input sequences, such that a merger

processes mainly input data coming from one subtree only, which effectively

stalls the other subtree(s). If sibling merger nodes are mapped to the same

processor, a stall of one sibling node leaves a larger share of processor time

to the busier sibling(s). Thus, a more balanced overall output rate of the

siblings can be maintained.

2 The computational load depends on τ and is thus averaged over time.

1994 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

While graph partitioning also tries to balance the computational load and the

memory load, it does not care for memory load and placement of siblings. Fur-

thermore, the algorithms to construct mappings presented in the sequel provide

some guarantees on the results achieved, while graph partitioning algorithms are

heuristics without guarantees.

3.2 Lower bounds

First, we provide lower bounds on computational load and memory load:

Lemma1 Lower bounds. In any mapping µ the maximum computational load

is at least k/p, and the maximum memory load is at least ⌈c · (bk − 1)/((b −

1)p)⌉, under the simplifying assumption that each merge node contributes a fixed

memory load c > 0. If p = k, the maximum memory load is at least ⌈c · (bk −

b)/((b− 1)(k − 1))⌉.

Consider the straightforward mapping µ0 where k = p and where all nodes

of level i are mapped onto processor Pi. Obviously, each processor has computa-

tional load 1, so that the maximum computational load meets the lower bound.

As a further plus, siblings are always mapped to the same processor. However,

the communication load is maximized as child and parent are always mapped

to different cores. Also, assuming a fixed memory load per node of c = 1, the

maximum memory load is reached on processor Pp with bk−1 nodes of level k−1

mapped to that processor. Hence M∗
µ0

= c · bk−1 and thus a factor of about

k/2 ≤ k(b − 1)/b ≤ k away from the lower bound of Lemma 1. This last re-

striction is serious because of the inverse relationship between buffer count and

packet size, i.e. communication performance.

3.3 Tree size and processor count

The computational load of a k-level tree is k · γ(r) = k if the root r has compu-

tational load 1, i.e. if the root task gets a core for itself. Then, for p = k each

processor will receive computational load 1 in the balanced case. However, in the

sorting application, k is defined by the size of the data set, and independently

of p. Therefore, we also consider k > p and k < p.

If k > p, then we may split the tree into subtrees with k′ ≤ p levels each, and

process those subtrees one by one. Each subtree then can be mapped by one of

the other two cases.

If k < p, then we map the tree onto p′ = k pseudo-cores, and implement

each pseudo-core with p/k cores by evenly distributing the nodes assigned to

that pseudo-core. If fewer than p/k nodes are mapped to a core (e.g. if the root

is mapped separately), then we use a technique already known (see e.g. [JáJ92])

1995Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

and mentioned in [IMKN07]: we partition the very large data blocks and perform

merges on the partitions in parallel.

Mappings for the case k = p will be treated in detail in the following subsec-

tions. However, for larger chip-multiprocessors, e.g. with p ≥ 30, even the case

k = p might lead to problems because the tree gets very large (more than 109

nodes for k = p = 30 and b = 2, i.e. more than 107 nodes per core). If this hap-

pens, we split the tree into subtrees with k′ ≪ k levels each, where k′ is chosen

such that the size of the subtrees is small enough to be mapped. Each of those

subtrees is then mapped as in the case k < p, and the subtrees are processed

one by one as in the case k > p.

3.4 Pareto-optimal mapping by integer linear programming

In the following, we number the tree nodes in breadth-first order, i.e. the root

gets index 1, its children 2, 3 etc., and generally, the ith child of an inner node

v gets index b · (v − 1) + i+ 1, for i = 1, 2, ..., b. Let V = {1, ..., (bk − 1)/(b− 1)}

denote the set of tree nodes, Vinner = {1, ..., (bk−1 − 1)/(b− 1)} the set of inner

nodes, and P = {1, ..., p} the set of available cores, where p = k.

Our integer linear programming (ILP) formulation (see Figure 2 for an over-

view) uses three arrays of O(bk · p) boolean variables, x, y and z. The actual

solution, i.e. the mapping of nodes to cores, will be given by x:

xv,q = 1 iff tree node v is mapped on core q.

In order to determine internal edges (where both source and target node are

mapped to the same core) and siblings on the same core, we need to introduce

auxiliary variables z and y:

zu,q = 1 iff non-root node u > 1 and its parent are mapped to core q.

yu,q = 1 iff all children b(u−1)+2, . . . , b ·u+1 of inner node u are mapped

to core q.

Also, we use an integer variable maxMemoryLoad that will indicate the max-

imum memory load assigned to any core in P , a real-valued variable commLoad

that will indicate the amount of communication over the on-chip network, and

integer variable nSiblingsOnDiffCores that will indicate the total number of inner

nodes whose children are not all mapped to the same core.

1996 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Given:
b-ary k-level merger tree with nodes V = {1, 2, ..., (bk − 1)/(b − 1)} to be mapped
to k cores. Moreover, tuning weights ǫM ≥ 0, ǫC > 0, ǫS > 0.

Binary variables:
xv,q = 1 iff node v mapped to core q.
zu,q = 1 iff node u > 1 and its parent are mapped to core q.
yu,q = 1 iff all children b(u− 1) + 2, . . . , b · u+ 1 of node u mapped to core q.

Other variables:
maxMemoryLoad ≥ 0, nSiblingsOnDiffCores ≥ 0 (integer); commLoad ≥ 0 (real).

Objective function:

Minimize ǫM ·maxMemoryLoad + ǫC ·commLoad + ǫS ·nSiblingsOnDiffCores (1)

Constraints:

∀v ∈ V :
∑

q∈P

xv,q = 1 ∀q ∈ P :
∑

v∈V

xv,q · γ(v) ≤ γ(r) = 1 (2)

∀v ∈ Vinner, q ∈ P, i ∈ {1, ..., b} : zb(v−1)+i+1,q ≤ xv,q (3)

∀v ∈ Vinner, q ∈ P, i ∈ {1, ..., b} : zb(v−1)+i+1,q ≤ xb(v−1)+i+1,q (4)

commLoad =
∑

v∈V −{1}

τ(v)−
∑

v∈Vinner

∑

q∈P

(

∑

1≤i≤b

zb(v−1)+i+1,q

)

· τ(bv) (5)

∀v ∈ Vinner, q ∈ P, i ∈ {1, ..., b} : yv,q ≤ xb(v−1)+i+1,q (6)

nSiblingsOnDiffCores =
∑

v∈Vinner

∑

q∈P

(1− yv,q) (7)

For the simplified memory load model:

∀q ∈ P :
∑

v∈V

xv,q ≤ maxMemoryLoad (8)

For the mapping-sensitive memory load model:

∀q ∈ P :
∑

v∈V

2xv,q +
∑

v∈V

(1− zv,q) ≤ maxMemoryLoad (9)

Figure 2: Summary of the ILP model as described in Section 3.4.

1997Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

The following constraints must hold:

Each node must be mapped to exactly one core, and each core can be filled

up to 100% with work3:4

∀v ∈ V :
∑

q∈P

xv,q = 1 ∀q ∈ P :
∑

v∈V

xv,q · γ(v) ≤ γ(r) = 1

The memory load should be balanced. When we use the simplifying assump-

tion of constant memory load c = 1 per node, we request:

∀q ∈ P :
∑

v∈V

xv,q ≤ maxMemoryLoad

In the mapping-sensitive memory load model, we request instead:

∀q ∈ P :
∑

v∈V

2xv,q +
∑

v∈V

(1− zv,q) ≤ maxMemoryLoad

because in our implementation described in the next section all nodes5 use one

(circular) buffer per input stream, and nodes with successors on a different core

require an extra output buffer.

Communication cost occurs whenever an edge is not internal, i.e. its end-

points are mapped to different cores. A straightforward way of expressing which

edges are internal would involve terms that are products of two x variables and

thus the model would no longer be linear. Instead, we apply a common trick

to avoid such products: We use additional slack variables z with the following

constraints

∀v ∈ Vinner, q ∈ P, i ∈ {1, ..., b} : zb(v−1)+i+1,q ≤ xv,q

zb(v−1)+i+1,q ≤ xb(v−1)+i+1,q

and in order to enforce that a zu,q will be 1 wherever it could be, we have to

take up the (weighted) sum over all z in the objective function. This means, of

course, that only optimal solutions to the ILP are guaranteed to be correct with

respect to minimizing memory load and communication cost.

The communication load is the total communication volume over all tree

edges minus the volume over the internal edges:

commLoad =
∑

v∈V−{1}

τ(v)−
∑

v∈Vinner

∑

q∈P

∑

1≤i≤b

zb(v−1)+i+1,q

 · τ(bv)

3 We focus on the case k = p; the general case would need the constraint ≤ k/p.
4 Note that the requirement for strict computational load balancing is implicit in the
latter equation. Recall that all tasks in a k-level tree together have computational
load k · 100% where 100% = γ(1) is the work done by the root merger task and
which exactly matches the computational capacity of one of the k cores. Hence, each
mapping thus fills each core with exactly γ(1) computational work.

5 The root node is handled in a special way but is, for k = p > 3, never the bottleneck
for the memory load.

1998 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

We apply the same approach to determine yv,q:

∀v ∈ Vinner, q ∈ P, i ∈ {1, ..., b} : yv,q ≤ xb(v−1)+i+1,q

The total number of nodes whose children are mapped to different cores is then

nSiblingsOnDiffCores =
∑

v∈Vinner

∑

q∈P

(1− yv,q)

Finally, the objective function is:

Minimize ǫM ·maxMemoryLoad + ǫC · commLoad + ǫS ·nSiblingsOnDiffCores

where the positive weight parameters ǫM , ǫC and ǫS can be set appropriately to

give preference to minimizing for maxMemoryLoad, commLoad, or nSiblingsOn-

DiffCores as first optimization goal. The formulation above requires that ǫC > 0

and ǫS > 0.

Table 1: The Pareto-optimal solutions found with ILP for b = 2, k = p = 5, 6, 7,

using the simplified memory load model (c = 1).

k 5 6 7

binary var.s 305 750 1771

constraints 341 826 1906

maxMemoryLoad 8 9 10 13 14 15 20 21 29 30

commLoad 2.5 2.38 1.75 2.63 2.44 1.94 1.88 2.38 2.31 2.0

By varying ǫM = 1 − ǫC and keeping ǫS ≪ ǫC , two of the Pareto-optimal

solutions can be found, namely one with the least possible maxMemoryLoad

and one with the least possible commLoad. As the memory load is often one

order of magnitude larger than communication load, ǫC ≫ ǫM is necessary to

spot the communication-optimal one. We use a very small ǫS to give the sibling

placement optimization the least priority and not interfere with communication

optimization. In order to find the remaining Pareto-optimal solutions that may

exist in between the two mentioned above, one can use any fixed ratio ǫM/ǫC ,

and instead set a given minimum memory load to spend (which is integer) on

optimizing for commLoad only:

maxMemoryLoad ≥ givenMinMemoryLoad

We implemented the above ILP model in CPLEX 10.2, see [ILO07], a com-

mercial ILP solver. Table 1 shows all Pareto-optimal solutions that CPLEX

found for b = 2 and k = p = 5, 6, 7. The computations for k = 5 and k = 6

1999Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

(a)

22 23 24 25 26 27

11 12 13

6

16 17 18 19 30 31

8 9 15

4

28 29

14

7

3

20 21

10

5

2

1

Core 2

Core 3

Core 4

Core 5

Core 1 (b) 1

2

1514

31302928

3

1110

23222120

54

98

19181716

76

1312

27262524

Core 5

Core 4

Core 3

Core 2

Core 1

Figure 3: Two Pareto-optimal solutions for mapping a 5-level merge tree onto

5 cores, computed by the ILP solver in Section 3.4: (a) The maximum memory

load is 10 communication buffers in the simplified memory load model and 22 in

the mapping-sensitive model (as Core4 has 10 nodes with 2 input buffers each,

and 2 of these have output buffers for inter-core forwarding) and communication

load 1.75 (times the root merger’s data output rate); (b) max. memory load

8 (simplified) and 18 (mapping-sensitive), and communication load 2.5. The

(expected) computational load is perfectly balanced (1.0 times the root merger’s

load on each core) in both cases.

took just a few seconds each, the time to optimize for k = 7 varied between

a few seconds and several hours per givenMinMemoryLoad. For k = 8, with

5088 binary variables and 6369 constraints, CPLEX exceeded the timeout of

24 hours and could only produce approximate solutions, however including one

with maxMemoryLoad of 37 (which matches the lower bound) and a commLoad

of 2.78125, and one with 38 and 2.71875, respectively.

Figure 3 shows the generated tree drawings for two of the solutions for k = 5.

The mapping computed for k = 7 with minimum commLoad is visualized in

Figure 4.

Note that the only mergetree-specific part of the ILP model is the implicit

arrangement of the edges via parents and and children. For taskgraphs of other

2000 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

56 57 58 59 60 61 62 63

28 29 30 31

14 15

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

48 49 50 51 52 53 54 55

24 25 26 27

12 13

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

40 41 42 43 44 45 46 47

20 21 22 23

10 11

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

32 33 34 35 36 37 38 39

16 17 18 19

8 9

6 7

3

4 5

2

1

Core 7

Core 2

Core 4

Core 3

Core 5

Core 1

Core 6

Figure 4: A Pareto-optimal solution for mapping a 7-level tree onto 7 cores with

least communication load, computed by ILP (Sect. 3.4). The same mapping was

also found by the IT-map heuristic (Sect. 3.6).

streaming applications, similar ILP models can be derived by making the con-

straints from edges explicit. We demonstrate this in [KK09] by mapping a data-

parallel computation from a computational kernel and an FFT computation.

3.5 A divide-and-conquer based approximation algorithm

For larger values of k, where the ILP cannot compute an optimal mapping in an

appropriate time, we can use the following divide-and-conquer algorithm (called

DC-map in the sequel) which we present for b = 2.

To construct a mapping µ2 for a k1-level binary tree onto k1 cores, we dis-

tinguish two cases. If k1 ≤ k0, where k0 is a constant, we take a precomputed

optimal mapping. Currently we use k0 = 7. If k1 > k0, we place the tree root

onto one core, and interpret the remaining k1 − 1 cores as two sets of k1 − 1

cores, each with half the computational power. We map a (k1 − 1)-level tree

onto each set recursively. Then we sort the cores in each set according to their

memory load, one set in ascending order, one set in descending order. Finally we

re-combine the i-th cores from both lists into one core with full computational

power.

By construction, DC-map produces a mapping where each core has an op-

timal computational load of 1. The maximum memory load may increase by a

2001Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

factor of b when going from k to k + 1, because b lists are to be combined. In

contrast, the lower bound increases by a factor of about b ·k/(k+1). Thus, if we

start with an optimal solution for k0 and use DC-map to construct a solution for

k1 > k0, the maximum memory load may increase by a factor of bk1−k0 , while

the lower bound increases by a factor bk1−k0k0/k1. Thus, we may be away from

the optimum maximum memory load by a factor of k1/k0.

If the mapping used for k0 levels has a communication load of l, then the

resulting mapping µ2 for k1 levels has a communication load of l + k1 − k0, as

the root in each step is placed on a separate core.

DC-map does not take special care for the placement of siblings. Yet, with

respect to siblings, the majority of the nodes and thus the siblings is in the levels

close to the leaves, which are placed with the help of an optimal mapping.

We have implemented a prototype version of DC-map, which we evaluate

on the basis of optimal solutions for k0 = 3 and k0 = 7. Table 2 depicts the

placement results achieved for k1 = 3, 4, . . . , 8 and k1 = 7, . . . , 12, respectively.

From the numbers it is clear that the algorithm in practice is much closer to the

lower bound than by a factor of k1/k0.

Table 2: Results for the DC-map prototype with simplified memory load model

(c = 1)

k0 = 3 k0 = 7

k1 4 5 6 7 8 8 9 10 11 12

M∗
µ2

6 8 15 24 46 42 84 132 236 453

lower b. 5 8 13 21 37 37 64 114 205 373

quotient 1.20 1.00 1.15 1.14 1.24 1.14 1.31 1.16 1.15 1.21

k1/k0 1.33 1.66 2.00 2.33 2.66 1.14 1.29 1.43 1.57 1.71

3.6 Iterative Approximation Algorithm for Mapping Merge Trees

In the following, we give an alternative approximation algorithm, IT-map, for

mapping b-ary merge trees where the maximum memory load is by a factor at

most b larger than the lower bound. Thus, for large trees with k1 > b · k0, this

approximation algorithm provides a better bound than the previous one.

The IT-map algorithm constructs a mapping µ3 in several steps. Let k0 = k

be the number of levels and cores in step 0. In step i, if ki ≥ 2, we map li ≤ ki−1

of the ki levels, starting from the leaves, onto a respective number of cores, so

that ki+1 = ki − li levels and cores remain. If ki = 1, we map the tree root

onto the last core, and the mapping is complete. As each level of the tree has

2002 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Figure 5: Step i of the construction of mapping µ3 by the IT-map algorithm.

a computational load of 1, the mapping must be such that each core receives a

load of 1 to minimize C∗
µ3
.

We choose li to be the largest power of b less than or equal to ki − 1. The

li levels then consist of bki+1 balanced b-ary trees of li levels each. If li ≤ bki+1 ,

then li divides b
ki+1 because it is also a power of b, and we map bki+1/li trees on

each of the cores. This balances both maximum computational and maximum

memory load.

The case li > bki+1 is illustrated in Fig. 5. In this case, we can write li =

bx ·bki+1 , where x ≥ 1 is an integral number. In this case, we define l′i = li−bx and

first map the l′i levels starting from the leaves. Those levels consist of bki+1+bx

balanced b-ary trees of l′i levels each. As bx ≥ x because of b ≥ 2 and x ≥ 1,

it follows that bki+1+bx ≥ bki+1+x = li and that this number is even an integral

multiple of li because li is also a power of b. Thus, we can map the trees of the

last l′i levels evenly onto the li cores. For the remaining bx levels to be mapped in

this step, we map those levels starting with the level closest to the root having

bki+1 nodes: we map each node onto one core, using bki+1 cores. For the next level

having b · bki+1 nodes, we map b nodes on each core, using another bki+1 cores.

When we have finished with those bx levels, we have used bx · bki+1 = li cores.

Note that this straightforward placement corresponds to applying mapping µ0

for the bki+1 trees of k = bx levels each, with the core capacity scaled down to

b−ki+1 . We might also apply mapping µ3 recursively to further balance the load.

On each core, we have placed a load of l′i/li = 1−b−ki+1 by mapping l′i levels,

and b−ki+1 by mapping the first bx levels. It follows that the computational load

on each core is 1. The maximum memory load is determined in step i = 0,

because the majority of the nodes is mapped there. In this step (bk−bk−l0)/(b−1)

2003Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

nodes are mapped onto l0 cores, so that each core receives a memory load of

bk − bk−l0

(b− 1)l0
< b ·

bk − 1

(b− 1)k

because l0 ≥ k/b. Thus, the memory load is larger than the lower bound by a

factor less than b. Note that this is not completely exact because the bx levels

— if they are used in the first step — are not mapped with a completely even

memory load. However, the imbalance is only very slight, as our simulations will

show.

Each step except the last one contributes at least 1 to the communication

load, as the edges leaving the li levels towards the next level cannot be internal.

If li ≤ bki+1 , then all edges within the li levels are internal, as complete subtrees

are mapped, and thus this step contributes exactly 1 to the communication load.

If li > bki+1 , then the same argument holds for the first l′i levels. The following

level is mapped onto bki+1 cores, so that at a part of the edges entering this level

are internal. The remaining levels li − l′i − 1 are all mapped onto different cores,

so that the edges connecting these levels all contribute to the communication

load. If we define l′i = li for the case li ≤ bki+1 , then the communication load

cannot be larger than k − 1 −
∑

i(l
′
i − 1) = k − 1 + r −

∑

i l
′
i with r being the

number of steps.

In each step, there are at most two levels (the first one of the bx and the first

one of the l′i) where siblings are not placed on the same core.

As in each step i the largest power of b less than ki is chosen as the number

li of levels mapped, the number r of steps made by the mapping algorithm is

one plus the cross sum of k − 1 in b-ary representation, and thus r ≤ 1 + (b −

1) · logb(k − 1).

In Tab. 3, we present the placement results achieved for b = 2 and k =

5, . . . , 12. We see that the maximum memory load is oscillating between the

lower bound and b times the lower bound, in intervals ending at k being a power

of b = 2. We also see that the communication load is rather low. In fact, the

mappings computed by IT-map for k = 5 and k = 7 are Pareto-optimal, they

correspond to the mappings shown in Figures 3(b) and 4, respectively.

4 Implementation on Cell/B.E.

4.1 Cell/B.E.: Overview and Implications of Limited On-Chip

Memory

The Cell/B.E. (Broadband Engine) processor, see [CRDI07], is a heterogeneous

multi-core processor consisting of 8 SIMD cores called SPE and a dual-threaded

PowerPC core (PPE), which differ in architecture and instruction set. In earlier

2004 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Table 3: Results for the iterative approximation algorithm IT-map, based on the

simplified memory load model (c = 1)

k 5 6 7 8 9 10 11 12

M∗
µ3

8 15 30 60 68 128 255 510

lower bound 8 13 21 37 64 114 205 373

Comm. load 2.5 2 2 3 4.5 3.5 2 3

versions of the Sony PlayStation-3TM (PS3), up to 6 SPEs of its Cell proces-

sor could be used under Linux. On IBMs Cell blade servers such as QS20 and

later models, two Cells with a total of 16 SPEs are available. Cell blades are

used, for instance, in the nodes of RoadRunner, which was the world’s fastest

supercomputer in 2008–2009.

While the PPE is a superscalar processor with direct access to off-chip mem-

ory via L1 and L2 cache, the SPEs are optimized for doing SIMD-parallel com-

putations at a significantly higher rate and lower power consumption than the

PPE. The SPE can issue up to 2 instructions in-order per clock cycle, which

puts high requirements on the SPE compiler’s code generator. The SPE data-

paths and registers are 128 bits wide, and the SPE vector instructions operate

on them as on vector registers, holding 2 doubles, 4 floats or ints, 8 shorts

or 16 bytes, respectively. For instance, four parallel float comparisons between

the corresponding sections of two vector registers can be done in a single in-

struction. However, branch instructions can slow down data throughput of an

SPE because branch misprediction penalty is very high (24 to 26 cycles). The

PPE should thus mainly be used for coordinating SPE execution (reduces power

consumption), providing OS service and running control intensive code (branch

penalty in SPEs).

Each SPE has a small local on-chip memory of 256 KBytes. This local store

is the only memory that the SPE’s processing unit (the SPU) can access directly,

and therefore it needs to accommodate both SPU code and data. There is no

cache and no virtual memory on the SPE. Access to off-chip memory is only

possible by DMA put and get operations that can communicate blocks of up to

16KB size at a time to and from off-chip main memory. DMA operations are

executed asynchronously by the SPE’s memory flow controller in parallel with

the local SPU; the SPU can initiate a DMA transfer and synchronize with a

DMA transfer’s completion. DMA transfer is also possible between an SPE and

another SPE’s local store. The DMA packet size cannot be made arbitrarily

small; the absolute minimum is 16 bytes, and in order to be not too inefficient,

at least 128 bytes should be shipped at a time. Reasonable packet sizes are a

few KB in size.

2005Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

There is no operating system or runtime system on the SPE except what

is linked to the application code in the local store. This is what necessitates

user-level scheduling if multiple tasks are to run concurrently on the same SPE.

SPEs, PPE and the memory interface are interconnected by the Element

Interconnect Bus (EIB), see [CRDI07]. The EIB is implemented by four uni-

directional rings with an aggregate bandwidth of 204 GByte/s (peak). Up to

three non-overlapping connections are possible simultaneously on each ring. The

bandwidth of each unit on the ring to send data over or receive data from the ring

is only 25.6 GB/s. Hence, the off-chip memory tends to become the performance

bottleneck if heavily accessed by multiple SPEs.

To allow for overlapping DMA handling of packet forwarding (both off-chip

and on-chip) with computation on Cell, an SPE must either process enough

streaming tasks, or there should be at least buffer space for 2 input packets per

input stream and 2 output packets per output stream of each streaming task to

be executed on an SPE. While the SPU is processing operands from one buffer,

the other one in the same buffer pair can be simultaneously filled or drained

by a DMA operation. Then the two buffers are switched for each operand and

result stream for processing the next packet of data. (Multi-buffering extends this

concept from 2 to an arbitrary number of buffers per operand array, ordered in

a circular queue.) This would amount to at least 6 packet buffers for an ordinary

binary streaming operation, which need to be accommodated in the size-limited

local store of the SPE. Hence, the size of the local store part used for buffers

puts an upper bound on the buffer size and thereby on the size of packets that

can be communicated.

As the size of SPE local store is severely limited (256KB for both code and

data) and the minimum packet size is the same for all SPEs and throughout

the computation, the maximum number of packet buffers of the tasks assigned

to any SPE should be as small as possible. Another reason to keep packet size

large is the overhead due to switching buffers and user-level runtime scheduling

between different computational tasks mapped to the same SPE. Figure 6 shows

the sensitivity of the execution time of our pipelined mergesort application (see

later) to the buffer size.

4.2 Implementation Details

We have implemented the merge phase for a binary merge tree for the case

k = p on the Cell processor. We provide details about peculiar aspects of our

implementation.

4.2.1 Merging kernel

SIMD instructions are being used as much as possible in the innermost loops

of the merger node. Merging two (quad-word) vectors is completely done with

2006 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Figure 6: Merge times (here for a 7-level merger tree pipeline, cf. Sect. 4), shown

for various input sizes (number of 128bit-vectors per SPE), strongly depend on

the buffer size (see right legend) used in multi-buffering.

SIMD instructions as in CellSort, see [GBY07]. In principle, it is possible to

use only SIMD instructions in the entire merge loop, but we found that it did

not reduce time because the elimination of an if-statement required too many

comparisons and forced to duplicate data in different vector positions.

4.2.2 Mapping optimizer

The mapping of merger task nodes to SPEs is read in by the PPE from a text file

generated by the mapping optimizer. The PPE generates the task descriptors

for each SPE at runtime, so that our code is not constrained to a particular

merge-tree, but still optimized to the merge-tree currently used. The mappings

are precomputed, either by integer linear optimization for smaller trees, or by

approximative solutions for larger trees.

4.2.3 SPE task scheduler

Tasks mapped to the same SPE are scheduled by a user-level scheduler in a

round-robin order. A task is ready to run if it has sufficient input and an output

buffer is free. A task runs as long as it has both input data and space in the

output buffer, and then initiates the transfer of its result packet to its parent

node and returns control to the scheduler loop. If there are enough other tasks

2007Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

to run afterwards, DMA time for flushing the output buffer is masked and hence

only one output buffer per task is necessary (see below). Tasks that are not

data-ready are skipped.

As the root merger is always alone on its SPE, no scheduler is needed there

and many buffers are available; its code is optimized for this special case.

4.2.4 Buffer management

Because nodes (except for the root) are scheduled round-robin, the DMA latency

can, in general, be masked completely by the execution of other tasks, and hence

double-buffering of input or output streams is not necessary. If the latency cannot

be masked, the task scheduler skips the tasks using the corresponding buffers

(see above) and thus protects the sending buffer from being overwritten. An

output stream buffer is only used for tasks whose parents/successors reside on a

different SPE. Each SPE has a fixed sized pool of memory for buffers that gets

equally shared by the nodes. This means that nodes on less populated SPEs, for

instance the root merger that has a single SPE on its own, can get larger buffers.

4.2.5 Communication

Data is pushed upwards the tree, i.e. producers/child nodes initiate cross-SPE

data transfer and consumers/parent nodes acknowledge receipt. The (system-

global) addresses of buffers in the local store on the opposite side of cross-SPE

DMA communications are exchanged between the SPEs in the beginning.

4.2.6 Synchronization

Each buffer is organized as cyclic buffer with a head and a tail pointer. A task

only reads from its input buffers, i.e. only updates the tail pointers. A child node

only writes to its parent’s input buffers, i.e. only writes to the head pointer. The

parent task updates the tail pointer of the input buffer for the corresponding

child task; the child knows how large the parent’s buffer is and how much it has

written itself to the parent’s input buffer so far, and thus knows how much space

is left for writing data into the buffer. This assumption is conservative, i.e. safe.

This means that no locks are needed for the synchronization between nodes.

4.2.7 DMA tag management

A SPE can have up to 32 DMA transfers in flight simultaneously and uses

tags to distinguish between these when polling the DMA status. If an SPE

hosts many leaf tasks reading from main memory, it has many buffers used for

remote communication and thus might run out of tags. If that happens, the

tag-requesting task gives up, steps back into the task queue and tries to initiate

that DMA transfer again when it gets scheduled next.

2008 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

5 Experimental results

We used a Sony PlayStation-3 (PS3) with IBM Cell SDK 3.0 and an IBM blade

server QS20 with SDK 3.1 for the measurements. We evaluated the largest data

sets that could fit into RAM on each system, which means up to 32Mi integers

on PS3 (6 SPEs, 256 MiB RAM) and up to 128Mi integers on QS20 (16 SPEs,

1GiB RAM). The code was compiled using gcc version 4.1.1 and run on Linux

kernel version 2.6.18-128.e15.

A number of blocks equal to the number of leaf nodes in the tree to be tested

were filled with random data and sorted. This corresponds to the state of the

data after the local sorting phase (phase 1) of CellSort, see [GBY07]. Ideally,

each such block would be of the size of the aggregated local storage available

for buffering on the processor. CellSort sorts 32Ki (32,768) integers per SPE,

blocks would thus be 4 × 128KiB = 512KiB on the PS3 and 16 × 128KiB =

2MiB on the QS20. For example, a 6-level tree has 64 leaf nodes, hence the

optimal data size on the QS20 would be 64 × 512KiB = 32MiB. However, other

block sizes were used when testing in order to magnify the differences between

mappings. Each experiment was repeated 10 times, and the arithmetic mean of

the runtimes computed. The standard deviation always was less than 10% of the

mean, i.e. rather small.

5.1 On-chip-pipelined merging times

The resulting times with on-chip pipelining for 5-level and 6-level trees on PS3

are shown in Fig. 7 for various ILP-optimized mappings, using the simplified

memory load model. Figure 8 gives a more detailed analysis of the SPE execution

time for some ILP-optimized mappings on PS3 for an input size of 16Mi integers.

The figure reveals that, for such large input sizes, on-chip pipelined mergesort

is still memory-bound. Instead, for tiny input sizes such as 1Mi (not shown) the

buffer capacity is sufficient to overlap almost all DMA waiting with merging.

For QS20, mappings generated for the mapping-sensitive model with ǫM =

0.01, 0.1, 0.5, 0.9 and 0.99 and ǫC = 1 − ǫM were tested on different data sizes

and merger tree sizes from k = 5 to k = 8, see Figs. 9 and 10 for the results6. We

see that the choice of the mapping can have a major impact on merging time, as

even mappings that are optimal for different optimization goals exhibit timing

differences of up to 20%.

The model itself has only limited effect: The best mappings computed with

the simplified model (reported in [HKK10]) were slightly better on QS20 for

k = 5 (by a few percent) and performed for k = 6 and k = 7 equally well as the

best mappings for the mapping-sensitive model. Yet, we observed slightly larger

6 For k = 8, the ILP solver always timed out and the approximative solutions reported
are not always valid, see our remarks above.

2009Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Figure 7: Merge times for k = 5 (left) and k = 6 (right) for different ILP-

optimized mappings (ǫM) based on the simplified memory load model, on PS3.

Table 4: Timings for the CellSort global merging phase vs. Optimized on-chip-

pipelined merging for global merging of integers on QS20

k #ints CellSort Global Merging On-Chip-Pipelined Merging Speedup

5 16Mi 219 ms 174 ms 1.26

6 32Mi 565 ms 350 ms 1.61

7 64Mi 1316 ms 772 ms 1.70

variations in performance across the mappings for each k with the simplified

model, up to 25%. However, the (valid) approximations obtained at timeout for

k = 8 were better with the simplified model.

5.2 Results of DC-map

Using the DC-map algorithm from Subsect. 3.5, mappings for trees for k =

8, 7 and 6 were constructed by recursive composition using optimal mappings

(computed with the ILP algorithm with ǫM = 0.5) as base cases for smaller

trees. Fig. 11 shows the result for merging 64Mi integers on QS20.

5.3 Comparison to CellSort

Figure 12 shows the total time for mergesort on QS20, partitioned into the time

for the local sorting phase and the global merging phase; it is the latter that we

optimize in this work. The time for the merging phase exceeds the time for the

local sorting phase from a data size of 8 Mi integers and increasingly dominates

for larger data sets.

2010 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Figure 8: Distribution of merging time (yellow), non-overlapped DMA-push wait

time (red) and other non-overlapped DMA wait and overhead time (blue), in per-

cent of each SPE’s runtime, of a 5-level tree (upper diagrams) and a 6-level tree

(lower diagrams) each with two ILP-generated mappings (ǫM = 0 and 0.001),

each merging 16M integers on PS3. In all four mappings, SPE0 holds the root

merger. Except for tiny problem sizes such as 512K integers (not shown here)

where merging always accounts for more than 94% of the time even on SPE0,

the application is still memory bound; in particular, SPE0 spends most of its

time waiting for the full output buffers to be flushed to the saturated off-chip

memory and thus cannot overlap merge time with DMA wait time.

Table 4 shows the direct comparison between the global merging phase of

CellSort (which is dominating overall sorting time for large data sets like these)

and on-chip-pipelined merging. We achieve significant speedups for on-chip-

pipelining in all cases; the best speedup of 70% can be obtained with 7 SPEs

(64Mi elements) on QS20, using the mapping with ǫ = 0.01 in Fig. 9; the cor-

responding speedup figure for the PS3 is 143% at k = 6, 8Mi elements. This is

due to less communication with off-chip memory.

2011Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

k = 5

k = 6

k = 7

Figure 9: Merge times for k = 5, 6, 7 and different input sizes on QS20, using ILP-

optimized/approximated mappings (controlled by ǫ = ǫM = 1− ǫC between 0.01

and 0.99 and offset ζ for sibling-criterion weight ǫS either 0.0 or 0.001) based

on the mapping-sensitive memory load model. For k = 7, the best mapping

(ǫM = 0.01) is, apart from symmetries, equal to the one displayed in Figure 4;

it is communication-optimal.

2012 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

k = 8

Figure 10: Merge times for k = 8 and different input sizes on QS20, using three

valid ILP-approximated mappings found for ǫ = ǫM = 1− ǫC set to 0.1, 0.5 and

0.99, and ζ as above, for the mapping-sensitive model.

5.4 Discussion

Different mappings yield some variation in execution times, although there is no

clear trend among the ILP generated Pareto-optimal mappings saying whether

preference for memory load (ǫM) or communication load is more important; one

explanation is that, as the executable only occupies a few KB in the local store,

there is still some slack in the tolerable buffer sizes and thus in the maximum

memory load, as can be seen from Figure 6, making memory load a less critical

factor for smaller trees. Also, not all details of the implementation are covered

by our models.

In the cases observed, mappings generated by DC-map perform not much

worse than ILP-optimized mappings, and can even be better for large trees

(here, for k = 8) where ILP only can deliver coarse approximations after hitting

the timeout. Also, starting from a larger base case tree size k0 does not always

lead to a better mapping.

Interestingly, the best mapping for k = 7 on QS20 (Figure 4) as well as

the best mapping for k = 6 on PS3 are, apart from symmetries, identical to

mappings generated by the iterative approximation algorithm IT-map. Both

mappings happen to be optimal ones with respect to communication load.

Also with on-chip pipelining, using deeper tree pipelines (to fully utilize more

SPEs) is not always beneficial beyond a certain depth k, here k = 6 for PS3 and

k = 7 for QS20, as a too large number of tasks increases the overhead of on-chip

pipelining (smaller buffers, scheduling overhead, tag administration, synchro-

nization, communication overhead). The overall pipeline fill/drain overhead is

2013Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Figure 11: Merge times (64 Mi integers) for trees (k = 6, 7, 8) with mappings

constructed from ILP-optimized mappings of smaller trees (k0 = 5, 6, 7) using

DC-map. As a reference, the best ILP optimized mapping (which is only an

approximation for k = 8, here one determined with the simplified model was

best) is also shown.

more significant for lower workloads but negligible for the larger ones. In gen-

eral, the above upper limit might be higher e.g. because of larger local memories,

although it necessarily exists, as a k-level binary tree has 2k − 1 nodes, so one

of the k cores must host at least 2k/k tasks, which seems unrealistic for k ≫ 20.

As the ILP approach will take very long runtimes for k > 10, the approximation

algorithms will cover the range from that point upwards.

From Fig. 6 it is clear that, with optimized mappings, buffer size may be

lowered without losing much performance, which frees more space in the local

store of the SPEs, e.g. for accommodating the code for all phases of CellSort,

saving the time overhead for loading in a different SPE program segment for the

merge phase.

6 Related Work

Partitioning and mapping of task graphs is, in general, an NP-complete problem

and has been discussed a lot in the literature.

One application area is, as in our case, the parallelization of programs with

given dependence graph for execution on a (mostly, shared memory) parallel

computer, with the objective to balance the work load of the partitions, minimize

the number of partitions (aka. processor minimization), and/or minimize the

overall weight of all edges cut by the partitioning, as all these are supposed to

correspond to expensive shared memory accesses (aka. bandwidth minimization).

2014 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Figure 12: Distribution of overall mergesort times (for 1 to 128 Mi integers) with

CellSort on QS20. The lower (blue) part of each column represents the time for

the local sorting phase. The upper (red) part is the time for global merging,

which we improve by this work.

Another related area is the (spatial) clustering of logic circuits into parti-

tions each matching a maximum chip size constraint, while the communication

between partitions must fit an upper limit on the number of pins per chip. Here,

one is (as in our case) mainly interested in reducing the accumulated weight of

all edges cut between any two adjacent partitions (aka. bottleneck minimization).

There is a wealth of literature on mapping and scheduling acyclic task graphs

of streaming computations to multiprocessors. Some methods are designed for

special topologies, such as linear chains and trees, while others address general

task graphs; only few of them deal with multi-criteria optimization

6.1 Mapping of special topologies

For tree-shaped task graphs, various partitioning algorithms have been proposed.

[Bok88] considers partitioning of trees for master-slave (there called host-

satellite) systems where the partition containing the root is mapped to the mas-

ter (host) processor while the slaves (satellites) are each assigned exactly one

complete subtree that is connected directly to the master partition.

[RJ94a] show that the bandwidth minimization problem is NP-complete even

for trees, and give a fast heuristic algorithm for it. In a follow-up paper [RJ94b]

give polynomial-time greedy algorithms for bottleneck minimization and proces-

sor minimization of tree task graphs.

Most approaches for tree partitioning are for non-pipelined trees and there-

fore assume that the tree partitions should be connected components (i.e., con-

2015Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

tiguous subtrees) and exactly one partition be mapped to one processor. This

does not apply in our case, where partitions can consist of several disconnected

subtrees, so that processors could be better “filled up” to their computational

capacity with residual tree fragments if this improves system throughput. Also,

in our scenario the b-ary tree is always complete, thus we can exploit symmetry

properties when precomputing the mappings.

[LMRT96] consider the problem of mapping a tree that evolves in a search

problem onto a distributed memory parallel computer in such a way that com-

putation and communication times both are minimized. They focus on trees that

evolve dynamically, i.e. are not known beforehand as in our case. The work as-

sociated with each tree node seems to be constant while the computational load

in our case depends on the tree level of the node. As the tree is not kept com-

pletely, memory load plays a minor role. In contrast, we map a tree to be kept

completely in memory. Finally, the trees considered in search problems typically

are far from balanced and their degree is irregular, while we consider balanced

b-ary trees.

[MLZ99] consider non-pipelined, tree-like task graph structures such as re-

duction trees, task graphs for parallel prefix computations and Butterfly graphs,

under the LogP cost model that accounts for transfer latency and limited com-

munication bandwidth in message passing systems. They give polynomial-time

algorithms for computing optimal schedules for special cases. However, memory

constraints or pipelined versions of these task graphs are not considered.

Melot et al. [MKA+12] use integer linear programming to map forests of 6-

level merge trees to the 2D mesh on-chip network of the 48-core Intel Single-Chip

Cloud Computer (SCC), where both the network distance between communicat-

ing tasks and the network distance between an off-chip memory-accessing task

and its closest memory interface are relevant for the quality of a mapping.

6.2 Mapping of general task graphs

In contrast to specific regular topologies such as trees that can be described

completely by very few parameters, mapping of general task graphs allows for

more irregular structures, which requires an explicit representation and makes

it harder to exploit symmetries in the solution of the mapping problem. This is

a main difference between the merge tree case study in this article and related

approaches discussed in the following. For a generalization of our ILP model by

explicit modeling of general pipelined task graphs, such as data flow graphs of

data-parallel operations, see [KK09]; in that work we also provide faster heuris-

tics for the general case, such as a divide-and-conquer based heuristic method

that uses the ILP model to partition both the task graph and the underlying

target platform into several parts that are mapped separately.

2016 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

The approaches for mapping general task graphs can be roughly divided

into two classes: Non-overlapping scheduling and overlapping scheduling. Our

approach belongs to the latter.

Non-overlapping scheduling schedules a single execution of the program (and

repeats this for further input sets if necessary); it aims at minimizing the make-

span (execution time for one input set) of the schedule, which depends strongly

on task and communication latencies, while memory constraints are usually a

non-issue here. A typical result is that all tasks on a critical path are mapped

to the same processing unit. The mapping and scheduling can thus be done by

classical list-scheduling based approaches for task graph clustering that attempt

to minimize the critical path length for a given number of processors. Usually,

partitions are contiguous subgraphs. The problem complexity can be reduced

heuristically by a task merging pre-pass that coarsens the task granularity. See

[KB06] for a recent survey and comparison.

[SK01] propose a heuristic method for memory-aware assignment and sche-

duling of a task graph to a bus- or link-connected set of processing units. Tasks’

memory requirements for code and data are parameterized. Edges between tasks

in different partitions are parameterized by the buffer requirements for sender

and receiver. Based on initial estimations for maximum data memory use, this

iterative optimization method toggles between two strategies for assignment and

scheduling, namely critical path scheduling (which optimizes for the makespan)

and scheduling for minimization of memory usage, trying to balance execution

time and memory utilization of the resulting solution.

For Cell BE, [BLMR08] propose a constraint programming approach for com-

bined mapping, scheduling and buffer allocation of non-pipelined task graphs to

minimize the makespan.

Overlapping scheduling, which is closely related to software pipelining and to

systolic parallel algorithms, see [Kun82], instead overlaps executions for different

input sets in time and attempts to maximize the throughput in the steady state,

even if the makespan for a single input set may be long. Mapping methods for

such pipelined task graphs, especially for signal processing applications in the

embedded systems domain, have been described e.g. in [HR93] and [RGB+08].

Our method also belongs to this second category.

[HR93] work on a hierarchical task graph such that task granularity can be

refined by expanding function calls or loops into subtasks as appropriate. They

provide a heuristic algorithm based on greedy list scheduling for simultaneous

pipelining, parallel execution and retiming to maximize throughput. The result-

ing mapped pipeline is a linear graph where each pipeline stage is assigned one or

several processors. Buffer memory requirements are considered only when check-

ing feasibility of a solution, but are not really minimized for. The method only

allows contiguous subDAGs to be mapped to a processor.

2017Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

[RGB+08] decompose the problem into mapping (resource allocation) and

scheduling. The mapping problem, which is close to ours, is solved by an integer

linear programming formulation, too, and is thus, in general, not constrained to

partitions consisting of contiguous subDAGs as in most other methods. Their

framework targets MPSoC platforms where the mapped partitions form lin-

ear pipelines. Their objective function for mapping optimization is minimizing

the communication cost for forwarding intermediate results on the internal bus.

Buffer memory requirements are not considered.

[HSH+09] discuss the problem of mapping streaming applications represented

as Kahn Process Networks (graphs of streaming tasks communicating via FIFO

queues) to general MPSoC platforms, with the Cell processor as one target.

Technically, they use a form of light-weight, stack-less user-level threads on the

SPEs, similar to our merger tasks (where our case is somewhat simpler as the

code is the same for all mergers except the root), and windowed FIFO buffers for

inter-SPE communication. As test application they use a MJPEG decoder. Their

framework requires the user to specify the buffer sizes and the mapping of tasks

to cores manually in a XML file, whereas these are determined automatically in

our case, where the mapping is co-optimized with respect to the memory needs.

In our approach, the mapping problem is simplified by not considering Cell’s

network topology (four one-directional rings, two per direction) for the mapping

optimization. This simplification is motivated by Cell’s hardware-level abstrac-

tion of the on-chip network as a bus, its high bandwidth and dynamic routing

mechanism, and the limited possibilities for the Cell programmer to control the

placement of SPE tasks to specific SPEs. Adding details about the target topol-

ogy leads to a more complex model that might no longer be solved by exact

methods like ILP for realistic problem sizes. In the literature, heuristics such as

genetic algorithms are often employed for mapping problems with more complex

target models where e.g. optimized routing of communication for minimum la-

tency or contention needs to be considered. Moreover, features such as voltage

and frequency scaling for parts of the chip (such as individual cores) allow for

optimization of power consumption as a second optimization goal in mapping.

For instance, Palesi et al. [PHKC09] consider generic network-on-chip (NoC)

platforms, defined by a topology graph, to which they map application task

graphs, exploiting application-specific information about communicating pairs

of tasks and concurrency or non-concurrency of such communications in order

to avoid contention at network links or deadlocks in routing. Ascia et al. [ACP06]

propose a genetic algorithm to map task graphs to 2D mesh-based NoC systems,

to produce Pareto-optimized mappings in the multi-objective trade-off between

performance and power consumption. Nedjah et al. [NCd11, NCd12] consider the

hardware-software synthesis problem for applications modeled as a task graph

where tasks map to IP blocks, which are to be placed on a generic 2D mesh-based

2018 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

NoC platform such that area and cost constraints are fulfilled, performance is

maximized and power consumption is minimized. A genetic algorithm is used to

solve this multi-objective constrained optimization problem.

[GR05] discuss how to execute streaming programs, i.e. programs written in

a streaming programming language and targeted for streaming architectures, on

a common multicore processor. The tasks either access memory or perform a

computational kernel and form a task graph, where the edges represent the

data dependencies. The mapping discussed is similar to (static or dynamic)

scheduling of task graphs with malleable tasks, where access and computation

shall be overlapped as far as possible. The malleable tasks, i.e. the computational

kernels, are parallelized by multiple threads with similar load.

6.3 Parallel Sorting Algorithms

We discussed Cell-BE-specific parallel sorting algorithms, see [IMKN07, GBY07,

RB07, SB09], already in Section 2. Here we briefly review further related work

on parallel merging.

Our mergesort algorithm, as described above, uses sequential mergers, which

are easy to implement and SIMDize and have relatively low overhead, but make

the root of the merger tree the performance bottleneck. Hence, the parallel time

for mergesort of N elements is Θ(N) even with O(logN) cores. If compared with

sequential mergesort, the speedup is bounded by O(logN). For future genera-

tions of processors with many more cores, one may consider parallel mergers in

the upper levels of the tree to relax the bottleneck. This means that more than

one core must be assigned to such a level in the pipeline tree, and these must

execute a parallel merge algorithm. The closer the level is to the root (i.e., the

more items are to be merged), the more cores must be assigned to it, in order

to balance the load over all cores. Parallel merging is based on parallel binary

searches for ranking one sorted subsequence into another one, see e.g. [JáJ92].

However, the resulting fully parallel mergesort algorithm does O(N log2 N) op-

erations and is thus not work-optimal. This suggests a superlinear cost-up as the

output data rate is to be increased. Anyway, the available memory bandwidth

will again be the main limiting factor.

[Col88] proposed a work-optimal pipelined parallel mergesort algorithm. His

algorithm uses parallel mergers that use a so-called sample, which is a known

subsequence of the merged output sequence, as additional knowledge that allows

merging in parallel. The larger the sample is, the more processors can be utilized.

The key idea is that the merge-with-sample algorithm is applied iteratively on

each pipeline node in order to gradually assemble more and more precise samples

from coarser ones and propagating partial information (samples) upward the tree

as early as possible, in order to keep the nodes of several tree levels active at the

same time.

2019Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Cole’s algorithm is very complicated and has very high overhead, such that it

is not useful for realistic problem sizes. [Nat90] found by simulation on a CREW

PRAM simulator that Cole’s algorithm outperforms Batcher’s bitonic sort only

for problem sizes larger than approximately 3 · 1020, and it outperforms even a

sequential sort routine running on a single PRAM processor only for N > 105.

7 Conclusion and Future Work

With an implementation of the global merging phase of parallel mergesort as a

case study of a memory-intensive computation, we have demonstrated how to

lower memory bandwidth requirements in code for chip-multiprocessors like the

Cell BE by optimized on-chip pipelining.

We have shown that the performance of on-chip pipelining strongly depends

on finding a suitable mapping of the merger tree tasks to cores, and described

it as a multi-objective optimization problem. We proposed and discussed three

algorithms for solving it in general: an ILP formulation that can provide Pareto-

optimal mappings for trees with up to 7 levels within reasonable time, and two

fast approximation algorithms, DC-map and IT-map.

With the best mappings, our implementation for Cell obtained speedups of

up to 70% on QS20 and 143% on PS3 over the global merging phase of CellSort,

which dominates the sorting time for larger input sizes.

On-chip pipelining uses several architectural features that may not be avail-

able in all multicore processors. For instance, the possibility to forward data by

DMA between individual on-chip memory units is not available on current GPUs

where communication is only to and from off-chip global memory. The possibility

to lay out buffers in on-chip memory and move data explicitly is not explicitly

available on cache-based multicore architectures. Nevertheless, on-chip pipelin-

ing will be applicable in upcoming heterogeneous architectures for the DSP and

multimedia domain with a design similar to Cell, such as ePUMA, see [Liu09].

Intels 48-core single-chip cloud computer [Cor10] [HDV+11], which we use as an

experimental platform in ongoing work on on-chip pipelining [MKA+12], sup-

ports on-chip forwarding between tiles of two cores, with 16KB buffer space per

tile, to save off-chip memory accesses. Also, Tilera processors (www.tilera.com)

have a somewhat similar structure. Thus, the techniques proposed are not re-

stricted to the Cell processor.

On-chip pipelining is also applicable to other streaming computations such

as general data-parallel computations or FFT. In [KK09] we have described

optimal and heuristic methods for optimizing mappings for general pipelined

task graphs. This could be combined with a generic on-chip pipelining framework

for streaming computations on Cell, such as the recent framework in [HSH+09].

The downside of on-chip pipelining is more complex code that is harder to

debug. We are currently working on an approach to generic on-chip pipelining

2020 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

where, given an arbitrary acyclic pipeline task graph, an (optimized) on-chip-

pipelined implementation will be generated for Cell or similar target architec-

tures. This feature may, for instance, extend our BlockLib skeleton programming

library for Cell, see [ÅEK08]. An alternative back-end could be the framework

of [HSH+09].

So far, our algorithms do not take into account the communication structure

(communication distances, contention on links) between cores. All permutations

of the cores are considered equivalent with respect to communication perfor-

mance. However, several studies for Cell (see [KV10, SNBS09]) indicate that the

concrete mapping of threads to cores may have a notable influence on the commu-

nication performance. For example on the Cell processor, only non-overlapping

communications can be placed on the same EIB ring at the same time. Other

multicore processors like Intel’s SCC with a mesh network also impose restric-

tions on communication. Hence, in future work we will try to incorporate this

aspect into our mapping algorithms.

Acknowledgements

C. Kessler acknowledges partial funding from EU FP7 (project PEPPHER,

grant #248481, www.peppher.eu), VR (Integrated Software Pipelining), SSF

(ePUMA), SeRC, and CUGS. We thank Nicolas Melot for helping with some

timing detail measurements on PS3. We thank Niklas Dahl and his colleagues

from IBM Sweden for giving us access to their QS20 blade server.

References

[ACP06] Giuseppe Ascia, Vincenzo Catania, and Maurizio Palesi. A multi-objective
genetic approach to mapping problem on network-on-chip. Journal of Universal
Computer Science, 12(4):370–394, 2006.

[ÅEK08] Markus Ålind, Mattias Eriksson, and Christoph Kessler. Blocklib: A skeleton
library for Cell Broadband Engine. In Proc. ACM Int. Workshop on Multicore
Software Engineering (IWMSE’08) at ICSE-2008, Leipzig, Germany, pages 7–14,
New York, NY, USA, May 2008. ACM.

[BLMR08] Luca Benini, Michele Lombardi, Michela Milano, and Martino Ruggiero.
A constraint programming approach for allocation and scheduling on the CELL
Broadband Engine. In Proc. 14th Constraint Programming (CP-2008), Sydney,
pages 21–35. Springer LNCS 5202, September 2008.

[Bok88] Shahid H. Bokhari. Partitioning problems in parallel, pipelined and dis-
tributed computing. IEEE Transactions on Computers, 37(1), January 1988.

[Col88] Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–
785, August 1988.

[Cor10] Anne-Marie Corley. Intel lifts the hood on its “single-chip cloud
computer”. IEEE Spectrum Online (9 feb 2010) report from ISSCC-
2010, spectrum.ieee.org/ semiconductors/processors/ intel-lifts-the-hood-on-its-
singlechip-cloud-computer, February 2010.

2021Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

[CRDI07] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband engine
architecture and its first implementation—a performance view. IBM J. Res. Devel.,
51(5):559–572, Sept. 2007.

[GBY07] Bugra Gedik, Rajesh Bordawekar, and Philip S. Yu. Cellsort: High perfor-
mance sorting on the cell processor. In Proc. 33rd Int.l Conf. on Very Large Data
Bases, pages 1286–1207, 2007.

[GR05] Jayanth Gummaraju and Mendel Rosenblum. Stream Programming on
General-Purpose Processors. In Proc. 38th Int. Symp. on Microarchitecture (MI-
CRO 38), Barcelona, Spain, November 2005.

[HDV+11] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar,
V. De, and R. Van Der Wijngaart. A 48-Core IA-32 message-passing processor in
45nm CMOS using on-die message passing and DVFS for performance and power
scaling. IEEE J. of Solid-State Circuits, 46(1):173–183, January 2011.

[HKK10] Rikard Hultén, Christoph W. Kessler, and Jörg Keller. Optimized on-chip
pipelined merge sort on the Cell/B.E. In P. D’Ambra, M. Guarracino, and D. Talia,
editors, Proc. Euro-Par conference, Part II, LNCS 6272, pages 187–198. Springer-
Verlag, 2010.

[HR93] Phu D. Hoang and Jan M. Rabaey. Scheduling of DSP programs onto
multiprocessors for maximum throughput. IEEE Trans. on Signal Processing,
41(6):2225–2235, June 1993.

[HSH+09] W. Haid, L. Schor, K. Huang, I. Bacivarov, and L. Thiele. Efficient execu-
tion of Kahn process networks on multi-processor systems using protothreads and
windowed FIFOs. In Proc. IEEE Workshop on Embedded Systems for Real-Time
Multimedia (ESTIMedia), Grenoble, France, pages 35–44, October 2009.

[Hul10] Rikard Hultén. Optimized on-chip software pipelining on the Cell BE pro-
cessor. Master thesis LIU-IDA/LITH-EX-A-10/015-SE, Dept. of Computer and
Information Science, Linköping University, Sweden, 2010.

[ILO07] ILOG Inc. Cplex version 10.2. www.ilog.com, 2007.
[IMKN07] Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, and Toshio Nakatani.

AA-sort: A new parallel sorting algorithm for multi-core SIMD processors. In Proc.
16th Int.l Conf. on Parallel Architecture and Compilation Techniques (PACT), pages
189–198. IEEE Computer Society, 2007.

[JáJ92] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
[KB06] Vida Kianzad and Shuvra S. Bhattacharyya. Efficient techniques for clustering

and scheduling onto embedded multiprocessors. IEEE Trans. on Par. and Distr.
Syst., 17(7):667–680, July 2006.

[KK09] Christoph W. Kessler and Jörg Keller. Optimized mapping of pipelined task
graphs on the Cell BE. In Proc. 14th Int. Workshop on Compilers for Parallel
Computing (CPC-2009), Zürich, Switzerland, January 2009.

[Kun82] H. T. Kung. Why systolic architectures? IEEE Computer, 15:37–46, January
1982.

[KV10] Jörg Keller and Anna L. Varbanescu. Performance impact of task mapping on
the Cell BE multicore processor. In Proc. Int. Symp. Computer Architecture (ISCA
2010), 1st Workshop on Applications for Multi– and Many-Core Processors, June
2010.

[Liu09] Dake Liu et al. PUMA parallel computing architecture with unique memory
access. www.da.isy.liu.se/research/scratchpad/, 2009.

[LMRT96] Reinhard Lüling, Burkhard Monien, Alexander Reinefeld, and Stefan
Tschöke. Mapping tree-structured combinatorial optimization problems onto paral-
lel computers. In Solving Combinatorial Optimization Problems in Parallel - Meth-
ods and Techniques, pages 115–144, London, UK, 1996. Springer-Verlag.

[MKA+12] Nicolas Melot, Christoph Kessler, Kenan Avdic, Patrick Cichowski, and
Jörg Keller. Engineering parallel sorting for the Intel SCC. Procedia Computer

2022 Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

Science, 9(0):1890 – 1899, 2012. Proc. Int. Conf. on Computational Science (ICCS
2012), WEPA.

[MLZ99] Martin Middendorf, Welf Löwe, and Wolf Zimmermann. Scheduling inverse
trees under the communication model of the LogP-machine. Theoretical Computer
Science, 215:137–168, 1999.

[Nat90] Lasse Natvig. Evaluating Parallel Algorithms: Theoretical and Practical As-
pects. PhD thesis, Norwegian Institute of Technology, University of Trondheim,
Norway, 1990.

[NCd11] Nadia Nedjah, Marcus Vinicius Carvalho da Silva, and Luiza de Macedo
Mourelle. Customized computer-aided application mapping on NoC infrastructure
using multiobjective optimization. Journal of Systems Architecture - Embedded Sys-
tems Design, 57(1):79–94, 2011.

[NCd12] Nadia Nedjah, Marcus Vinicius Carvalho da Silva, and Luiza de Macedo
Mourelle. Preference-based multi-objective evolutionary algorithms for power-aware
application mapping on NoC platforms. Expert Syst. Appl., 39(3):2771–2782, 2012.

[PHKC09] Maurizio Palesi, Rikard Holsmark, Shashi Kumar, and Vincenzo Catania.
Application specific routing algorithms for networks on chip. IEEE Transactions
on Parallel and Distributed Systems, 20(3):316–330, March 2009.

[RB07] N. Ramprasad and Pallav Kumar Baruah. Radix sort on the Cell broadband
engine. In Int.l Conf. High Perf. Comuting (HiPC) – Posters, 2007.

[RGB+08] Martino Ruggiero, Alessio Guerri, Davide Bertozi, Michaela Milano, and
Luca Benini. A fast and accurate technique for mapping parallel applications on
stream-oriented MPSoC platforms with communication awareness. Int. J. of Par-
allel Programming, 36(1), February 2008.

[RJ94a] Sibabrata Ray and Ilong Jiang. Improved algorithms for partitioning tree
and linear task graphs on shared memory architecture. In Proceedings of the 14th
International Conference on Distributed Computing Systems, pages 363–370, June
1994.

[RJ94b] Sibabrata Ray and Ilong Jiang. Sequential and parallel algorithms for par-
titioning tree task graphs on shared memory architecture. In Proc. International
Conference on Parallel Processing, Volume 3, pages 266–269, August 1994.

[SB09] Daniele P. Scarpazza and Gordon W. Braudaway. Workload characterization
and optimization of high-performance text indexing on the Cell Broadband Engine
(Cell/B.E.). In Proc. IEEE Int. Symp. on Workload Characterization (IISWC ’09),
pages 13–23, October 2009.

[SK01] Radoslaw Szymanek and Krzysztof Kuchcinski. A constructive algorithm for
memory-aware task assignment and scheduling. In CODES ’01: Proc. 9th int. sym-
posium on Hardware/software codesign, pages 147–152, New York, NY, USA, 2001.
ACM.

[SNBS09] C.D. Sudheer, T. Nagaraju, P.K. Baruah, and Ashok Srinivasan. Optimizing
assignment of threads to SPEs on the Cell BE processor. In Proc. 10th Workshop on
Parallel and Distributed Scientific and Engineering Computing (PDSEC at IPDPS
2009), pages 1–8, May 2009.

2023Keller J., Kessler C.W., Hulten R.: Optimized On-Chip-Pipelining ...

