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Abstract

In this paper we provide a detailed analysis of overlay metrology mark and find the mapping between various

properties of mark patterns and the expected dynamic precision and fidelity of measurements. We formulate the

optimality criteria and suggest an optimal overlay mark design in the sense of minimizing the Cramer-Rao lower bound

on the estimation error. Based on the developed theoretical results, a new overlay mark family is proposed - the grating

marks. A thorough testing performed on the new grating marks shows a strong correlation with the underlying theory

and demonstrate the superior quality of the new design over the overlay patterns used today.
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I. Introduction

Accurate and precise overlay metrology is a critical requirement in order to achieve high product

yield in microelectronic manufacturing. New challenges become evident as microlithography processes

are developed for each new design rule node. A critical link in the overlay metrology chain is the

metrology mark which is chosen to be included on the reticle, printed on the wafer, subsequently

processed and which is ultimately imaged in the metrology tool in the metrology process. In this
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publication a theoretical and experimental study is described which shines new light on the limitations

of existing mark designs while proposing and validating new designs of superior performance.

In Figure 1 a standard overlay (BiB1) mark is shown schematically. It consists of two ”boxes” printed

on two subsequent layers - top (grey) and bottom (black) - between which the overlay is measured.

By design the centers of symmetry of the inner (grey) and outer (black) boxes coincide. The actual

overlay appears as misregistration between the centers of symmetry of the ”black” and ”grey” layers.

Fig. 1. Standard BiB mark (schematically)

There are two major use cases in overlay metrology for microlithography. The first and the most

obvious is termed lot dispositioning. If measured overlay exceeds some allowable threshold, the lot

cannot proceed to the next process step. This generally results in rework, that is the lot is returned to

the previous lithography step after the resist is stripped. This is provided the overlay measurements

were done immediately after development. Under some circumstances the overlay measurements after

development are not viable, and are done after etch. In this case, there is no option for rework, and

lots outside of allowable thresholds are scrapped.

The second use case of overlay metrology is for correction of the exposure tool. Usually, the overlay is

measured at four corners of the field and over several fields on the wafer, which provides the necessary

1In the present paper we unify all conventional overlay mark types - box-in-box, bar-in-bar, frame-in-frame, etc. - under the
generic abbreviation ”BiB”.
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statistical sampling to enable stepper corrections model to be calculated. This model includes intra-

field and inter-field correctibles, such as offset, rotation and scale. These correctibles are fed back to

the exposure tool to improve performance on subsequent lots.

Conventional BiB based metrology has been the standard overlay metrology for almost two decades.

However, as the overlay budget shrinks together with the lithographic design rules, a number of

performance limitations are becoming evident. These shortcomings are addressed in the section below.

Application of grating structures to lithography and metrology fields is being extensively studied. One

of such applications is for scatterometry based critical dimension (CD) metrology ([9], [16], [15], [11]).

Gratings are also used for phase shift monitoring ([7]). ASML is using grating patterns as alignment

marks ([14]). In the current paper we introduce grating marks for overlay metrology.

A. Device Correlation

As design rules shrink to 100nm and below, difference in BiB feature size and device feature size

have become significant. Both lithographic pattern placement errors (PPE) [4], [10] and influences

of other processes (like chemical-mechanical planarization - CMP) are known to be feature size and

density dependent [12]. Therefore, overlay metrology results based on BiB marks may suffer from

discrepancies compared with device feature overlay.

B. In-chip to Scribe-Line Discrepancy

Another source of BiB-to-device overlay discrepancy originates from their different spatial location

in the exposure tool field. Typically, BiB marks are printed in the scribe lines near the field corners.

Optical conditions (aberrations, focus deviations, etc.) near the field edges may differ from those in

the field interior, where the device features are printed. Since both overlay budget and process window

(as defined by allowed exposure tool focus and exposure) shrink together with the design rules, in-chip

to scribe-line discrepancies are becoming critical.
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C. Process Robust Marks

Conventional BiB marks are frequently considered design rule violations in modern IC manufac-

turing processes. BiB marks are generically built of wide lines and require empty surrounding spaces

(exclusion zones; see Figure 1) for successful measurement. Both these facts usually contradict pattern

density and feature size design rule requirements commonly in practice today. Such violations make

handling of BiB marks by the layout engineer problematic and more importantly have a negative

impact on process robustness of the metrology mark since the process is optimized for features and

patterns of significantly different dimensions [6].

D. Tool Induced Shifts

Currently overlay measurements are performed on optical imaging based tools. Optical aberrations

and illumination imperfections are an unavoidable reality of optical metrology system design and

manufacture. A simple and quantitative metric of the quality of the optical metrology tool is Tool

Induced Shift (TIS). TIS is defined as the average of the overlay measurements performed on a given

overlay mark before and after rotation by 1800:

TIS =
(

OV L(00) + OV L(1800)
)

/2. (1)

Non-zero TIS is an indication that the metrology tool has induced a systematic discrepancy in the

overlay result due to the above system imperfections. TIS is however, by definition, a calibratable

error, if measurements are performed at both orientations on a subset of representative marks. A

more important metrology uncertainty contributor is TIS variability, defined as 3 times the standard

deviation of the TIS measured over N sites across the wafer.
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E. Information Content

In spite of the large space occupied by the conventional BiB mark, it contains a relatively sparse

amount of information for overlay measurement. Generically, each BiB mark consists of four inner

and four outer bars only, usually utilizing less than 20% of the occupied real estate. By increasing the

informational content of the overlay mark one can minimize the effect of random (both spatial and

temporal) noise on overlay measurement. There are two measurable parameters representing overlay

measurement uncertainty due to spatial and temporal noise: Dynamic Precision and Overlay Mark

Fidelity (OMF) respectively.

F. Dynamic Precision

Dynamic Precision is defined as 3 times the standard deviation of the results of a series of mea-

surements of the same overlay mark, when these measurements are done in a dynamic loop (including

wafer alignment, mark acquisition and measurement itself). This parameter quantifies temporal noise

in the measurement of a given overlay mark.

G. Overlay Mark Fidelity (OMF)

Suppose, one can eliminate the temporal noise in the overlay measurement (by means of averaging

over many dynamic loops of measurements on the same mark). This still does not ensure that by

measuring two nominally identical marks one will obtain identical results. Overlay Mark Fidelity

(OMF) is defined as 3 times measurement results of the N densely printed identical overlay marks

after compensating for dynamic precision [1] (see Figure 2).

In the present paper we dwell on the last 3 shortcomings, that is information content, precision and

mark fidelity. We first compare different mark design options from a theoretical perspective, focusing

on the sampling, temporal noise, and spatial noise aspects. We then introduce an optimized grating

overlay mark, which demonstrates superior performance over the conventional BiB marks. We present
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Fig. 2. Schematic arrays of densely printed overlay marks used for OMF calculation

experimental data on dynamic precision (as a measure of temporal noise) and OMF (as a measure of

spatial noise) for the new grating overlay marks as compared with conventional BiB marks.

II. Theory: Designing Patterns for Optimal Overlay Registration and Position

Estimation

In this section we analyze the dependence of the dynamic precision and fidelity of the overlay

measurement on various pattern parameters. The overlay measurement is based on measurements of

horizontal and vertical positions of known patterns.

Figure 3 shows an example of the BiB overlay mark with right-outer and top-inner regions of interest.

Fig. 3. ‘BiB overlay mark with right-outer and top-inner regions of interest

The frame’s edges are corrupted by noise whose character depends on various factors. We shall deal

with two types of noise: additive Gaussian noise at the wafer level and additive Gaussian noise at the

camera level. The first type of noise is spatial noise whose source is the manufacturing process, and
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the second type is a dominant source of the temporal noise in the measurement process.

In this paper we explore how the position estimation error is affected by various pattern character-

istics and by the parameters of the measurement process, by deriving the Cramer-Rao lower bound on

the estimation error for arbitrary patterns and, then address the question of designing patterns that

are optimal in the sense of minimizing the location error.

A. Problem Definition

We shall first deal with the measurement of horizontal position of a known 1-D pattern g0(x) in

a two dimensional image. Vertical position estimation can be done in a similar way. We assume in

this case that the measurement is performed for every image row independently, and then an average

pattern location estimate is returned as a result.

A periodic pattern of lines may be represented by

g(x, y) = g0(x) + ns(x, y), (2)

where g0(x) is a one-dimensional pattern repeated on every line and ns(x, y) is the ‘spatial noise’ on

the wafer.

Then the pattern at each row of the image acquired by the camera can be described by

f(x) = g ∗ h + nt, (3)

where h is an overall point spread function, composed of the optical and camera point spread functions,

∗ is the convolution operator, and nt is the temporal noise at the camera output. All signals are

assumed band limited and the noise terms are assumed to be filtered and hence band limited, white

and Gaussian.

The task is to find best match locations of the designed pattern g0(x) given the signals f(x) measured
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over all image rows. In the analysis below we derive the distribution of the pattern location estimates

over all measurements. The statistical analysis is based on the Cramer-Rao bound, a well-known

statistical tool [8], [5].

We can now define the following three problems

1. Find the dependence of the dynamic precision and overlay mark fidelity (OMF) metrics on the

general parameters characterizing an one dimensional pattern and the measurement method without

going into the detailed structure of the pattern g0(x).

2. Given the pattern g0(x), what is a lower bound on the unbiased estimation of the pattern location?

3. What is the optimal pattern g0(x) in the sense of minimizing the Cramer-Rao lower bound on the

estimation error?

B. Dynamic Precision and Fidelity Estimations

In this section we evaluate the precision and fidelity of the measurement process based on some

general physical parameters of the measured signal and the measurement process, such as optical

system aperture, wave length, pattern size, signal to noise ratio and others, without considering the

detailed structure of the pattern g0(x).

B.1 Single Line Measurement

On every image row we estimate the pattern location by using the optimal Matched Filter or

correlation method. Let θ̂ be the estimator of the pattern location θ of one dimensional signal f(x)

immersed in white Gaussian noise. It is known on the basis of very general statistical principles that

the variance of θ̂ is bounded below by the Cramer-Rao bound, which is given by (see for example [8],

[5]).

var(θ̂) =
1

d2β2
, (4)
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where d2 = 2E/N , E is the signal’s energy, N is the unilateral spectral density of the noise, and

β2 =

∞
∫

−∞

ω2 |F (ω)|2 dω/

∞
∫

−∞

|F (ω)|2 dω

is the square of the effective bandwidth of the signal, where F (ω) is a Fourier transform of f(x). Using

the definitions E = PT , N = PN/B and SNR = P/PN where P is the average signal power, T is the

signal length, PN is the noise power and B is the noise bandwidth, we get

var(θ̂) =
1

2β2 · T · SNR · B .

This formula shows that the precision is a function of the signal and noise bandwidths, signal to noise

ratio, and the overall length of the signal.

We shall deal with two kinds of noise:

• Spatial noise originating from the mark itself. This noise undergoes convolution with the point

spread function h and therefore its band width is dictated by the optical system. In this case we

assume nt(x, y) = 0.

• Temporal noise originating mainly from the camera. This noise is of higher bandwidth since we work

in conditions of over sampling and the pixel size is assumed to be roughly 5 times smaller than the

optical resolution length. In this case we assume ns(x, y) = 0.

In both cases the effective bandwidth of the signal is dictated by the optical system. The upper

bound for β is dictated by diffraction and can be approximated as the reciprocal of the Rayleigh

resolution distance which is given by

δ =
0.61 · λ

NA
,

where λ is the optical wavelength and NA is the numerical aperture of the optical system.

Using βmax = 2π
δ

= 2π·NA
0.61·λ

we get the following expression for the standard deviation of the pattern
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location:

std(θ̂) ≥ 0.61 · λ
2π · NA

√

1

2 · T · SNR · B

With all other factors equal, the standard deviation of temporal noise case is smaller because the

noise bandwidth is larger. By increasing T while keeping all other factors constant we decrease the

variance.

B.2 Multiple Line Measurement

When we repeat the measurement for multiple image rows we should get the same results with

different random jitter or estimation noise. When we take the average of the measurements the

precision is increased by the square root of the number of independent measurements. Let us measure

L rows with the same method. We shall deal with two cases: Temporal Noise and Spatial Noise.

B.3 Temporal (Measurement) Noise

The number of independent measurements is L, and therefore the standard deviation will obey

std(θ̂) ≥ 0.61 · λ
2π · NA

√

1

2 · T · SNR · B · L

This gives us the dynamic precision of the measurement. If we put the following numbers as a

concrete (real life) example λ = 0.6µm , NA = 0.8, T = 5µm, SNR = 256, B = 6µm−1, L = 100 we

get

std(θ̂) ≥ 0.06nm

B.4 Spatial (Pattern) Noise

In this case the number of independent measurements is not L since the optical point spread function

blurs the noise. Let us call ∆ the vertical sampling interval on the wafer. The number of independent
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measurements is approximated by

Leff = L
∆

δ
.

In addition the noise bandwidth B is roughly the inverse of the optical spatial resolution δ. The

standard deviation of the measurement, interpreted as the Statistical Accuracy (OMF) will hence obey

std(θ̂) ≥
(

0.61 · λ
NA

)2
1

2π

√

1

2 · T · SNR · L · ∆ .

If we use the following numbers for a concrete (real life) example λ = 0.6µm, NA = 0.8, T = 5µm,

SNR = 256, L = 100, ∆ = 0.08µm, we obtain

std(θ̂) ≥ 0.23nm.

The expressions for the statistical precision and fidelity (OMF) are very similar, except the de-

pendence on NA and λ. In order to increase both precision and fidelity we need to decrease the

wavelength, and to increase the information content of the signal (the effective bandwidth), the sig-

nal’s spatial region (T and L) and the signal to noise ratio. In order to reach the bound we have to

use a signal whose effective bandwidth achieves βmax. This means that the signal fully exploits the

frequency band up to the limit of diffraction.

C. Lower Bound Estimation - Exploring the Detailed Structure of the Pattern

In this section we derive a lower bound on the estimation error for locating a known one dimensional

pattern g0. Unlike the previous section, this time we wish to get an expression for the Cramer-Rao

bound for a known pattern, in order to gain some intuition on how optimal patterns should look like.

From 2 and 3, the observed signal f(x) is given by

f(x) = ((g0 + ns) ∗ h) + nt = g0 ∗ h + (ns ∗ h + nt) = g0 ∗ h + n, (5)
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where n = ns ∗ h + nt is an overall noise added to the designed pattern g0. We assume that h is a

gaussian point spread function (PSF), with standard deviation of σs and n(x) ∼ N(0, σn) is a zero-mean

white gaussian noise.

Our measurement vector, M̆ = {M̆k} is constructed by sampling the f(x) on a uniform pixel grid.

We assume that the first sample, M̆0, has an offset of θ from the origin.

Since M̆ consists of statistically independent, due to the whiteness of the noise, measurements M̆k,

and since the additive noise is Gaussian, we can write the probability function as

p(M̆ |θ) =
1

(2πσ2
n)

N

2

exp

{

− 1

2σ2
n

N
∑

k=1

(

M̆k(θ) − M̃k(θ)
)2

}

, (6)

where N is the number of measurements (pixels), and M̃k is the set of samples of g0 ∗ h, taken at the

same positions as M̆k.

For convenience we use another form of the (scalar) Cramer-Rao bound [8], [5]:

var(θ̂) ≥ I−1(θ) , (7)

where I(θ) is the (scalar) Fisher information matrix

I(θ) = −E

[

∂2 ln p(M̆ |θ)
∂θ2

]

.

For our Gaussian case, using Equation 6 it is easy to derive that:

I(θ) =
1

σ2
n

N
∑

k=1

(

∂M̃k(θ)

∂θ

)2

=
1

σ2
n

N
∑

k=1

(

∂

∂θ
[g0(x) ∗ hσs

(x)]x=k+θ

)2

=
1

σ2
n

N
∑

k=1

(

[

g0(x) ∗ h
′

σs
(x)
]

x=k+θ

)2
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=
1

σ2
n

N
∑

k=1

(

−
∫

∞

−∞

x√
2πσ3

s

exp

{

− x2

2σ2
s

}

g0(k + θ − x)dx

)2

, (8)

where 0 ≤ θ < 1. Notice that the Fisher information term, and therefore the Cramer-Rao bound

depend on θ.

Sometimes, more intuition regarding the properties of the pattern g0(x) can be gained from the

following way to rewrite of the Fisher information expression in Equation 8

1

2πσ2
nσ6

s

∫

∞

−∞

∫

∞

−∞

x1x2 exp

{

−x2
1 + x2

2

2σ2
s

}

N
∑

k=1

g0(k + σ − x1)g0(k + σ − x2)dx1dx2 .

By limiting our discussion to binary input patterns we can obtain even simpler expression for the

Cramer-Rao bound. Assuming the pattern g0(x) is composed of B rectangular blocks, whose left

end right edges coordinates are {(li, ri)|i = 1..B}, the smoothed signal g0(x, θ) ∗ hσs
(x) can be easily

computed using the erf function as

g0(x, θ) ∗ hσs
(x) =

1

2

B
∑

i=1

(

erf

(

ri + θ − x√
2σs

)

− erf

(

li + θ − x√
2σs

))

where

erf(x) =
2√
π

∫ x

0

e−t2dt.

Then the Fisher information vector will be given by

I(θ) =
1

σ2
n

N
∑

k=1

(

∂M̃k(θ)

∂θ

)2

=
1√

2πσsσ2
n

N
∑

k=1

B
∑

i=1

[

e
−

(ri+θ−k)2

2σ2
s − e

−
(li+θ−k)2

2σ2
s

]

. (9)
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D. Design of an Optimal Pattern g0(x)

In [2](see also [3]) Bruckstein et al. showed how to design a overlay mark pattern of N pixels that

achieves an estimation of the position with exponential lower bound Ω(2−N) accuracy. Optimality of

this pattern was shown in the sense of information theory. Unfortunately, in our model that uses the

Cramer-Rao bound as optimality criteria, and includes PSF smoothing of the pattern and additive

gaussian noise, the BO&O overlay mark designed in [2] is not optimal.

The information theory approach in [2] uses the actual values of the pattern, i.e. zeros and ones. For

every additional pixel, the uncertainty of the estimation that was achieved with the previous pixels

is improved by a factor of two as the pattern is designed so that the last pixel has a value of ”0” for

half of the uncertainty area and a value of ”1” for the other half. The Cramer-Rao bound on the

other hand uses the changes in the pattern, i.e. its derivative. This means that the optimal pattern

should have high derivative for all values of θ (0 ≤ θ < 1). The BO&O pattern of [2] is not optimal

in the Cramer-Rao bound sense because of two main reasons: first, for the lower frequency part of

the pattern, the derivative of the pattern is zero over a large ”wasted” areas. Second, for the high

frequency part, the changes in the pattern are too dense and will be completely smoothed out by the

imaging PSF.

D.1 Designing an Offset Invariant Bound Pattern

As we have already mentioned, the Cramer-Rao bound is not a scalar (number), but rather a function

of the offset θ. Hence the same pattern that undergoes different transformations (translations) yields

different Cramer-Rao lower bounds for the different values of the transformation parameters. Therefore

we would be interested in an integral measure that guarantees that for any transformation, i.e. for

all the possible range of translations, we would be able to recover the transformation parameters with

high accuracy.

This implies that the pattern is to be designed in such a way that its derivatives are as large as
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possible over all the x-support of the pattern (other than a small number of points where the derivative

must change sign). Shih and Yu [13] deal with similar problem for the case of continuous value signal

by solving the Cramer-Rao minimization problem using quadratic programming. In our case of binary

signal the optimality is achieved by using a rectangular pulse signal where the distance between the

pulses is δ = 4σs. This distance brings adjacent pulses in the smoothed pattern to touch each other

at points where they reach zero.

In order to maximize the minimum of the Fisher information over all the possible θ values, we shall

need to distribute the binary blocks edges as evenly as possible.

D.2 Uniform Fractional Parts Distribution

The problem of even distribution of binary blocks over a given interval can be formulated in the

following way: Given a constant δ, place a maximal possible number of points within an interval of

length T , {Xi; 0 ≤ Xi ≤ T, ∀i}, in such a way that the minimal distance between adjacent points is

greater than δ, and the fractional parts of the points coordinates {Xi−bXic} are uniformly distributed

in the interval [0, 1].

By uniform distribution we mean that if the number of points is M , their fractional parts should be

1/M apart from each other.

Without loss of generality we can place the first point at position zero. Indeed, if there exists a

better mapping that starts from another position ∆, we can always shift all the points to the left by ∆

thus retaining the same number of points and not disturbing the uniform distribution of the fractional

parts of points coordinates.

If the minimal distance between the adjacent points is δ, then the maximal number of points that

can be placed within the interval of length T is M = bT/δc+1. Following our definition of uniformity,

the fractional parts of points positions should be η = 1/M apart from each other.

We suggest the following greedy algorithm for choosing M points in the interval [0, T ] such that
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their fractional parts cover the set {0, η, 2η, ..., (M −1)η} and the points are at least δ apart from each

other.

The algorithm:

1. Set Points = {0}

Set UsedFractions = ∅

2. Repeat M − 1 times (steps 3-6)

3. Advance δ

4. Advance to the nearest position Pcur, whose fractional part fcur = Pcur − bPcurc is a multiple

of η and fcur /∈ UsedFractions.

5. Points = Points
⋃

Pcur

6. UsedFractions = UsedFractions
⋃

fcur

Let us analyze the performance of the algorithm above and check whether it can really place M

points as required.

We denote the fractional part of the δ by ε, i.e. ε = δ − bδc.

η
η

η

ε

ν

η

0
(Μ−1)η

Fig. 4. Fractional parts distribution on unit circle

Advancing by δ from the first point placed at 0 position brings us, in general, to a position, whose

factional part is not a multiple of η. To get to the nearest multiple of η we have to skip an interval of

length ν = dε/ηeη − ε (see Figure 4). This situation emerges every time we advance by a step of size δ

from a point aligned to an η-multiple fraction. Hence, the overhead of this η-alignment integrated for
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M points is bounded by

(M − 1)ν ≤ Mη ≤ 1.

Now let us estimate the overhead of the search for the position with fractional part that has not

been visited yet. As we limit ourselves to fixed positions on the unit circle - the multiples of η - we can

now switch to the discrete domain and express everything in terms of steps of size η on the unit circle.

Let K be the number of η steps traversed on unit circle when advancing by δ + ν on the interval. The

K is given by

K = dε/ηe, 0 ≤ K ≤ M.

For the example depicted in Figure 4, the K = 3. Let G = gcd(K, M). Then by advancing every time

by (δ + ν) we visit M/G η-aligned locations on unit circle before returning to 0. Ideally, when the K

and M are co-prime numbers all M − 1 fractions will be visited before returning to 0 position on unit

circle, thus yielding a valid placement of M points with zero overhead (besides the (M−1)ν mentioned

above). In general case, for G 6= 1, every time we return to a position that has already been visited,

one η-step is to be skipped in order to switch to another fractions chain of length M/G. Clearly, there

will be G − 1 such chains, which means that the overhead is given by (G − 1)η ≤ Mη ≤ 1.

Thus the total overhead of the algorithm is

(M − 1)ν + (G − 1)η ≤ 2.

Therefore, the guaranteed lower bound on the number of points that can be placed by the algorithm

within the interval of length T is given by

M ′ =
⌊

T − 2

δ

⌋

+ 1,
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and the actual maximal number of points can be found as

M∗ = max{m|M ′ ≤ m ≤ M, (m − 1)δ + (m − 1)ν + (G − 1)η ≤ T}.

E. The Dense Pattern
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Fig. 5. The BO&O and the dense (optimal) overlay mark for 8 pixels. Top: The original signals. Second row: Blurred
signals. Third row: The derivatives. Bottom: Cramer-Rao bound.

Using the binary blocks positions obtained by the algorithm described above we can build an optimal

pattern of any length for any given value of σs.

Figure 5 shows a comparative analysis of the newly designed ‘Dense Pattern’ and the BO&O pat-

terns. The left part of the figure shows the BO&O pattern and the right part shows the dense pattern.

The original signal, the blurred signal, the blurred signal derivative and the Cramer-Rao bound are

shown from top to bottom. Notice that for the BO&O pattern the Cramer-Rao lower bound is different

for different values of θ, while for the dense pattern the bound is much lower and almost independent of
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the offset. Figure 6 presents the simulation results confirming the theoretical bounds. The simulation
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Fig. 6. Position estimation error for the BO&O - solid line, and the dense (optimal) pattern - dotted line.

was performed by shifting the patterns by various offsets from the interval [0, 1], adding Gaussian noise

and looking for maximal correlation score with the original signal. For every offset the experiment

was performed 100 times and the average estimation error is calculated. Both BO&O and the dense

patterns are of the same length T = 100 pixels, the noise variance is σn = 0.01, and the PSF variance

σs = 0.5. As predicted, the dense pattern yields lower estimation error, which is more uniformly

distributed over the offset range.

III. Experiment: Grating Mark - A New Optimized Overlay Mark

Motivated by the theoretical results presented above we designed and tested a new family of overlay

marks - the grating marks.

Based on the same general principals as the optimal dense pattern described above, grating marks

however differ in the following aspects:

• Grating marks, unlike the dense pattern, are periodic. This significantly simplifies the manufacturing

process and it turns out that, at the current level of technology, the improvement achieved by uniform

edge placement of the dense pattern is negligible compared to other sources of error.
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• Grating marks, very much like the BO&O overlay mark, are designed as a multi-scale structures.

This facilitates application of multi-resolution algorithms for faster pattern registration and position

disambiguation (anti-aliasing).

(a) (b)

Fig. 7. Grating marks (schematically): (a) - clockwise (CW) and (b) - counter-clockwise (CCW).

In Figure 7 a grating mark is shown schematically. Similarly to conventional BiB marks, the grating

mark consists of inner (grey) and outer (black) structures printed on top and bottom layer. Each of

these structures is symmetric with respect to 900 rotation. The grating mark consists of eight octants

(four ”grey” and four ”black”) and fills an area of L × L, where L is the ”grating mark size”. Unlike

conventional BiB marks, grating marks do not require any exclusion zone around them, i.e. any other

structures can be printed in the immediate vicinity of the grating marks. Grating marks are comprised

of structures at 3 scales of design:

• On the largest scale (of the order L) the grating mark consists of two layers (”grey” or ”inner” and

”black” or ”outer”) and 8 octants. At this scale the grating mark is characterized by its size L, inner

and outer layers, and grating mark chirality. There are two possible chiralities of the grating marks:

clockwise (CW) - as shown in Figure 7(a), and counter-clockwise (CCW) - see Figure 7(b).

• On the next spatial scale (termed the ”metrology interaction scale”) one can see that each octant

comprises a periodic series of lines and spaces with a characteristic scale about 1µm (see Figure 8). This

enhances information content and enables new image processing techniques due to the periodicity of the
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Fig. 8. Zoom to one grating mark octant. It is built of periodic series of lines.

signal. This concept of a periodic mark is conceptually different from the conventional BiB approach.

At this scale grating mark is characterized by pitch (i.e. period of the line series) and duty cycle (or

line-to-period ratio).

• Finally, on the third spatial scale (termed ”lithography interaction scale”), when we zoom in to a

single line from Figure 8, it appears that this line is finely segmented (with the design rule line and

space pattern; see Figure 9). This fine segmentation is typically below the optical resolution limit

of the optical metrology tool, and therefore only the ”coarse” lines create contrast in the acquired

image. However, solid and finely segmented ”coarse” lines are known to behave differently both

lithographically and in process-related areas. At this scale the grating mark is characterized by the

fine segmentation pattern chosen.

Fig. 9. Zoom to two ”coarse” lines from the previous figure. Such ”coarse” lines may be finely segmented.
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A. Grating Mark Overlay Measurement

Similarly to the conventional BiB, the overlay of the grating mark is calculated as a misregistration

between the centers of symmetry of the inner (”grey”) and outer (”black”) patterns. An optimized

measurement algorithm may be designed to utilize the pre-defined periodic nature of the grating mark

patterns.

B. Improved Dynamic Precision of the Grating Mark

Contrary to conventional BiB marks, grating marks utilize the majority of the mark area for the

overlay measurement. Thus information content of the grating mark is significantly higher than that

of BiB marks. This increased information content results in improved dynamic precision and Overlay

Mark Fidelity.
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Fig. 10. Dynamic precision of grating marks as function of the area of the ROIs

In the experimental verification of the theory, we present results of measurements performed on two

non-segmented (NS) grating marks with two different grating periods (pitches). We have measured

these marks in 10 dynamic loops and calculated dynamic precision as a function of the area of the mark
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Fig. 11. Dynamic precision of the old (BiB) and new (grating) overlay marks on many different process layers

utilized for the overlay calculation. We varied the width (T ) and length (L) in a way preserving the

same proportion T/L, and observed the dynamic precision of the overlay measurements as a function

of T .

Figure 10 shows graphs of the precision in X and Y directions, for grating marks with pitches

of 2400 and 1500nm. Included are best-fit power law curves of the graphs. It is observed that the

experimental data closely follow a hyperbolic relationship between precision and mark area. This is

in a good agreement with theory.

The theory provides a lower bound for precision, assuming the maximal effective bandwidth, but it

does not give the pitch dependence. The better precision of the 1500nm pitch mark relative to the

2400 pitch mark is in a qualitative agreement with the theory, indicating that the precision improves

with the spatial frequency of the grating.

In addition we have performed extensive measurements of the dynamic precision on many different

(both conventional BiB and new grating) marks on various layers and wafers, run under different

process conditions. Wafers were run in three different semiconductor manufacturing fabs, identified as
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Fab1, Fab2 and Fab3, on four different processes described as follows.

• Poly/Active: the first patterning step was an active layer, followed by STI processing and an oxide

CMP step. This was followed by a gate oxide process and polysilicon deposition. The second patterning

step was at Poly.

• Etched Si: this process is a simplified version of the same sequence of patterning as above. Silicon

was etched with the Active pattern. Then a layer of photoresist was spun over etched Silicon and

patterned with the Poly reticle.

• Via/Metal: the first patterning step was on a dielectric stack and was processed as a Cu single-

damascene metal layer. This was followed by Cu-CMP and deposition of an intermetallic dielectric

stack. The second patterning step was at Via.

• Metal/Via: On a dielectric stack intended for Cu-dual damscene, the first patterning step was via.

After via etch, photoresist was spun on the same stack and patterned with Metal trenches.

Figure 11 summarizes dynamic precision performance of the grating overlay marks comparatively to

conventional BiB. Non-segmented and design rule segmented marks are grouped separately.

C. Improved Overlay Mark Fidelity (OMF) of the Grating Mark

In order to verify the anticipated reduction in spatial noise, we have measured an array of closely

printed identical overlay marks (both BiB and grating marks). All the marks were measured 10 times

in a dynamic loop to separate spatial noise from temporal noise. Figure 12 shows the dependence of

the overlay mark fidelity (OMF; which is experimental measure of spatial noise) on the area of the

ROIs.

It can be seen that the graphs do not behave as hyperbolas. By increasing the kernel size we

improve OMF up to some limit (around 4 microns). Beyond this point OMF nearly saturates. This

is believed to indicate that spatial noise does not behave as white noise. There are several possible

explanations for this hypothesis. Firstly, there are some systematic errors such as reticle errors, which
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are different from one mark to another, which do however repeat themselves field to field over the

wafer [1]. Furthermore, there are some frequency dependent sources of spatial noise due to the nature

of wafer processing. Figure 13 presents the summary of the OMF results of measurements made on

many different (both conventional BiB and new grating) marks on various layers and wafers.

Although OMF is an effective metric to estimate the impact of process noise on the metrology un-

certainty, there are additional factors which influence overlay metrology performance which should be

mentioned. The impact of film stack thickness and composition on overlay metrology performance is

twofold. Firstly, they are the key factors determining image contrast. Although there is no funda-

mental difference in the physics which determines the contrast in images of isolated (BiB like) versus

grating structures, as discussed above, multiple edges increase information content and reduce the

contrast threshold above which minimum metrology performance is achieved. Secondly, significant

topographical differences between process layers may impact metrology tool performance. In this area

no significant differences in performance were detected between BiB and grating targets in the current

study.



26

0

1

2

3

4

5

6

7

Fa
b 1
, M
eta
l/V
ia,

X
Fa
b 1
, M
eta
l/V
ia,

Y Fa
b 2
,

Po
ly/
Ac
tiv
e, 
X

Fa
b 2
,

Po
ly/
Ac
tiv
e, 
Y

Fa
b 2
, V
ia/
Me
tal
,

X
Fa
b 2
, V
ia/
Me
tal
,

Y
Fa
b 3
, E
tch
ed
 Si
,

X
Fa
b 3
, E
tch
ed
 Si
,

Y Fa
b 3
,

Po
ly/
Ac
tiv
e, 
X

Fa
b 3
,

Po
ly/
Ac
tiv
e, 
Y

Fa
b 3
, P
oly
/A
cti
ve

FI,
 X

Fa
b 3
, P
oly
/A
cti
ve

FI,
 Y

3s
  [n
m]

NS BiB

NS Grating

Segm. BiB

Segm. Grating 

Fig. 13. OMF of the old (BiB) and new (grating) overlay marks on many different process layers

D. Grating vs. Dense Patterns - Simulation

Finally, let us look once again at the optimal dense pattern and estimate its advantage over the

suboptimal grating patterns. Since we do not have a real dense pattern, we may try to answer this

question by running a simulation as described in section II-E. Figure 14 presents the general form of

the tested patterns: the 1-D BiB pattern, three grating patterns and the dense optimal pattern. Three

grating patterns were tested using two different low pitches: 1500nm and 2400nm. The high pitch was

300nm in both cases. The simulation was performed in a 100 pixels window, where the pixel size is

assumed to be 80nm.

Simulation results are shown in figure 15. One can see that the dense pattern indeed achieves the

best accuracy results and the error is approximately the same for the whole range of possible offsets.

Another observation is that the precision achieved by the segmented grating mark is very close to that

of the dense pattern.
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Fig. 14. Tested patterns. From top to bottom: 1-D BiB, non-segmented grating, segmented grating, segmented grating
with interleaving and the dense (optimal) pattern

IV. Concluding Remarks

In this paper we conduct a thorough analysis of patterns used for overlay metrology and establish

the dependence between various pattern properties and the expected dynamic precision and fidelity of

the measurements. We show how the Cramer-Rao lower bound on the estimation error can be found

for a given pattern.

We formulate a criteria for the offset invariant bound pattern and develop a uniform fractional parts

distribution algorithm, which can be used to design an optimal pattern in a minimal Cramer-Rao lower

bound sense. We suggest such an optimal design - the dense pattern - and provide a comparative,

simulation based performance analysis with the commonly accepted BiB mark.

We then present a new family of overlay mark patterns - the grating marks and provide a detailed

analysis of their properties based on real measurements. The measured dynamic precision and overlay

mark fidelity of the new grating marks are close to the theoretically predicted values and demonstrate
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the superiority of the new overlay mark family over the existing BiB marks. The measurements

performed using a computer simulation also show that the grating marks have performance close to

that of the optimal dense patterns.
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