
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Optimized Particle Swarm Optimization (OPSO) and its
application to artificial neural network training
Michael Meissner, Michael Schmuker and Gisbert Schneider*

Address: Johann Wolfgang Goethe-Universität, Institut für Organische Chemie und Chemische Biologie, Siesmayerstraße 70, D-60323 Frankfurt,
Germany

Email: Michael Meissner - meissner@chemie.uni-frankfurt.de; Michael Schmuker - michael.schmuker@chemie.uni-frankfurt.de;
Gisbert Schneider* - g.schneider@chemie.uni-frankfurt.de

* Corresponding author

Abstract
Background: Particle Swarm Optimization (PSO) is an established method for parameter
optimization. It represents a population-based adaptive optimization technique that is influenced by
several "strategy parameters". Choosing reasonable parameter values for the PSO is crucial for its
convergence behavior, and depends on the optimization task. We present a method for parameter
meta-optimization based on PSO and its application to neural network training. The concept of the
Optimized Particle Swarm Optimization (OPSO) is to optimize the free parameters of the PSO by
having swarms within a swarm. We assessed the performance of the OPSO method on a set of five
artificial fitness functions and compared it to the performance of two popular PSO
implementations.

Results: Our results indicate that PSO performance can be improved if meta-optimized parameter
sets are applied. In addition, we could improve optimization speed and quality on the other PSO
methods in the majority of our experiments. We applied the OPSO method to neural network
training with the aim to build a quantitative model for predicting blood-brain barrier permeation of
small organic molecules. On average, training time decreased by a factor of four and two in
comparison to the other PSO methods, respectively. By applying the OPSO method, a prediction
model showing good correlation with training-, test- and validation data was obtained.

Conclusion: Optimizing the free parameters of the PSO method can result in performance gain.
The OPSO approach yields parameter combinations improving overall optimization performance.
Its conceptual simplicity makes implementing the method a straightforward task.

Background
Optimizing parameters of multivariate systems is a gen-
eral problem in computational biology. One of the many
methods developed for parameter optimization is Particle
Swarm Optimization (PSO), which was introduced by
Kennedy and Eberhart in 1995 [1,2]. Emerging from sim-
ulations of dynamic systems such as bird flocks and fish

swarms, the original algorithm is grounded on a stochas-
tic search in multimodal search space. The idea of PSO is
to have a swarm of particles "flying" through a multidi-
mensional search space, looking for the global optimum.
By exchanging information the particles can influence
each others' movements. Each particle retains an individ-
ual (or "cognitive") memory of the best position it has vis-

Published: 10 March 2006

BMC Bioinformatics2006, 7:125 doi:10.1186/1471-2105-7-125

Received: 21 June 2005
Accepted: 10 March 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/125

© 2006Meissner et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7/125
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16529661
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:125 http://www.biomedcentral.com/1471-2105/7/125
ited, as well as a global (or "social") memory of the best
position visited by all particles in the swarm. A particle
calculates its next position based on a combination of its
last movement vector, the individual and global memo-
ries, and a random component.

An advantage of PSO is its ability to handle optimization
problems with multiple local optima reasonably well and
its simplicity of implementation – especially in compari-
son to related strategies like genetic algorithms (GA). In
the field of cheminformatics, PSO has successfully been
applied to Quantitative Structure-Activity Relationship
(QSAR) modeling, including k-nearest neighbor and ker-
nel regression [3], minimum spanning tree for piecewise
modeling [4], partial least squares modeling [5], and neu-
ral network training [6].

Ever since its capability to solve global optimization prob-
lems was discovered, the PSO paradigm has been devel-
oped further and improved and several variations of the
original algorithm have been proposed. These include the
Constriction type PSO (CPSO) [7] amongst various others
(see, e.g. [6,8,9]).

The PSO algorithm itself contains some parameters which
have been shown to affect its performance and conver-

gence behavior [10-12]. Finding an optimal set of PSO
parameter values is an optimization problem by itself,
and thus can be dealt with by classic optimization tech-
niques. One approach that has been pursued was based
on testing various parameter combinations empirically to
find one parameter set which enables PSO to handle all
kinds of optimization problems reasonably well [11]. Fol-
lowing a different concept, Parsopoulos and Vrahatis
implemented a composite PSO algorithm [13], where the
Differential Evolution (DE) algorithm [14] handled the
PSO heuristics online during training. They showed on a
suite of test functions that their composite PSO could sur-
pass the success rate of the plain PSO they were comparing
to. They also tried to have the PSO heuristics optimized by
another PSO running in parallel, but were not satisfied
with preliminary results and discarded this concept in
favor of the DE algorithm [13].

In this study, we present the concept of the Optimized
Particle Swarm Optimization (OPSO) method. We dem-
onstrate that it is possible to use PSO for meta-optimiza-
tion of PSO heuristics. Our approach was applied to the
example of artificial neural network training for the pre-
diction of blood-brain-barrier (BBB) permeation coeffi-
cients (logBB values) of small organic molecules.

Results and discussion
Optimized Particle Swarm Optimization (OPSO)
The concept of the OPSO method is to have a superordi-
nate swarm ("superswarm") optimize the parameters of
subordinate swarms ("subswarms"). While the subs-
warms find a solution to a given optimization problem,
the superswarm is used to optimize their parameters.
Subswarms with parameters that are well-suited for their
performance on the given optimization task will achieve a
higher fitness than others. Thus, the superswarm as a
whole will move to an optimal point in parameter space
over time. In contrast to the approach pursued by Par-
sopoulos and Vrahatis [13], we used the superswarm as a
wrapper for the subswarms rather than running them in
parallel. As a consequence, in each epoch of the super-
swarm, all subswarms complete one entire optimization
run on the objective function and return their fitness value
to the superswarm.

Our implementation of OPSO was grounded on the
standard PSO implementation as defined by equation (1)
(see Methods section). The dimensionality of the super-
swarm was determined by the number of parameters to be
optimized while the subswarm's dimensionality
depended on the optimization task itself. The architecture
of the OPSO method is illustrated in the flowchart in Fig-
ure 1.

Flowchart of the OPSO methodFigure 1
Flowchart of the OPSO method. Multiple iterations and aver-
aging to obtain the fitness values of the subswarms are not
shown. Termination conditions are problem-specific.
Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:125 http://www.biomedcentral.com/1471-2105/7/125
Sometimes subswarms perform well by chance, even if
their parameters are not adapted to the problem, e.g. if the
randomly initialized particles happen to be optimally
placed in the search space. This results in a high fitness of
an individual subswarm, although its set of parameter val-
ues may not represent an optimal point in the fitness
landscape. If this happens, the superswarm will keep con-
verging around that point unless a higher fitness of
another subswarm is achieved, failing to find an optimal
parameter set.

We performed multiple optimization runs per subswarm
and then calculated the average of the achieved fitness val-
ues to avoid such behavior. This means, we punished
parameter sets that lead to only occasional optimization
success but often to failure. The more optimization runs
were averaged, the more robust were the final set of opti-
mized parameters found by OPSO. In this context the
term "robust" means that the optimized set of parameters
leads to an average swarm performance close to the one
suggested by the OPSO optimal fitness. The optimization
process went on until the superswarm met the termina-
tion condition which was a maximum number of epochs
in the present study. The best solution found by the super-
swarm was the set of parameter values that provided the
subswarms with the best performance on their optimiza-
tion task.

Optimizing PSO parameters: Experimental setup
We assessed the performance of the OPSO-method
employing a suite of five different test functions (eqs. 7–
11, see Methods section) and compared it to the standard
PSO and the CPSO methods. The suite of test functions
we used to test swarm performance consisted of five dif-
ferent functions, where two are unimodal (De Jong,
Rosenbrock), and three are multimodal functions (Rastri-
gin, Schaffer F6, Griewangk). All functions except for the
Schaffer function (equation 9) – which is a two-dimen-
sional function by definition – were optimized in 30
dimensions. The task of OPSO was to find optimal swarm
parameter sets for the minimization of each of the test
functions. Parameters to be optimized were wstart, wend, n1,
and n2 (see Methods section for parameter descriptions).
We initialized the dimensions of the superswarm's parti-
cles in different intervals. Subswarm parameters wstart,
wend, n1, n2, were initialized in the interval [0,4]. We also
tried different parameterizations of the superswarm,
mainly depending on the computing-time expenses of the
meta-optimization. The maximum number of iterations
for the subswarms was set to 1,000. A population size of
20 particles was chosen for the subswarms.

In this experiment, we decided not to use a restriction con-
stant for the maximum velocity Vmax. As the Vmax constant
is considered to be crucial for a controlled convergence

behavior of standard PSO [7,15], we were interested in
finding a parameter set that provided PSO with reasona-
ble exploration and convergence capability without
applying a restriction for the velocity. Therefore all
remaining parameters needed to be fine-tuned to be able
to provide PSO with such characteristics.

The parameters for the superswarm were chosen as
defined in Table 1.

To get robust sets of parameter values, we used the average
error from 15 minimization runs per test function as the
fitness value. To compare the performance of OPSO with
the performance of other PSO methods, we chose the
standard PSO and the CPSO as reference algorithms. The
configurations of those two algorithms are given in Table
2.

As no Vmax constant was used in our OPSO implementa-
tion, we also disabled it in our standard PSO implemen-
tation for this experiment. This was done to demonstrate
the importance of proper calibration of parameters. How-
ever, in subsequent experiments the Vmax constant was
used in order to further improve optimization quality.

For each of the five test functions and the PSO method,
400 minimization runs were performed and mean, stand-
ard deviation and median values were calculated. Thresh-
olds as success criterion – when applied – were defined as
following:

Schaffer F6, D = 2: mean error < 10-5

Griewangk, D = 30: mean error < 0.1

Rastrigin, D = 30: mean error < 100

Rosenbrock, D = 30: mean error < 100

Sphere, D = 30: mean error < 0.01

Optimizing PSO parameters: Results
The resulting parameter sets from the meta-optimizations
are given in Table 3.

For the two unimodal functions Rosenbrock and De
Jong's Sphere the n2/n1 ratio was 2.14 and 2.75, respec-
tively. These values are rather large compared to those
obtained for the multimodal Griewangk (n2/n1 = 1.18),
Schaffer (n2/n1 = 0.73) and Rastrigin (n2/n1 = 0.21) test
functions. A large n2/n1 ratio supports faster convergence.
This is because the swarm tends to concentrate on the glo-
bally best swarm position pbest, and particles are less "dis-
tracted" by their own best positions in search space. As a
consequence, the loss of diversity in the swarm popula-
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:125 http://www.biomedcentral.com/1471-2105/7/125
tion leads to a lack of global exploration. Since the unimo-
dal functions Rosenbrock and De Jong's Sphere do not
have local minima where the swarm could be trapped in,
this does not have any negative side effects. On the other
hand, the multimodal Griewangk, Schaffer and Rastrigin
test functions have many local minima; thus a more glo-
bal search is advantageous in these cases. A stronger influ-
ence of n1 supports a more diverse search and helps the
swarm to avoid getting trapped in local minima.

Interestingly, the start value for the adaptive inertia weight
wstart was optimized to a negative value for the Schaffer
function (Table 3). Generally, w being negative causes the
particles to move away from the best found points in
search space. Since wend is positive, w becomes positive
after a certain number of iterations. Thus, the initial nega-
tive value may result in higher population diversity in the
beginning of the optimization, whereas at a later stage
more positive values are favored, causing a more focused
exploration of the search space.

In comparison to the optimized parameters found by
meta-optimization with the DE algorithm [13,14], our
tuned parameters assumed different and more variable
values. Parsopoulos and Vrahatis reported values for w, n1
and n2 that were similar to the ones proposed in earlier
empirical studies [10,11,15] and had only small deviation
between the different test functions they had been opti-
mized for. Our parameter values are different from each
other as indicated by high variance over different optimi-
zation runs (not shown). Remarkably, we observed that
although independent meta-optimizations can produce
varying parameter sets, swarm performance was not

affected (not shown). A similar observation was made by
Agrafiotis and coworkers [16] in QSAR feature selection,
where PSO showed the capability to produce diverse solu-
tion sets of comparable quality. These authors revealed
that the solution sets found by particle swarms were more
variable and of higher quality at the same time compared
to the ones found by Simulated Annealing. Our observa-
tion that parameter sets optimized by PSO itself seem to
be more diverse than the ones obtained by Parsopoulos
and Vrahatis through optimization with the DE algorithm
– while providing PSO with comparable performance
among each other at the same time – is in agreement with
the aforementioned study.

In our view, it remains a matter of debate whether a single
set of PSO coefficients can be optimal – or at least reason-
able – for any kind of fitness landscapes. While it has been
elegantly shown that certain coefficients can help increase
the ability of a particle swarm to find optima in families
of test functions [7], it seems reasonable to assume that
instead of one "global" parameter set being optimal, there
exist many different parameter sets leading to similar PSO
performance. This speculation is substantiated by our
results. Moreover, it appears intuitive to us that different
fitness landscapes may require different swarm dynamics,
as discussed for the example of the n2/n1 ratio above. Anal-
ysis of attractors and convergence behavior might repre-
sent a methodical approach that can lead to further
clarification of this issue [7].

Comparison with other PSO implementations
To compare OPSO with standard PSO and CPSO, 400
minimization runs were performed on our suite of test

Table 1: Swarm configurations of super- and subswarms.

Swarm parameters Superswarm Subswarms

max. number of iterations 100 1000
Number of particles 30 20
W 0.5 -
N1 2 -
N2 2 -
Vmax 20 -

Table 2: Swarm configurations of the compared PSO methods.

Swarm parameters Standard type PSO Constriction-type PSO PSO with OPSO-parameters

max. number of iterations 1000 1000 1000
number of particles 20 20 20
wstart 0.9 - optimized
wend 0.4 - optimized
N1 2 2.05 optimized
N2 2 2.05 optimized
constriction factor k - 0.73 -
Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:125 http://www.biomedcentral.com/1471-2105/7/125
functions by each of the methods. The maximum number
of epochs was fixed to 1,000. Results are summarized in
Table 4.

Overall, the mean error achieved by the particle swarm
with optimized parameters was smaller for four of the five
functions than the one achieved by the other two PSO
methods. The PSO with optimized parameters achieved a
large decrease on the mean error compared to the CPSO
(Schaffer: 1.6-fold; Griewangk: 6.2-fold; Rastrigin: 1.9-
fold; Sphere: 56726-fold). For the minimization of the
Rosenbrock function the CPSO performance was better
than the OPSO performance, with an on average 1.2-fold
lower final error.

The results of these statistics indicate that meta-optimiza-
tion with the OPSO method does work. The parameter
sets that were found by applying OPSO provided the
swarms with special characteristics needed for a good
optimization performance in the different fitness land-
scapes. Only in the case of the Rosenbrock function, the
PSO with optimized parameters could not outperform the
two competing methods.

Another experiment was performed in which thresholds
for the mean error served as success criterions along with
a maximal number of epochs. If the threshold was not
reached by an optimization method within 1,000 epochs,
the run was judged as failure. When it was reached, the
number of epochs that were needed to reach the threshold

was recorded. We employed the same swarm configura-
tions as before, including the sets of optimized parame-
ters. For statistical evaluation, 400 runs were performed
by each PSO type, results are listed in Table 5. The PSO
with optimized parameters was able to outperform the
standard PSO method in all five test functions in terms of
"epochs needed" and "least failures". In comparison to
the constriction type PSO, the PSO with optimized
parameters performed well, too. Only in two of the five
test functions, OPSO did not outperform the constriction
method in both "speed" and "robustness". The minimiza-
tion of the Griewangk function took slightly fewer epochs
with the CPSO (824) than with the OPSO (851), but had
more than twice as many failures on average (CPSO: 130;
OPSO: 55). On the contrary, the threshold for the Rosen-
brock function was reached faster with the OPSO (195)
than with the CPSO (318), but had one failure in 400
runs. The constriction method never failed to reach the
threshold. For the other three test functions, the opti-
mized PSO succeeded in reaching this criterion faster than
the constriction method and having fewer failures at the
same time.

OPSO for neural network training: Experimental setup
Having demonstrated the potential usefulness of OPSO,
we employed this method for training the weights and
biases of two-layered neural networks. The task was to
develop a quantitative prediction model for logBB values
from the Lobell dataset [17]. Apart from optimizing subs-
warm parameters, OPSO can optimize other problem-

Table 3: Optimized swarm parameters for the five test functions.

Optimized parameters Schaffer D = 2 Griewangk D = 30 Rastrigin D = 30 Rosenbrock D = 30 Sphere D = 30

wstart -0.19 0.68 0.76 0.08 0.147
wend 1.57 0.18 0.85 0.63 0.070
n1 0.66 1.87 1.89 1.20 0.984
n2 0.48 2.21 0.40 2.57 2.71

Table 4: Mean error, standard deviation and median error of a standard type PSO, CPSO, and OPSO implementation. Particle
swarms with 20 particles, 1,000 epochs. Best performance (i.e., lowest error) for each function is highlighted in bold letters.

Schaffer F6 D = 2 Griewangk D = 30 Rastrigin D = 30 Rosenbrock D = 30 Sphere D = 30

standard type PSO
mean error 0.0042 0.827 99.5 91.5 4.14
standard deviation 0.0048 0.361 27.0 47.2 6.56
median error 0 0.914 98.2 85.1 1.89
CPSO
mean error 0.0048 0.148 86.2 32.2 0.0035
standard deviation 0.0049 0.616 23.0 19.8 0.070
median error 3.89·10-7 0.039 84.6 24.6 3.2·10-8

PSO with optimized parameters
mean error 0.0030 0.024 46.5 37.4 6.17·10-8

standard deviation 0.0045 0.040 13.1 24.2 5.53·10-7

Median error 1.91·10-8 0.015 44.8 25.8 1.02·10-9
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:125 http://www.biomedcentral.com/1471-2105/7/125
dependent parameters simultaneously. In this part of our
study, we used OPSO to optimize the number of hidden
neurons N in the artificial neural network along with the
subswarm parameters. This task has been approached by
many researchers before, and various solutions to this
problem have been proposed. Our aim was not to come
up with a further method for network architecture optimi-
zation, but to test OPSO on a practical application.

To optimize N, we added another dimension to the super-
swarm, randomly initialized in the interval [0,50]. To
obtain the actual number of hidden neurons during the
meta-optimization, N was rounded up to the next integer.

The velocity restriction constant Vmax was also included in
the meta-optimization process. The initialization interval
for the Vmax dimension was [0,50]. Altogether the particles
of the superswarm were six-dimensional, parameters to be
optimized were wstart, wend, n1, n2, Vmax and N. Table 6
shows the configuration of the OPSO.

For the comparison of the different PSO methods on neu-
ral network training, the configurations from Table 7 were
used. We also employed the Vmax constant for our stand-
ard PSO implementation, in contrast to the previous
experiment with the test functions, where we had disabled
it for reasons of comparability.

OPSO for neural network training: Results
We performed four independent OPSO runs. As network
training itself showed to be more time-consuming than
the minimization of the test functions, both the number
of iterations and the number of particles in the super-
swarm were reduced in comparison to the meta-optimiza-
tion of the parameters for the test functions. In addition,
the fitness values for the subswarms were obtained by
averaging over only three runs on the objective function,
i.e. mean square error (MSE) of the neural network,
instead of 15 used above in the OPSO runs on the fitness
functions.

In three of the four OPSO runs, the final value for the
number of hidden neurons N was 7, indicating a prefer-
ence and possibly an optimal point in the fitness land-
scape. In the fourth run, N converged to a value of 10. The
remaining parameters showed larger variance over the
optimization runs, but the mean fitness values of the final
solutions were comparable.

Using optimized PSO parameters for network training on
logBB data
In order to compare the performance on network training
with the performance of the standard PSO and CPSO, we
arbitrarily picked one out of the three parameter sets in
which N converged to a value of 7 and used it to parame-
terize a PSO optimizer. The chosen parameter values are
shown in Table 8. To build the quantitative prediction
model, 20 two-layered nets with N = 7 were trained by
PSO with optimized parameters. For comparison, we had
PSO and CPSO train another 20 nets with identical archi-
tecture, respectively. To prevent overfitting, net weights
and biases were only kept if the MSE improved on the test
set.

Out of the three used PSO methods, the PSO with opti-
mized parameters trained the nets fastest, i.e. required the
smallest number of iterations. We considered the training
to be finished when the MSE on the test set did not
improve any further. While the standard PSO required
about 80 iterations (Figure 2A) and the constriction PSO
required about 40 iterations on average (Figure 2B) to fin-
ish training, the PSO with optimized parameters finished
training within about 20 iterations (Figure 2C). This find-
ing is in agreement with the data presented by Kennedy
[18], who stated that it is possible to train neural nets with
standard PSO within about 70 epochs, but also supposed
that this could be done faster with other PSO variations.

To build a quantitative model for logBB prediction, we
chose the network with the highest correlation coefficient
for the test data from each of the three training sessions,

Table 5: Mean number of epochs until the minimization threshold was reached and mean number of failures.

Schaffer F6 D = 2 Griewangk D = 30 Rastrigin D = 30 Rosenbrock D = 30 Sphere D = 30

standard type PSO
mean number of
epochs

808 1000 958 955 1000

number of failures 183 400 179 147 400
CPSO
mean number of
epochs

727 824 507 318 485

number of failures 255 130 119 0 1
OPSO
mean number of
epochs

715 851 194 195 306

number of failures 147 55 0 1 0
Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:125 http://www.biomedcentral.com/1471-2105/7/125
respectively. For each of the three nets mean absolute
error and r2 for training and test data were calculated. The
network trained by OPSO showed the highest correlation
and the lowest mean absolute error for both training and
test data (Table 9).

We then employed a lager dataset (courtesy of M. Nietert;
manuscript in preparation; data not shown) to build a
neural net for logBB prediction containing 89 structures
with experimental logBB values in the training set and 44
structures with experimental logBB values in test- and val-
idation sets, respectively. OPSO was applied, and 1,000
nets were trained with PSO using optimized parameters.
The best net was selected, and its prediction capability was
tested on the independent 44 validation compounds,
yielding q2 = 0.76 and a mean absolute error of 0.29. This
is still in the range of the error for experimental logBB val-
ues as the mean absolute error for the experimental values
is approximately 0.3 units [17].

Conclusion
We have shown that PSO performance can be improved
when its parameters are optimized specifically for the
problem at hand. We have achieved this by implementing
OPSO, a wrapper method for PSO, where particles of a
swarm are swarms as well. An advantage of the OPSO
meta-optimization method is its straightforward imple-
mentation. No other implementations than the PSO
method itself are needed and only minor adaptations

have to be made in order to implement the OPSO
method.

In our experiments we were able to show that optimiza-
tion "speed" as well as "robustness" can be improved by
applying optimized parameters to PSO. Similar observa-
tions were made when deploying OPSO to a real life
application such as artificial neural network training. Our
results indicate that fast and efficient net training is possi-
ble with optimized parameters. Moreover, through
parameter optimization training time can be decreased
while training success may be increased at the same time.
Another feature of OPSO is that other problem-depend-
ent, non-PSO parameters can be optimized along with the
PSO parameters. We have tested this on the example of
the number of hidden neurons in a two-layered neural
net. While it has not been verified that the chosen number
of seven hidden neurons was optimal, three out of four
OPSO runs resulted in that same number which indicates
that seven neurons might be a preferred network configu-
ration for the particular task.

We have shown for one sample implementation of PSO
that the basic OPSO architecture actually works. Although
there seem to be more powerful implementations of PSO
(such as CPSO) than the standard implementation which
we used, it was still possible to outperform the constric-
tion type simply by using optimized parameters in a
standard PSO. Since the OPSO method is not limited on
the use of standard PSO, it should be possible to imple-

Table 6: Swarm configurations of super- and subswarms for neural network training.

Swarm parameters Superswarm Subswarms

max. number of iterations 20 60
Number of particles 10 20
wstart 0.9 optimized
wend 0.4 optimized
n1 1.3 optimized
n2 1.7 optimized
Vmax - optimized

Table 7: Swarm configurations of the compared PSO methods.

Swarm parameters Standard type PSO CPSO PSO with OPSO-parameters

max. number of iterations 150 60 60
Number of particles 20 20 20
wstart 0.9 - optimized
wend 0.4 - optimized
n1 2 2.05 optimized
n2 2 2.05 optimized
Vmax 20 - optimized
constriction factor k - 0.73 -
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:125 http://www.biomedcentral.com/1471-2105/7/125
ment it with any PSO algorithm with the aim to improve
their performance. For example, instead of a global PSO
version a local version could be used and the size of the
neighborhood could be included in the meta-optimiza-
tion process.

Typical areas of application include optimization of a
large number of problems with similar fitness landscapes.
The OPSO would be run on some exemplary problem
instances, and the resulting optimized swarm parameters
could be used to treat the remaining instances. For exam-
ple, in order to model quantitative structure-activity rela-
tionships from a large compound database as obtained
from high-throughput screening, one could first select a
small representative subset of compounds and have
OPSO train a neural network. The resulting optimized
swarm parameters can then be used for network training
on the entire database. Our results suggest that not only
network training would converge faster, but might also
lead to more robust results in cross-validation.

Methods
Particle swarm optimization (PSO)
Each particle was initialized at a random position in
search space. The position of particle i is given by the vec-
tor xi = (xi1,xi2, ..., xiD) where D is the dimensionality of the
problem. Its velocity is given by the vector vi = (vi1, vi2, ...,
viD).

Two kinds of memory were implemented that influence
the movement of the particles: In the cognitive memory pi
= (pi1, pi2, ..., piD) the best previous position visited by each
individual particle i is stored. The vector pbest= (pbest1, pbest2,

..., pbestD), also called "social memory", contains the posi-
tion of the best point in search space visited by all swarm
particles so far.

In each epoch the particle velocities were updated accord-
ing to equation (1):

vi(t+1) = w· vi(t)+ n1· r1·(pi-xi(t))+n2·r2· (pbest - xi(t)), (1)

where w is the inertia weight, a weighting factor for the
velocity, n1 and n2 are positive constants called "cognitive"
and "social" parameter weighting the influence of the two
different swarm memories, and r1 and r2 are random num-
bers between 0 and 1.

In some of our experiments a restriction constant Vmax was
applied to control the velocity of particles (cf. Results sec-
tion). Velocities exceeding the threshold set by Vmax were
set back to the threshold value.

The inertia weight w can either be implemented as con-
stant or in a way so that its value is changed linearly with
time. A start and end value is set and for each epoch a new
value of w is calculated as in equation (2).

where wstart is the initial value for w and wend is the terminal
value. Epochs stand for the actual number of epochs and
MaxEpochs is the maximum number of epochs for the
optimization.

w w
w w

MaxEpochs
Epochsstart

start end= −
−

⋅ , ()2

Table 8: Optimized parameter values for neural network training. N is the number of hidden neurons.

Parameters optimized values

wstart 2.95
wend -0.1
n1 2.82
n2 12.5
Vmax 13.2
N 7

Table 9: Comparison of different quantitative models for logBB prediction.

Best OPSO net Best standard type PSO net Best CPSO net

Training data
mean absolute error 0.23 0.31 0.39
R2 0.87 0.76 0.62
Test data
mean absolute error 0.25 0.3 0.39
R2 0.87 0.73 0.59
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:125 http://www.biomedcentral.com/1471-2105/7/125
The advantage of an adaptive inertia weight is that swarm
behavior can be varied and adapted over time. Often a
bigger start value than end value is applied, causing the
swarm to perform a more global search with large move-
ments in the beginning and shifting to smaller move-
ments and fine tuning in the end of the optimization
process.

After the velocity vector had been calculated the positions
of the particles were updated according to equation (3)

xi(t+1) = xi(t)+vi(t+1). (3)

We employed a maximum number of epochs as termina-
tion condition for the algorithm, depending on the task
also in combination with a threshold as success criterion.

Constriction type PSO
Another common implementation of PSO is the constric-
tion type PSO [7]. In the following, we refer to this PSO
variant as "CPSO". The velocity vector was calculated
according to equation (4):

vi(t+1) = K· (vi(t)+n1· r2·(pi - xi(t)) + n2·r2· (pbest - xi(t))),
(4)

with the constriction factor K as defined in equation (5):

and ϕ is computed as follows (equation (6)):

ϕ = n1 + n2, ϕ >4. (6)

The constriction factor K controls the magnitude of the
particle velocity and can be seen as a dampening factor. It
provides the algorithm with two important features [15]:
First, it usually leads to a faster convergence than standard
PSO. Second, the swarm keeps the ability to perform wide
movements in search space even if convergence is already
advanced but a new optimum is found. Therefore the
CPSO has a potential ability to avoid being trapped into
local optima while possessing a fast convergence capabil-
ity and was shown to have superior performance than the
standard PSO [15].

Test functions
Rastrigin:

global minimum: f(x) = 0, xi = 0.

De Jong's Sphere:

global minimum: f(x) = 0, xi = 0.

Schaffer F6:

global minimum: f(x) = 0, xi = 0.

Rosenbrock:

global minimum:f(x) = 0, xi = 1.

Griewangk:

K =
− − −

2

2 4
5

2| |
, ()

ϕ ϕ ϕ

f x D xi
i

D
() cos() , ()= ⋅ + − ⋅ ⋅ ⋅()

=
∑10 10 2 72

1

π xi

f x xi
i

D
() , ()=

=
∑ 2

1

8

f x
x y

x y

() .
sin .

.

, ()= +
+ −

+ ⋅ +()()
0 5

0 5

1 0 001

9
2 2 2

2 2
2

f x x x x
i

D

i i i() , ()= ⋅ −() + −()
=

−

+∑ 100 1 10
1

1

1
2 2 2

f x
x x

i
i i

i

D

i

D
() cos , ()= −

+
==
∏∑

2

11 4000
1 11

Mean MSE and standard deviation for net training of 20 neu-ral nets with different PSO methodsFigure 2
Mean MSE and standard deviation for net training of 20 neu-
ral nets with different PSO methods. A: standard PSO, B:
CPSO, C: OPSO. Left: MSE for training data, right: MSE for
test data. Arrows indicate approximate time of convergence.
Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:125 http://www.biomedcentral.com/1471-2105/7/125
global minimum:f(x) = 0, xi = 0.

D denotes the number of dimensions. With the exception
of the two-dimensional Schaffer F6 function, all other
functions were used in 30 dimensions for the minimiza-
tions.

Initialization intervals were chosen as follows:

Rastrigin: [5.12,-5.12]

Sphere: [100,-100]

Schaffer F6: [100,-100]

Rosenbrock: [2.048,-2.048]

Griewangk: [600,-600]

The mean error for the minimization of the test functions
was calculated as in equation (12):

where j is the number of runs performed, f(xj) is the func-
tion value for each solution found in minimization run j
and f(xopt) is the function value at the global minimum.

Multilayer artificial neural networks

We used two-layered, feed-forward artificial neural net-
works (ANN) to predict logBB values. Such networks rep-
resent universal function approximators [19] and have
been described in detail elsewhere [20]. Briefly, a network
with k inputs, j neurons in the hidden layer and i output

neurons delivers the output in response to a pattern µ

according to equation (13).

with go, gH the transfer functions of the output and hidden

layer neurons (vide infra), bi, bj the bias of the neurons,

Wijthe weight of the jth hidden neuron to the ith output

neuron, wjk the weight of kth input neuron to the jth hid-

den neuron, and the kth element of input pattern µ. In

the hidden layer, we used a sigmoidal transfer function
(equation (14))

where x is the net input of a neuron.

For the output neuron the linear transfer function from
equation (15) was used:

go(x) = x. (15)

During training, network performance was assessed using
the mean square error (MSE) computed as the squared
difference between the predicted values Opredict and the
expected values (target values) Oexpect (equation (16)) for
a number of predictions S. In this study, target values were
experimentally determined logBB values ([17]).

The quality of quantitative predictions of logBB values
was estimated using Pearson's correlation coefficient r
(equation (17)).

with C(i, j) the covariance matrix of two vectors i and j.

During training, the network weights W and biases b were
adapted using different swarm algorithms with MSE as
performance function. We kept record of the network
parameters in every training epoch (vide supra). In order to
insure generalization ability, the final network parameters
were taken from the epoch before the performance on the
test data started to degrade. We used the MATLAB Neural
Network Toolbox for all ANN-related tasks [21].

Data sets
For a test of OPSO performance on a real world problem,
we trained ANNs on the Lobell data set [17], containing
65 molecules with experimental logBB values. The data
was divided into test and training set as described [17].
This resulted in 48 molecules in the training set and 17
molecules in the test set. In a pre-processing step, hydro-
gens were removed with the CLIFF software [22] and for
each molecule the 150 standard CATS topological phar-
macophore descriptors [23] were calculated with the
speedCATS software [24]. All descriptors with a standard
deviation of zero were removed, resulting in 98 descrip-
tors that were used as inputs for the neural networks.

meanerror
j

f x f xj opt

j
= ⋅ −∑1

12
1

() () , ()

Oi
µ

O g b W g b wi o i ij H j jk k
kj

µ µξ= + +

∑∑ , ()13

ξµ
k

g x
e

H x
() , ()=

+ −
1

1
14

MSE O O
S

O O
i

S
(,) . ()expect predict expect predict= −()

=
∑1

16
2

1

r i j
C i j

C i i C j j
(,)

(,)

(,) (,)
, ()=

⋅
17
Page 10 of 11
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:125 http://www.biomedcentral.com/1471-2105/7/125
Web based Java Applet
A Java Applet termed "PsoVis" for the three-dimensional
visualization of particle swarm optimization implement-
ing PSO and CPSO is available on our gecco® server the
world-wide-web [25].

List of abbreviations
ANN Artificial neural network

BBB Blood-brain barrier

CPSO Constriction-type particle swarm optimization

D Dimensions

DE Differential Evolution

GA Genetic algorithm

K Constriction factor

logBB Logarithm of the blood-brain barrier permeation
coefficient

MSE Mean square error

PSO Particle swarm optimization

OPSO Optimized particle swarm optimization

QSAR Quantitative structure-activity relationship

Authors' contributions
M. Meissner implemented the particle swarm algorithms
and the Java applet and performed the experiments. M.
Schmuker participated in algorithm design and applica-
tion. G. Schneider conceived of the study, and partici-
pated in its design and coordination. All authors
contributed to manuscript preparation, and read and
approved the final manuscript.

Acknowledgements
Manuel Nietert is warmly thanked for compiling the blood-brain-barrier
data. Kristina Grabowski is thanked for proof-reading the manuscript. This
research was supported by the Beilstein Institut zur Förderung der Che-
mischen Wissenschaften, Frankfurt am Main.

References
1. Kennedy J, Eberhart RC: Particle swarm optimization. Proceed-

ings of IEEE International Conference on Neural Networks; Piscataway, NJ
1995:1942-1948.

2. Eberhart RC, Kennedy J: A new optimizer using particle swarm
theory. In Proceedings of the Sixth International Symposium on Microma-
chine and Human Science Nagoya, Japan; 1995:39-43.

3. Cedeno W, Agrafiotis DK: Using particle swarms for the devel-
opment of QSAR models based on K-nearest neighbor and
kernel regression. J Comput Aided Mol Des 2003, 17:255-263.

4. Shen Q, Jiang JH, Jiao CX, Huan SY, Shen GL, Yu RQ: Optimized
partition of minimum spanning tree for piecewise modeling

by particle swarm algorithm. QSAR studies of antagonism of
angiotensin II antagonists. J Chem Inf Comput Sci 2004,
44:2027-2031.

5. Lin W, Jiang J, Shen Q, Shen G, Yu R: Optimized block-wise vari-
able combination by particle swarm optimization for partial
least squares modeling in quantitative structure-activity
relationship studies. J Chem Inf Model 2005, 45:486-493.

6. Shen Q, Jiang JH, Jiao CX, Lin WQ, Shen GL, Yu RQ: Hybridized
particle swarm algorithm for adaptive structure training of
multilayer feed-forward neural network: QSAR studies of
bioactivity of organic compounds. J Comput Chem 2004,
25:1726-1735.

7. Clerc M, Kennedy J: The Particle Swarm – Explosion, Stability,
and Convergence in a Multidimensional Complex Space.
IEEE Transactions on Evolutionary Computation; 2002:58-73.

8. Rasmussen TK, Krink T: Improved Hidden Markov Model train-
ing for multiple sequence alignment by a particle swarm
optimization-evolutionary algorithm hybrid. Biosystems 2003,
72:5-17.

9. Veeramachaneni K, Peram T, Mohan CK, Osadciw LA: Optimiza-
tion Using Particle Swarms with Near Neighbor Interac-
tions. In Lecture Notes in Computer Science (LNCS) No 2723:
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) Chicago, IL, USA; 2003:110-121.

10. Shi Y, Eberhart RC: Parameter selection in particle swarm
optimization. In Evolutionary Programming VII: Proceedings of the Sev-
enth Annual Conference on Evolutionary Programming New York, USA;
1998:591-600.

11. Carlisle A, Dozier G: An Off-The-Shelf PSO. Proceedings of the
Workshop on Particle Swarm Optimization 2001; Indianapolis, IN
2001:1-6.

12. Bergh vdF, Engelbrecht AP: Effects of Swarm Size on Coopera-
tive Particle Swarm Optimizers. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) San Francisco, USA;
2001.

13. Parsopoulos KE, Vrahatis MN: Recent approaches to global opti-
mization problems through Particle Swarm Optimization.
Natural Computing 2002, 1:235-306.

14. Storn R, Price K: Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces. J
Global Optimization 1997, 11:341-359.

15. Eberhart RC, Shi Y: Comparing inertia weights and constric-
tion factors in Particle Swarm Optimization. Proceedings of the
Congress on Evolutionary Computating 2000:84-88.

16. Agrafiotis DK, Cedeno W: Feature Selection for Structure-
Activity Correlation Using Binary Particle Swarms. J Med
Chem 2002, 45:1098-1107.

17. Lobell M, Molnar L, Keseru GM: Recent advances in the predic-
tion of blood-brain partitioning from molecular structure. J
Pharm Sci 2003, 92:360-370.

18. Kennedy J, Eberhart RC: Swarm Intelligence San Diego: Academic
Press; 2001.

19. Werbos P: Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. Cambridge; 1974.

20. Hertz J, Palmer RG, Krogh AS: Introduction to the theory of neural com-
putation Westview Press; 1991.

21. Matlab. In Version 6.5.0, The MathWorks, Inc Natick, MA, USA.
22. CLIFF: Version 1.14 Molecular Networks GmbH, Erlangen, Germany.
23. Schneider G, Neidhart W, Giller T, Schmid G: Scaffold-Hopping by

Topological Pharmacophore Search: A Contribution to Vir-
tual Screening. Angew Chem Int Ed Engl 1999, 38:2894-2896.

24. Fechner U, Franke L, Renner S, Schneider P, Schneider G: Compar-
ison of correlation vector methods for ligand-based similar-
ity searching. J Comput Aided Mol Des 2003, 17:687-698.

25. PsoVis 2003 [http://gecco.org.chemie.uni-frankfurt.de/PsoVis/
index.html].
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13677491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13677491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13677491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15554671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15554671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15554671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15554671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15807514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15807514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15807514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15362129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15362129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15362129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14642655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14642655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14642655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11855990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11855990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12532385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12532385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10540384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10540384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10540384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068367
http://gecco.org.chemie.uni-frankfurt.de/PsoVis/index.html
http://gecco.org.chemie.uni-frankfurt.de/PsoVis/index.html

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Optimized Particle Swarm Optimization (OPSO)
	Optimizing PSO parameters: Experimental setup
	Optimizing PSO parameters: Results
	Comparison with other PSO implementations
	OPSO for neural network training: Experimental setup
	OPSO for neural network training: Results
	Using optimized PSO parameters for network training on logBB data

	Conclusion
	Methods
	Particle swarm optimization (PSO)
	Constriction type PSO
	Test functions
	Multilayer artificial neural networks
	Data sets
	Web based Java Applet

	List of abbreviations
	Authors' contributions
	Acknowledgements
	References

