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Abstract

An adaptive procedure for signal representation is proposed. The representation is built up through

functions (atoms) selected from a redundant family (dictionary).

At each iteration the algorithm gives rise to an approximation of a given signal, which is guaranteed

a) to be the orthogonal projection of a signal onto the subspace generated by the selected atoms, and

b) to minimise the norm of the corresponding residual error.

The approach is termed Optimised Orthogonal Matching Pursuit because it improves upon the earlier

proposed Matching Pursuit and Orthogonal Matching Pursuit approaches.

I. Introduction

Traditional methods for signal representation involve the use of orthogonal bases. Nevertheless,

recent methodologies for this purpose have been developed outside the basis setting. These new

methodologies operate by decomposing an arbitrary signal into a linear expansion of waveforms, called

\atoms", that are selected from a large and, in general, redundant family of functions called a \dic-

tionary"[1]. Most of the new dictionaries are redundant and have been constructed within the frame

structure [3], [4], [5], [6], [7], [8], [9]. However, dictionaries of the same redundant nature also arise

as the result of merging bases [10]. Among the existing methods for decomposing a signal in terms

of dictionary atoms [1], [6], [7], [10], [11], [12], [13], [14] we focus here on the Matching Pursuit (MP)

approach [1], since we wish to discuss a natural improvement to that methodology.

MP is a technique to compute adaptive signal representations. The general goal of this technique is

to obtain a sparse signal representation by choosing, at each iteration, a dictionary atom that is best

adapted to approximate part of the signal. Nonetheless, the MP algorithm in its original form [1]

does not provide at each iteration the linear expansion of the selected atoms that approximate the

signal at best. A later re�nement which does provide such approximation has been termed Orthogonal

Matching Pursuit (OMP) [15].

The OMP approach improves upon the MP in the following sense: from the selected atoms through

the MP criterion, the OMP approach gives rise, at each iteration, to the set of coe�cients yielding

the linear expansion that minimises the distance to the signal. However, since it selects the atoms

according to the MP prescription, the selection criterion is not optimal in the sense of minimising the

residual of the new approximation.

We show here that a natural requirement within the MP philosophy results in a selection criterion

amenable to be implemented by the Orthogonal Least Square (OLS) learning approach earlier intro-

duced in the neural networks context [16]. Nevertheless, the mathematical derivation we present in
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this letter yields an iterative procedure allowing us to simultaneously adapt the signal representation

so as to provide, at each iteration, the coe�cients of the linear expansion in terms of the selected

atoms that represent the signal optimally. Such a procedure, that we term Optimised Orthogonal

Matching Pursuit (OOMP), improves upon the OMP one by providing, at each step, the coe�cients

of the linear expansion that minimises the distance to the signal, and the dictionary atom which is

optimal in the same sense.

The letter is organised as follows: In section II the MP procedure is briey discussed. Section III gives

the foundations of the proposed OOMP approach and sketches the algorithm for its implementation.

The �nal remarks are presented in section IV.

II. The MP approach

Let H be a Hilbert space, � a set of indices, and D = f�

n

; n 2 �g a family of functions in H each of

them normalised to unity. Since in practice one deals with a �nite number of such functions we shall

assume that � is a �nite set of, say, N indices and re-label them as: n = 1; : : : ; N . The family D is

referred to as a dictionary and we denote S as the linear span of the dictionary functions, which are

called atoms. Thus, a dictionary is complete if for lim

N!1

the closure of S is equal to H. As already

mentioned, a dictionary is in general redundant, which implies that in the �nite dimensional case the

dimension of S is less than N and in the lim

N!1

a complete dictionary is actually overcomplete.

Given a signal f 2 H the aim is to represent it as a linear combination of atoms selected from D.

The MP approach proposes to make the selection by successive approximations of f . At each step

the corresponding residue is sub-decomposed by projecting it on the dictionary atom that matches

the residue at best. Let R

k

be the kth order residue and l

k

the index n for which the corresponding

dictionary atom �

l

k

yields a maximal value of jh�

n

; R

k

ij ; n = 1; : : : ; N , where h:; :i indicates the inner

product in H.

Starting with an initial approximation f

1

= 0 and residue R

1

= f the algorithm evolves by sub-

decomposing the kth order residue into

R

k

= h�

n

; R

k

i�

n

+R

k+1

; (1)

which de�nes the residue at order k + 1. Since R

k+1

given in (1) is orthogonal to �

n

jjR

k

jj

2

= jh�

n

; R

k

ij

2

+ jjR

k+1

jj

2

(2)

hence, the dictionary atom �

l

k

yielding a maximal value of jhR

k

; �

n

ij minimises jjR

k+1

jj

2

.

From Eq (1) it follows that at iteration k the MP algorithm results in an intermediate representation

of the form:

f = f

k

+R

k+1

(3)
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with

f

k

=

k

X

n=1

h�

l

n

; R

n

i�

l

n

: (4)

Provided that the dictionary is a complete one, in the limit k !1 the sequence f

k

given by (4)

has been shown to converge to f [1]. Nevertheless, if the algorithm is stopped at iteration k the

function f

k

recovers an approximation of f with an error equal to R

k+1

. Since the family of atoms

�

l

n

; n = 1; : : : ; k is in general not orthogonal, the residual R

k+1

will not be in general orthogonal

to the subspace generated by the selected atoms. Let us denote V

k

to such a subspace and let

operator

^

P

V

k

be the orthogonal projector on V

k

. Then

^

P

V

k

is self-adjoint (i.e. it satis�es the relation

h

^

P

V

k

f; gi = hf;

^

P

V

k

gi, for all f and g 2 H) and idempotent (i.e.

^

P

V

k

^

P

V

k

=

^

P

V

k

). It is appropriate

to recall at this point that the closest function to f that can be written as a linear expansion of the

k�atoms �

l

n

; n = 1; : : : ; k is

^

P

V

k

f . Indeed, let g be an arbitrary function in V

k

and let us write it as

g = g �

^

P

V

k

f +

^

P

V

k

f . If we calculate the distance jjf � gjj

2

, since (f �

^

P

V

k

f) 2 V

?

k

(the orthogonal

complement of V

k

in H) we have: jjf � gjj

2

= jjf � g�

^

P

V

k

f +

^

P

V

k

f jj

2

= jjf �

^

P

V

k

f jj

2

+ jj

^

P

V

k

f � gjj

2

,

hence the distance is minimised if g �

^

P

V

k

f . Since, unless the family �

l

n

; n = 1; : : : ; k is orthogonal,

f

k

given in (4) is not the orthogonal projection of f on V

k

, (4) is not the closest approximation of

f that we can obtained in V

k

. A re�nement to the MP method, which does yield an orthogonal

projection approach at each step, has been termed OMP in [15]. The OMP approach improves MP

convergence rate and therefore amounts to a better approximation of a signal after a �nite number of

iterations. However, at each iteration OMP keeps selecting the dictionary atom as prescribed by the

MP approach, although such a selection is no longer an optimal one. In the next section we introduce

a new method that we term Optimised Orthogonal Matching Pursuit (OOMP) which, in addition

to providing the orthogonal projection approximation, at each step selects the dictionary atom that

minimises the corresponding residual error.

III. The OOMP approach

The above mentioned OMP approach provides a decomposition of the signal as given by:

f =

k

X

n=1

c

(k)

n

�

n

+

~

R

k

(5)

where the coe�cients c

(k)

n

are computed so as to guarantee that

P

k

n=1

c

(k)

n

�

n

=

^

P

V

k

f . The superscript

of c

(k)

n

indicates the dependence of these �gures on the approximation step, which entails that at each

iteration the coe�cients are to be re-calculated. Although the OMP approach gives rise to the best

approximation of f that one can obtain by means of the selected atoms, since the atoms are selected

as prescribed by the MP criterion, the choice is not optimum. Indeed, maximisation of jh�

n

; R

k

; ij
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minimises the residue R

k+1

of the MP decomposition (3) but it does not guarantee that the residue

of the OMP decomposition (5) is minimised. In order to achieve optimality in the latter sense we

propose a method, that we term OOMP, which, at each step yields the coe�cients c

(k)

n

giving rise

to the orthogonal projection approximation of f , and selects the dictionary atom that minimises the

corresponding residue.

Let �

l

1

be a function taken out of the set �

n

; n = 1; : : : ; N and let us de�ne V

1

= �

l

1

and V

k+1

=

V

k

� �

l

k+1

. Thus, by denoting W

k+1

as the orthogonal complement of V

k

in V

k+1

, the orthogonal

projector operator onto V

k+1

can be written as:

^

P

V

k+1

=

^

P

V

k

+

^

P

W

k+1

. Consequently, since by

de�nition �

l

k+1

2 V

k+1

, the orthogonal projection of �

l

k+1

onto W

k+1

is a function,  

k+1

say, which

satis�es

 

k+1

=

^

P

W

k+1

�

l

k+1

=

^

P

V

k+1

�

l

k+1

�

^

P

V

k

�

l

k+1

= �

l

k+1

�

^

P

V

k

�

l

k+1

: (6)

The subspace W

k+1

is spanned by the single function  

k+1

so that disregarding those functions  

k+1

of zero norm we can de�ne the normalised to unity functions

~

 

k+1

=

 

k+1

jj 

k+1

jj

(7)

each of which provides the representation of the corresponding orthogonal projection operator onto

W

k+1

as given by:

^

P

W

k+1

f =

~

 

k+1

h

~

 

k+1

; fi:

Our aim is to select, at each step, the function �

l

k+1

minimising the residue jjf �

^

P

V

k+1

f jj

2

. The

following proposition is in order.

Proposition 1: Let functions

~

 

k+1

and  

k+1

be given by (7) and (6), respectively, with  

1

=

~

 

1

= �

l

1

Let function �

(1)

l

1

be equal to �

l

1

and functions �

(k+1)

l

n

be de�ned as:

�

(k+1)

l

n

= �

(k)

l

n

�

~

 

k+1

jj 

k+1

jj

h�

l

k+1

; �

(k)

l

n

i ; n = 1; : : : ; k (8)

�

(k+1)

l

k+1

=

~

 

k+1

jj 

k+1

jj

: (9)

The above de�ned functions provide a representation of the orthogonal projection operator onto V

k+1

as given by:

^

P

V

k+1

f =

k+1

X

n=1

h�

(k+1)

l

n

; fi�

l

n

: (10)

The proof is achieved by induction. For k+1 = 1 h�

(1)

l

1

; fi�

l

1

= h�

l

1

; fi�

l

1

is obviously equal to

^

P

V

1

f

because the residue R

1

= f � h�

l

1

; fi�

l

1

is orthogonal to �

l

1

as it readily follows, i.e. h�

l

1

; R

1

i = 0.

Assuming that (10) holds for label k we shall show it holds for k + 1. Indeed, using (9) and (8) we

obtain:

k+1

X

n=1

h�

(k+1)

l

n

; fi�

l

n

=

k

X

n=1

h�

(k+1)

l

n

; fi�

l

n

+ h

~

 

k+1

jj 

k+1

jj

; fi�

l

k+1
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=

k

X

n=1

h�

(k)

l

n

; fi�

l

n

�

k

X

n=1

h�

(k)

l

n

; �

l

k+1

ih

~

 

k+1

jj 

k+1

jj

; fi�

l

n

+ h

~

 

k+1

jj 

k+1

jj

; fi�

l

k+1

(11)

By hypothesis

P

k

n=1

h�

(k)

l

n

; fi�

l

n

=

^

P

V

k

f and

P

k

n=1

�

l

n

h�

(k)

l

n

; �

l

k+1

i =

^

P

V

k

�

l

k+1

so that from (11) we

have:

k+1

X

n=1

h�

(k+1)

l

n

; fi�

l

n

=

^

P

V

k

f �

^

P

V

k

�

l

k+1

h

~

 

k+1

jj 

k+1

jj

; fi+ h

~

 

k+1

jj 

k+1

jj

; fi�

l

k+1

=

^

P

V

k

f + (�

l

k+1

�

^

P

V

k

�

l

k+1

)h

~

 

k+1

jj 

k+1

jj

; fi =

^

P

V

k

f +

^

P

W

k+1

f =

^

P

V

k+1

f2 (12)

Corollary 1:The coe�cients c

(k+1)

l

n

yielding the orthogonal projection of f onto V

k+1

can be recursively

obtained as:

c

(k+1)

l

n

= c

(k)

l

n

� h�

(k)

l

n

; �

l

k+1

ih

~

 

k+1

jj 

k+1

jj

; fi ; n = 1; : : : ; k (13)

c

k+1

l

k+1

= h

~

 

k+1

jj 

k+1

jj

; fi; (14)

with c

1

1

= h�

l

1

; fi.

Proof: For coe�cients c

(k+1)

l

n

to provide the orthogonal projection of f onto V

k+1

they should satisfy

^

P

V

k+1

f =

k+1

X

n=1

c

(k+1)

l

n

�

l

n

(15)

Thus (13) and (14) readily follow by using (8) and (9) in (10) and identifying c

(k+1)

l

n

with h�

(k+1)

l

n

; fi2

We are now ready to settle the OOMP selection criterion.

Theorem 1: The dictionary atom �

l

k+1

that at iteration k + 1 minimises the norm of the residue

~

R

k+1

is the one yielding a maximal value of the functionals e

n

; n = 1; : : : ; N given by

e

n

=

b

n

d

n

=

jh�

n

;

~

R

k

ij

2

1� h�

n

;

^

P

V

k

�

n

i

; b

n

> 0: (16)

Proof: As discussed above, at iteration k + 1 the OOMP residue should verify:

~

R

k+1

= f �

^

P

V

k+1

f

so that jj

~

R

k+1

jj

2

= jjf jj

2

� h

^

P

V

k+1

f; fi. Thereby, in order to minimise jj

~

R

k+1

jj

2

we should maximise

h

^

P

V

k+1

f; fi. From Preposition 1 (cf. eq. (12)) we have:

h

^

P

V

k+1

f; fi = h

^

P

V

k

f; fi+

1

jj 

k+1

jj

2

jh�

l

k+1

; fi � h

^

P

V

k

�

l

k+1

; fij

2

(17)

so that, since h

^

P

V

k

f; fi is �xed in the previous iteration, (17) is maximised if

jh�

l

k+1

; fi � h

^

P

V

k

�

l

k+1

; fij

2

jj 

k+1

jj

2

=

jh�

l

k+1

; f �

^

P

V

k

fij

2

1� h�

l

k+1

;

^

P

V

k

�

l

k+1

i

=

jh�

l

k+1

;

~

R

k

ij

2

1� h�

l

k+1

;

^

P

V

k

�

k+1

i

(18)

is maximised 2

From the last equation it is clearly seen that the atoms that at iteration k + 1 have a linear depen-

dence with the previously selected atoms yield a value of b

n

(cf. eq. (16)) equal to zero, because they
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ful�ll the condition

^

P

V

k

�

n

= �

n

. Hence, through the restriction b

n

> 0, all the selected atoms are

guaranteed to be linearly independent.

Notice that the additional computational task the OOMP condition introduces, with respect to the

original MP one, is the evaluation of d

n

, the denominator of (16). Corollary 2 below shows that this

condition admits a fast implementation through the so called OLS technique, earlier introduced in the

context of neural network structure optimisation [16].

Corollary 2 The OOMP selection criterion given in (16) is amenable to be implementing by max-

imising the expression:

jh�

n

; fij

2

jj�

n

jj

2

; jj�

n

jj 6= 0 (19)

where for each n the corresponding function �

n

is obtained by orthogonalising �

n

through the Gram

Schmidt technique, with respect to the previously selected atoms, i.e., �

n

= �

n

�

P

k

j=1

~

�

j

h

~

�

j

; �

n

i,

where

~

�

j

= �

j

=jj�

j

jj.

Proof: From the left-hand-side of (18) we have that (16) can be expressed as

jh�

n

;fi�h

^

P

V

k

�

n

;fij

2

jj 

n

jj

2

=

jh 

n

;fij

2

jj 

n

jj

2

On the other hand, if we de�ne

^

P

V

0

as the zero operator, by successive applications of the re-

lation

^

P

V

k

=

^

P

V

k�1

+

^

P

W

k

one arrives at

^

P

V

k

=

P

k

j=1

^

P

W

j

. By using this in (6) it follows that

 

n

= �

n

�

P

k

j=1

~

 

j

h

~

 

j

; �

n

i � �

n

2

Algorithm Sketch

We sketch here an algorithm for selecting functions by implementing condition (19), and successively

adapting the corresponding coe�cients yielding the orthogonal projection of the signal onto the se-

lected subspace.

From

~

R

0

= f and the inner products h�

n

; fi ; n = 1; : : : ; N the OOMP algorithm evolves as follows:

i) Initially set:

k = 1 ; 

n

= �

n

; d

n

= 1 (n = 1; : : : ; N) and l

1

equal to the index n for which jh�

n

; fij takes a

maximal value as n ranges from 1 to N .

Assign  

1

= �

l

1

= �

1

; c

1

= h�

l

1

; fi and jj

~

R

1

jj

2

= jj

~

R

0

jj

2

� jc

1

j

2

ii) for n = 1; : : : ; N compute:



n

= 

n

�  

k

h 

k

; �

n

i

b

n

= h

n

; fi

d

n

= d

n

� jh 

k

; �

n

ij

2

(or d

n

= jj

n

jj

2

)

if jb

n

j < � (tolerance parameter) ; e

n

= 0, otherwise e

n

= jb

n

j

2

=d

n
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iii) Increase k to k + 1 and set l

k

equal to the index n for which e

n

takes a maximal value as n

ranges from 1 to N . Assign jj

~

R

k

jj

2

= jj

~

R

k�1

jj

2

� e

l

k

. Assign  

k

= 

l

k

=

p

d

l

k

and �

k

= 

l

k

=d

l

k

Compute c

k

= h�

k

; fi

iv) For n = 1 : : : ; k � 1 compute:

�

n

= �

n

� �

k

h�

l

k

; �

n

i

c

n

= c

n

� h�

l

k

; �

n

ic

k

(where h�

l

k

; �

n

i indicates the complex conjugate of h�

l

k

; �

n

i)

v) Repeat steps ii), and iii) and iv).

As in the previous MP algorithms, the OOMP algorithm is to be stopped when some criterion is

achieved. In the context of signal representation a popular stopping criterion is given by

jj

~

R

k

jj

2

� � (20)

where � is the desired precision.

It should be stressed that in the case of �nite dictionaries, or in the case of incomplete dictionaries

when N ! 1, if such dictionaries are inappropriate for representing the signal at hand within

the desired precision, all linearly independent atoms will be selected before the stopping criterion

is satis�ed. If that were the situation, after a number of iterations we would obtain b

n

= 0 ; n =

1; : : : ; N . Then the algorithm should be stopped given the warning \convergence failure".

Let us assume that the given stopping criterion is reached at iteration K. At such stage the above

algorithm has selectedK indexes l

k

; k = 1; : : : ;K and has computed the corresponding coe�cients c

l

k

.

Then we are now in a position to represent the signal f as a linear combination of the corresponding

K dictionary atoms �

l

n

; n = 1; : : : ;K, i.e.

f =

K

X

n=1

c

l

n

�

l

n

+

~

R

K

: (21)

IV. Conclusions:

A method for representing signals by selecting functions (atoms) from a redundant family (dictio-

nary) has been advanced. The approach, that we termed OOMP, improves upon the previous MP

and OMP approaches in that at each step it provides: a) the orthogonal projection of the signal onto

the subspace generated by the selected atoms and b) the dictionary atoms minimising the norm of the

corresponding residual error. It has been shown that the proposed selection criterion is amenable to

be implemented by the OLS technique earlier introduced in the neural network context. Nevertheless,

the derivation we give here amounts to a procedure for adapting, at each iteration, the coe�cients of

the linear expansion approximating the signal.
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The above remarks, along with the fact that the technique allows for the use of atoms of di�erent

nature for representing di�erent properties of a given signal, leads us to expect the proposed method

will be of assistance in a broad range of signal processing applications.

References

[1] S. Mallat and Z. Zhang, \Matching Pursuit in time-frequency dictionary". IEEE Transactions on Signal Processing,

Vol 41, pp 3397-3415 (1993)

[2] R. J. Du�n, A. C. Sha�er, \A Class of Nonharmonic Fourier Series", Trans. Amer. Math. Soc., Vol 72, pp 341-366,

1952.

[3] R. M. Young, An Introduction to Nonharmonic Fourier Series (Academic Press, New York, 1980).

[4] I. Daubechies, A. Grossmann, Y. Meyer, \Painless nonorthogonal expansions", Journal of Mathematical Physics,

Vol 27, pp. 1271-1283, (1986).

[5] I. Daubechies, \The Wavelets Transform, Time Frequency Localisation and Signal Analysis", IEEE Transactions

on Information Theory Vol 36, pp 961-1005 (1990)

[6] I. Daubechies, Ten Lectures on Wavelets (CBMS-NSF, SIAM, Philadelphia, 1992).

[7] G. Kaiser, A Friendly Guide to Wavelets (Birkh�auser, Berlin, 1994).

[8] L. Rebollo-Neira, \Frames of cross- ambiguity functions", IEEE Signal Processing Letters, Vol. 7, 10, pp 293-296

(2000).

[9] L. Rebollo-Neira,\Frames in two dimensions arising from wavelet transforms", Proceedings of the Royal Society,

series A, Vol 457, 2013, pp 2079-2091 (2001)

[10] A. P. Berg, W. B. Mikhael, \An e�cient structure and algorithm for image representation using non-orthogonal

basis images", Vol. 44, 10, pp 818-828 (1997).

[11] L. Rebollo-Neira, J. Fernandez-Rubio, A. Plastino, \Frames a Maximum Entropy Statistical Estimate of the Inverse

Problem", Journal of Mathematical Physics, Vol 38, 9, pp 4863-4871 (1997).

[12] R. R. Coifman, M. V. Wickerhauser. `Entropy-based algorithms for best-basis selection", IEEE Transactions on

Information Theory , Vol 38, pp 713-718 (1992).

[13] R. R. Coifman, Y Meyer, M. V. Wickerhauser, \Wavelets analysis and signal processing" pp 153-178, and \Size

properties of wavelet packets" pp 453-470, in Wavelets and its applications, M. B. Ruskai et al eds, Jones and

Bartlett, Boston (1992).

[14] S. S. Chen, D. L. Donoho, M. A. Saunders, \Atomic Decomposition by Basis Pursuit", SIAM, Journal on Scienti�c

Computing, Vol 20, 1, pp 33-61 (1998).

[15] Y. C. Pati, R Rezaiifar, P. S. Krishnaprasad. \Orthogonal matching pursuits: recursive function approximation

with applications to wavelet decomposition. \Proceedings of the 27th Asilomar Conference in Signals, Systems and

Computers (1993)

[16] S. Chen, C. F. N. Cowan, and P. M Grant, \Orthogonal Least Square Algorithm for Radial Basis Function Networks,

IEEE transaction on Neural Networks, Vol 2, 2, pp 302-309 (1991)

DRAFT


