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Abstract. Automatic segmentation methods are important tools for
quantitative analysis of magnetic resonance images. Recently, patch-
based label fusion approaches demonstrated state-of-the-art segmentation
accuracy. In this paper, we introduce a new patch-based method using
the PatchMatch algorithm to perform segmentation of anatomical struc-
tures. Based on an Optimized PAtchMatch Label fusion (OPAL) strat-
egy, the proposed method provides competitive segmentation accuracy in
near real time. During our validation on hippocampus segmentation of 80
healthy subjects, OPAL was compared to several state-of-the-art meth-
ods. Results show that OPAL obtained the highest median Dice coefficient
(89.3%) in less than 1 sec per subject. These results highlight the excellent
performance of OPAL in terms of computation time and segmentation ac-
curacy compared to recently published methods.
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1 Introduction

Automatic segmentation methods are efficient tools to produce accurate and reli-
able measurement dedicated to quantitative analysis of Magnetic Resonance Im-
ages (MRI). Over the past years, several paradigms were proposed to achieve the
challenging task of brain labeling. First, atlas-based methods involving nonlinear
registration of a labeled atlas to the subject to be segmented were proposed [1].
Then, multi-templates warping techniques based on training library of manually
labeled templates were introduced. Such methods fuse several similar training
templates to achieve better segmentation [2–4]. Multi-template matching ap-
proaches demonstrated competitive segmentation accuracies at the expense of
an important computational load resulting from multiple nonlinear registrations
(i.e., up to several hours). Recently, a nonlocal patch-based label fusion (PBL)
strategy [5] has been proposed. Requiring only linear registration, PBL involves
patch comparison where the weight assigned to each label depends on the sim-
ilarity between the current patch and the training patch. The search of similar
training patches is based on nonlocal strategy to better handle the inter-subject
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variability and to capture registration inaccuracies. In a limited computational
time (i.e., several minutes), this method achieves state-of-the-art segmentation
accuracy. Consequently, since its introduction, PBL is intensively studied and
many improvements have been proposed [6–9].

Despite these improvements, PBL still suffers from several limitations. First,
the search for similar patches is computationally expensive. Although template
preselection [5], patch preselection [5, 6] or multiscale strategies [7] have been
proposed, an important amount of computation remains dedicated to find sim-
ilar patches in the training library. Second, the use of preselection strategy can
prevent finding the most similar patches. In fact, similar patches can be found in
dissimilar training templates. By removing a priori relevant parts of the training
library, these preselection approaches can lead to sub-optimal results. Third, in
PBL a weight is assigned to a large number of training patches including dissim-
ilar patches. Therefore, resources are uselessly dedicated to estimate negligible
weights. Even worse, these dissimilar patches can decrease the segmentation
accuracy [8]. Sparsity-based methods can limit this aspect at the expense of
an important computational burden [8, 9]. These limitations may result in sub-
optimal segmentations and make the current implementations computationally
expensive.

In this paper, we introduce a new PBL method based on the PatchMatch
(PM) algorithm [10] to address these limitations. Originally, the PM algorithm
was introduced to efficiently find an approximate nearest neighbor (ANN) for all
patch correspondences between two 2D images. This method is based on a co-
operative and randomized strategy resulting in very low computational burden
that enables real time image processing. Recently, PM has been used for super-
resolution of cardiac MRI [11]. Here, we propose a new Optimized PAtchMatch
Label fusion (OPAL) method for anatomical structures segmentation by extend-
ing the PM approach. Compared to previous PBL methods, OPAL produces
segmentations in near real time thanks to the use of the PM scheme. Moreover,
OPAL does not require any pre-selection since the search of the most similar
patch is achieved over the entire training library leading to higher segmentation
accuracy. Finally, by using a very low number of highly similar patches, OPAL
limits the introduction of dissimilar patches during label fusion.

The main contributions of this work are: (1) Adaptation of the PM algo-
rithm to label fusion for anatomical structure segmentation in 3D MRI. (2)
Acceleration techniques including constrained initialization, parallel processing
and optimized distance computation. (3) Validation of OPAL on hippocampus
segmentation. (4) Comparison with several state-of-the-art results in terms of
computational time and segmentation accuracy.

2 Methods and Materials

2.1 The PatchMatch Algorithm

The original PM algorithm [10] is a fast and efficient approach that computes
patch correspondences between two 2D images (denoted A and B). The key
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point of this method is that good matches can be propagated to the adjacent
patches within an image. This method is based on three steps: initialization,
propagation and random search steps. The initialization consists in randomly
associating a neighbor for each patch in A with a patch in B to obtain an initial
ANN field. The propagation step tries to improve the patch correspondences
using the observation that when a patch located at p = (x, y) ∈ A matches well
with a patch located at q = (x′, y′) ∈ B then the adjacent patches of p ∈ A

should match well with the adjacent patches of q ∈ B. The random search step
consists in a random sampling around the current ANN to escape from local
minima. These two later steps are performed iteratively in order to improve the
patch correspondences.

2.2 Optimized PatchMatch Algorithm

In contrast to [10] where two 2D images are considered, OPAL finds the patch
correspondences between a 3D image S and a library of 3D templates L =
{T1, . . . , Tn} where n is the number of training templates. One advantage of the
PM approach is that the complexity of this algorithm only depends on the size
of image A and not on the size of the compared image B (i.e., L in the OPAL
case). This important fact allows OPAL to consider the entire image library L

without any template preselection step at constant complexity. Moreover, for
each patch in S, OPAL computes not only one match as done in [10] but the
best k-ANN matches in L.

OPAL is explained in detail below while Figure 1 proposes its schematic
overview. For the sake of clarity, only three templates are used in this figure
and 3D MRI volumes are displayed in 2D instead of 3D.
Constrained Initialization. In [10], the initialization consists in affecting for
each patch located at (x, y) ∈ A a random correspondence located at (x′, y′) ∈ B.
In the 3D case, the natural extension of this step would be to assign for each patch
located at (x, y, z) ∈ S a random patch correspondence located at {(x′, y′, z′), t}
where t ∈ {1, . . . , n} is the index of the template Tt within the library L. How-
ever, we can take advantage that all MRI volumes in L are linearly registered.
Consequently, we propose to constrain the random initial position (x′, y′, z′) to
be within a fixed search window centered around the current position (x, y, z).
Then, for each patch in S the index template t is assigned using i.i.d. random
variable within {1, . . . , n}. Figure 1(a) shows an illustration of this step, where
for each patch in S (only three are displayed) the fixed search window for the
random initialization is depicted in dotted lines in different training templates.

As in the PatchMatch algorithm, after this constrained initialization, prop-
agation and random search steps are performed iteratively in order to improve
the patch correspondence. Figure 1 also illustrates this iterative process.
Propagation Step with Fast Distance Computation. The OPAL propa-
gation step extends the one proposed by [10] for the 3D case. For each patch
located at (x, y, z) ∈ S, we try to improve its ANN by testing if the shifted ANN
of its 6 adjacent patches located at (x± 1, y, z), (x, y± 1, z) and (x, y, z± 1) pro-
vides a better match. Figures 1(b) and 1(d) illustrate this step, where the blue
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(a) CI (b) PS for iteration #1 (c) CRS for iteration #1

(d) PS for iteration #2 (e) CRS for iteration #2 (f) multiple PM

Fig. 1. OPAL main steps. (a) Constrained initialization (CI), (b) and (d) propagation
step (PS) for iteration #1 and #2, respectively (c) and (e) constrained random search
(CRS) for iteration #1 and #2, respectively and (f) multiple PM. See text for more
details.

dotted lines correspond to the test shifted adjacent neighbors in L in order to
improve the current blue patch correspondence. In this example, the best match
for the blue patch moves from template T1 to T2 with iteration #1 and from
T2 to T1 with iteration #2. The propagation step is a core stage since it allows
a patch correspondence to move over all the templates in L. Indeed, since the
ANN of the adjacent voxels are not necessarily in the same template, the ANN
of the current voxel can move from one template to another one.

Moreover, we propose an acceleration technique based on the observation that
the ANN of the adjacent patches are known. Indeed, instead of computing the
entire distance (the sum of the squared difference: SSD) between these patches,
we take benefit from the patch overlapping by using a sliced SSD where only the
non overlapping coordinates are considered. Finally, during the SSD computa-
tion, we test if the current sum is superior to the previous minimal SSD. By this
way, the SSD estimation can be stopped avoiding extra computation.
Constrained Random Search. In contrast to [10], OPAL deals with a library
of images. Therefore, we modify the random search step in order to take into
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account this aspect. Indeed, if we use the original PM algorithm, the random
search step should be performed on all the L dimensions, i.e., x, y, z and t.
However, to ensure spatial consistency, OPAL performs the random search only
in the current template that provides the current best patch correspondence (i.e.,
t is fixed, and we random on (x′, y′, z′) ∈ Tt) within a decaying search window
as in [11]. Figures 1(c) and 1(e) present examples of such fixed template random
search where the decaying search windows are represented in dotted blue lines.
Multiple PM and Parallel Computation. Finally, while in [10] only the
best match is estimated, OPAL computes k-ANN matches in L to perform label
fusion. In the literature, an extension of the original PM algorithm to k-ANN
case was proposed [12]. The suggested strategy is to build a stack of the best
visited matches to obtain the k-ANN. However, to parallelize such an approach,
the current image S must be split into several parts with problems of patch
boundaries overlapping between threads. Therefore, in OPAL, we decided to
based the k-ANN search on independent k-PM enabling a more efficient and
simple multi-threading. Figure 1(f) illustrates the result of the multiple PM step
where here k = 3 and, each PMi=1,2,3 denotes an individual PM.
Patch-Based Label Fusion. At the end the process, the k-ANN are estimated
for all the patches in S. Thus, the location and the SSD between the patches of
S and their k-ANN in L are known. Therefore, to obtain the final segmentation,
we used the PBL method presented in [5]. However, in OPAL only the k most
similar patches are used (limiting segmentation error) and the entire library is
considered (increasing segmentation accuracy). When the same ANN is selected
several times it will be considered several times during label fusion. Finally, to
further improve segmentation quality, label fusion is performed over the whole
patch as done in [6, 9] and not only using the central voxel.

2.3 Validation

Dataset. The proposed method was evaluated on the International Consortium
for Brain Mapping (ICBM) dataset. Part of this dataset consists of 80 MR
images of young and healthy individuals with manual segmentations following
the Pruessner’s protocol [13]. The MRI scans were acquired with a 1.5T Philips
GyroScan imaging system (1 mm thick slices, TR = 17 ms, TE = 10 ms, flip angle
= 30 ◦, 256 mm field of view). The estimated intra-class reliability coefficient was
of 0.90 for inter- (4 raters) and 0.92 for intra-rater (5 repeats) reliability.
Preprocessing. All the images were preprocessed through the following pi-
peline: estimation of the standard deviation of noise [14]; denoising using the
optimized nonlocal means filter [15]; correction of inhomogeneities using N3 [16];
registration to stereotaxic space based on a linear transform to the ICBM152
template (1×1×1 mm3 voxel size) [17]; linear intensity normalization of each
subject on template intensity; brain extraction using BEaST [7]; image cropping
around the structures of interest; and cross-normalization of the MRI intensity
between the subjects within the estimated brain mask with [18].
Quality Metric and Compared Methods. To validate the proposed method
a leave-one-out cross validation procedure was used. During our validation,
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we investigated the impact of the patch size and of the number of neighbors
(i.e., number of PM). Moreover, OPAL was compared with Atlas-Based Method
(ABM) [1], Multi-Templates Matching (MTM) [4], Patch-Based Label fusion
(PBL) [5], Sparse Representation Classification (SRC) [8], Discriminative Dic-
tionary Learning for Segmentation (DDLS) and Fixed Discriminative Dictionary
Learning for Segmentation (F-DDLS) [8] since all these methods were validated
on the same dataset. The segmentation quality was estimated with the Dice
coefficient by comparing the expert-based segmentations with the automatic
segmentations. The median Dice coefficients and computational times presented
in Table 1 are the published values. These values include segmentation of both,
left and right hippocampus. OPAL was implemented in MATLAB using multi-
threaded C-MEX code. Our experiments were carried out using a server of 16
cores at 2.6 GHz with 100 GB of RAM. The number of threads was equal to k

and the number of inner iterations of OPAL was set to 5 as in [10].

3 Results

Influence of Parameters. Figure 2 shows the influence of the number of neigh-
bors and of the patch size on the segmentation quality and on the computational
time. Similarly to previous PBL methods [5, 8], we found that patches of size
5×5×5 and 7×7×7 voxels provides the best results with a slight advantage for
patches of size 5×5×5 voxels (89.4% for k = 20). Moreover, we found that the
median Dice coefficient reached a plateau around 10-ANN. Interestingly, this
number is in line with the suggested number of templates in multi-templates
matching methods [4]. As expected, bigger patches and larger number of ANN
required higher computational time. Consequently, our experiments suggest that
using patch size of 5×5×5 and k = 10 offers a good trade off between segmen-
tation accuracy (89.3%) and computational time (0.89s).
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Fig. 2. Median Dice coefficient according to the patch size and the number of neighbors
(at left) and the corresponding computational time (at right)

Comparison with State-of-the-Art Methods. The comparison of OPAL
performance with 6 other methods is presented in Table 1. The presented values
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Table 1. Methods comparison in terms of segmentation accuracy and computational
time on the ICBM dataset

Method Median Dice Coefficient Computational Time by Subject

ABM [1] 86.4% 358s
PBL [5] 88.2% 662s
MTM [4] 88.6% 3974s
F-DDLS [8] 88.6% 193s
SRC [8] 88.7% 5587s
DDLS [8] 89.0% 943s
OPAL 89.3% 0.89s

are the results published by the authors for the segmentation of both hippocampi
on the ICBM dataset. The provided computational times do not include template
preselection while only OPAL does not require it. Therefore, the computational
times are under-estimated except for OPAL. Moreover, for the F-DDLS an offline
training step of 1781s is needed. However, OPAL obtained the highest median
Dice coefficient in the fastest manner. These results highlights the excellent per-
formance of OPAL in terms of both: segmentation accuracy and computational
time. Compared to the original PBL [5], OPAL obtained better accuracy 700×
faster. Moreover, OPAL obtained the highest Dice coefficient for a computa-
tional time 200× faster than the fastest published method on the used dataset
(F-DDLS [8]). Finally, compared to the most accurate method (DDLS [8]), OPAL
obtained higher Dice coefficient for a computational time 1000× faster.

4 Conclusion

In this paper, we propose a novel patch-based segmentation method based on
an optimized PatchMatch label fusion. The Opal method enables high quality
segmentation in near real time. Experiments show that the proposed method ob-
tained competitive results compared to the state-of-the-art approaches. Indeed,
the OPAL obtained the highest median Dice coefficient in a much faster man-
ner. In addition, the near real time capabilities of OPAL pave the way for new
applications for label fusion segmentation. For instance, OPAL can be used as
an efficient automatic or interactive segmentation tool in medical visualization
software. Finally, as future work, OPAL will be validated on multi-sites datasets
containing pathological cases and extended to multi-label segmentation.
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