
Optimized Pipelined Parallel Merge Sort on the Cell BE

Jörg Keller1 and Christoph W. Kessler2

1 FernUniversität in Hagen, Dept. of Math. and Computer Science, 58084 Hagen, Germany
2 Linköpings Universitet, Dept. of Computer and Inf. Science, 58183 Linköping, Sweden

Abstract. Chip multiprocessors designed for streaming applications such as Cell
BE offer impressive peak performance but suffer from limited bandwidth to off-
chip main memory. As the number of cores is expected to rise further, this bot-
tleneck will become more critical in the coming years. Hence, memory-efficient
algorithms are required. As a case study, we investigate parallel sorting on Cell
BE as a problem of great importance and as a challenge where the ratio between
computation and memory transfer is very low. Our previous work led to a parallel
mergesort that reduces memory bandwidth requirements by pipelining between
SPEs, but the allocation of SPEs was rather ad-hoc. In our present work, we
investigate mappings of merger nodes to SPEs. The mappings are designed to
provide optimal trade-offs between load balancing, buffer memory consumption,
and communication load on the on-chip bus. We solve this multi-objective op-
timization problem by deriving an integer linear programming formulation and
compute Pareto-optimal solutions for the mapping of merge trees with up to 127
merger nodes. For mapping larger trees, we give a fast divide-and-conquer based
approximation algorithm. We evaluate the sorting algorithm resulting from our
mappings by a discrete event simulation.

1 Introduction

Multiprocessors-on-chip are about to become the typical processors to be found in desk-
tops, notebooks and clusters. Besides multicores based on x86 architectures, we also
find new designs such as the Cell Broadband Engine processor with 8 parallel proces-
sors called SPEs and a Power core (see e.g. [1] and the references therein). Currently,
explicit parallel programming is necessary to exploit the raw power of these processors.
Many applications use the Cell BE like a dancehall architecture, i.e. all SPEs load data
from the external memory, and use their small local memories (256 KB for code and
data) as explicitly-managed caches. Yet, as the bandwidth to the external memory is the
same as each SPE’s bandwidth to the element interconnect bus (EIB) [1], the external
memory limits performance and prevents scalability. Bandwidth to external memory is
a common bottleneck in multiprocessors-on-chip, and the increasing number of cores
will intensify the problem [2]. A scalable approach to parallelism on such architectures
therefore must use communication between the SPEs to reduce communication with
external memory.

Sorting is an important subroutine in applications ranging from computational geom-
etry to bio informatics and data bases. Parallel sorting algorithms on a wealth of archi-
tectures have therefore attracted considerable interest continuously for the last decades,

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 131–140, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



132 J. Keller and C.W. Kessler

see e.g. [3,4]. As the computation to memory-transfer ratio is quite low in sorting, it
presents an interesting case study to develop bandwidth efficient algorithms.

Sorting on the Cell BE presents several challenges. First, the SPEs’ local memories
are so small that most parallel sorting algorithms must mainly use the external mem-
ory, and thus will not be memory-efficient. Algorithms which do not suffer from this
problem must also have very simple, data-independent control structures that are able to
efficiently use the SPEs’ SIMD structure and minimize branching. Sorting algorithms
implemented for the Cell BE [5,6] use bitonic sort or merge sort and work in two phases
to sort a data set of size n with local memories of size n′. In the first phase, blocks of
data of size 8n′ that fit into the combined local memories of the 8 SPEs are sorted. In
the second phase, those sorted blocks of data are combined to a fully sorted data set. We
concentrate on the second phase as the majority of memory accesses occurs there. In [5],
this phase is realized by a bitonic sort because this avoids data dependent control flow
and thus fully exploits the SIMD architecture of the SPEs. Yet, O(n log2 n) memory
accesses are needed, and the reported speedups are small. In [6], mergesort with 4-to-1-
mergers is used in the second phase, where the mergers use bitonic merge locally. The
data flow graph of the merge procedures thus forms a fully balanced quad-tree. As each
SPE reads from main memory and writes to main memory, all n words are transferred
from and to main memory in each round, resulting in n log4(n/(8n′)) = O(n log4 n)
data being read from and written to main memory. While this improves the situation,
speedup still is limited.

In order to overcome this bottleneck, we propose to run merger nodes belonging to
consecutive layers of the merge tree concurrently, so that output from one merger is not
written to main memory but sent to the SPE running the follow-up merger node, i.e.
we use a form of pipelining. If we can embed k-level b-ary merge trees in this way,
we are able to realize parallelized bk-to-1 merge routines and thus increase the ratio of
computation to memory transfer by a factor of k · log4 b. Yet, this must be done such
that all SPEs are kept busy. As in [6], a merger node does not process complete blocks
of data before forwarding its result block, but uses fixed sized chunks of the blocks,
i.e. a merger node is able to start work as soon as it has one chunk of each of its input
blocks, and as soon as it has produced one chunk of the output block, it forwards it to
the follow-up node. This form of streaming allows the use of fixed size buffers, holding
one chunk each. To overlap data transfer and computation, the merger nodes should
use double buffering at least for their inputs, and the buffers should have a reasonable
minimum size to allow for efficent data transfer between SPEs.

Both [6] and our approach may benefit from a sample sort [7] preprocessing to reduce
the problem to p sorts of cn/p data each, where c ≤ 3 with high probability, which
avoids log4 p and logbk p rounds, respectively.

Ensuring that our pipeline runs close to the maximum possible speed requires load
balancing. If a merger node u must provide an output rate of τ words per time unit, then
the mergers ui, where 1 ≤ i ≤ b, feeding its inputs must provide a rate of τ/b words
per time unit on average. However, if the values in the output chunk produced by ui are
much larger than those in uj (see Fig. 1), u will only process values from uj for some
time, so that uj must produce at a double rate for some time, while ui will be stalled
because of finite buffering between ui and u. Otherwise the rate of u will reduce.



Optimized Pipelined Parallel Merge Sort on the Cell BE 133

Fig. 1. Load balancing between merger nodes

Finally, the merger nodes should be distributed over the SPEs such that not all com-
munication between merger nodes leads to communication between SPEs, in order not
to overload the EIB.

The remainder of this article is organized as follows. In Section 2, we present the
mapping problem sketched here in a formal way, give an integer linear programming so-
lution to compute an optimal mapping of a b-ary merge tree onto the SPEs for small and
medium-sized merge trees, and present an approximation algorithm based on divide-
and-conquer. In Section 3, we discuss how our mapping turns into an efficient sorting
algorithm, and we present simulation results. Section 4 concludes.

2 Mapping Trees onto Processors

2.1 Definitions

Given is a set P = {P1, . . . , Pp} of p processors interconnected by a ring, and a k-
level balanced b-ary tree T = (V, E) directed towards its root, to be mapped onto the
processors. Information in the tree flows from the leaves towards the root, input being
fed in at the leaves and output leaving the tree root. Each node v in the tree processes b
designated incoming data streams and combines them into one outgoing data stream of
rate 0 < τ(v) ≤ 1. Hence, the incoming data streams on average will have rate τ(v)/b,
if we assume finite buffering within nodes.

The computational load γ(v) that a node v places on a processor that it is mapped
to is proportional to its output rate τ(v), hence γ(v) = τ(v). The tree root r has a
normalized output rate of τ(r) = 1. Thus, each node v on level i of the tree, where
0 ≤ i ≤ k − 1, has τ(v) = b−i on average. The computational load and output rate
may also be interpreted as node and edge weights, respectively. For Tl(v) being the l-
level sub-tree rooted in v, we extend the definitions to τ(Tl(v)) = τ(v) and γ(Tl(v)) =∑

u∈Tl(v) γ(u). Note that γ(Tl(v)) = l ·γ(v), because the accumulated rates of siblings
equal the rate of the parent. For nodes u and v not in a common sub-tree, τ({u, v}) =
τ(u) + τ(v) and γ({u, v}) = γ(u) + γ(v). In particular, the computational load and
output rate of any tree level equals 1. The memory load that a node v will place on the
processor it is mapped to is a constant value c, because the node needs a fixed amount
for buffering transferred data and for the internal data structures it uses for processing
the data. For simplicity, one may assume c = 1 in the sequel.

We construct a mapping μ : V → P of tree nodes to processors. Under this mapping
μ, a processor Pi has computational load1 Cµ(Pi) =

∑
v∈µ−1(Pi)

τ(v), i.e. the sum of

1 The computational load depends on τ and thus averaged over time.



134 J. Keller and C.W. Kessler

the load of all nodes mapped to it, and it has memory load Mµ(Pi) =
∑

v∈µ−1(Pi)
c =

c · #μ−1(Pi). The mapping μ shall have the following properties:

1. The maximum computational load C∗
µ = maxPi∈P Cµ(Pi) among the processors

shall be minimized. This requirement is obvious, because the lower the maximum
computational load, the more evenly the load is distributed over the processors.
With a completely balanced load, C∗

µ will be minimized.
2. The maximum memory load M∗

µ = maxPi∈P Mµ(Pi) among the processors shall
be minimized. The maximum memory load is proportional to the number of the
buffers. As the memory per processor is fixed, the maximum memory load de-
termines the buffer size. If the buffers are too small, communication performance
will suffer.

3. As often as possible, sibling nodes shall be mapped to the same processor. We refer
to the discussion on load balancing in Sect. 1.

4. The communication load Lµ =
∑

(u,v)∈E,µ(u) �=µ(v) τ(u), i.e. the sum of the edge
weights between processors, shall be low.

Lemma 1 (Lower bounds). In any mapping μ the maximum computational load is at
least k/p, and the maximum memory load is at least �c · (bk − 1)/((b − 1)p)�.

We omit the routine proof of Lemma 1. The latter bound can be tightened for the case
p = k. If no processor is overloaded, the root must be placed on a processor of its
own, so that the rest of the tree is mapped onto p − 1 processors, leading to M∗

µ ≥
c((bk − 1)/(b − 1) − 1)/(k − 1) = c(bk − b)/((b − 1)(k − 1)).

For larger chip-multiprocessors, e.g. with p ≥ 20, the assumption k = p might lead
to problems because the tree gets very large. In this case, we choose a small k, map the
tree onto p′ = k pseudo-processors, and implement each pseudo-processor with p/k
processors by evenly distributing the nodes assigned to that pseudo-processor. If fewer
than p/k nodes are mapped to a processor (e.g. if the root is mapped separately), then
we use a technique already known [4] and mentioned in [6]: we partition the very large
data blocks and perform merges on the partitions in parallel.

2.2 ILP Formulation

In the following, we number the tree nodes in breadth-first order, i.e. the root gets index
1, its children 2, 3 etc., and generally, the ith child of an inner node v gets index b · (v−
1) + i + 1, for i = 1, 2, ..., b. Let V = {1, ..., (bk − 1)/(b − 1)} denote the set of tree
nodes, Vinner = {1, ..., (bk−1 − 1)/(b − 1)} the set of inner nodes, and P = {1, ..., p}
the set of available SPEs. Our ILP formulation uses three arrays of O(bk · p) boolean
variables, x, y and z. The actual solution, i.e. the mapping of nodes to processors, will
be given by x:

xv,q = 1 iff tree node v is mapped on processor q.

In order to determine internal edges (where both source and target node are mapped to
the same processor) and siblings on the same processor, we need to introduce auxiliary
variables z and y:

zu,q = 1 iff non-root node u > 1 and its parent are mapped to processor q.



Optimized Pipelined Parallel Merge Sort on the Cell BE 135

yu,q = 1 iff all children b(u− 1) + 2, . . . , b · u + 1 of inner node u are mapped
to proc. q.

Also, we use an integer variable maxMemoryLoad that will indicate the maximum
memory load assigned to any SPE in P , and integer variable nSiblingsOnDiffSPEs that
will indicate the total number of inner nodes whose children are all mapped to the same
processor. The following constraints must hold:
Each node must be mapped to exactly one processor, and each processor can be filled
up to 100% with work2:

∀v ∈ V :
∑

q∈P

xv,q = 1 ∀q ∈ P :
∑

v∈V

xv,q · τ(v) ≤ 1

The memory load should be balanced:

∀q ∈ P :
∑

v∈V

xv,q ≤ maxMemoryLoad

Communication cost occurs whenever an edge is not internal, i.e. its endpoints are
mapped to different SPEs. To avoid products of two x variables when determining
which edges are internal, we use the following constraints and slack variables z:

∀v ∈ Vinner , q ∈ P, i ∈ {1, ..., b} : zb(v−1)+i+1,q ≤ xv,q

zb(v−1)+i+1,q ≤ xb(v−1)+i+1,q

and in order to enforce that a zu,q will be 1 wherever it could be, we have to take up
the (weighted) sum over all z in the objective function. This means, of course, that only
optimal solutions to the ILP are guaranteed to be correct with respect to minimizing
memory load and communication cost.

The communication load is the total communication volume over all tree edges mi-
nus the volume over the internal edges:

commLoad =
∑

v∈V −{1}
τ(v) −

∑

v∈Vinner

∑

q∈P

⎛

⎝
∑

1≤i≤b

zb(v−1)+i+1,q

⎞

⎠ · τ(bv)

We apply the same trick to determine yv,q:

∀v ∈ Vinner , q ∈ P, i ∈ {1, ..., b} : yv,q ≤ xb(v−1)+i+1,q

The total number of nodes whose children are mapped to different processors is then

nSiblingsOnDiffSPEs =
∑

v∈Vinner

∑

q∈P

(1 − yv,q)

Finally, the objective function is:

Minimize εM · maxMemoryLoad + εC · commLoad + εS · nSiblingsOnDiffSPEs

where the positive weight parameters εM , εC and εS can be set appropriately to give
preference to minimizing for maxMemoryLoad, commLoad, or nSiblingsOnDiffSPEs as
first optimization goal. The formulation above requires that εC > 0 and εS > 0.

2 We focus on the case k = p; the general case would need the constraint ≤ k/p.



136 J. Keller and C.W. Kessler

Table 1. The Pareto-optimal solutions found with ILP for b = 2, k = p = 5, 6, 7

k 5 6 7
# binary var.s 305 750 1771
# constraints 341 826 1906
maxMemoryLoad 8 9 10 13 14 15 20 21 29 30
commLoad 2.5 2.375 1.75 2.625 2.4375 1.9375 1.875 2.375 2.3125 2.0

By choosing the ratio of εM to εC , we can only find two extremal Pareto-optimal solu-
tions, one with least possible maxMemoryLoad and one with least possible commLoad.
In order to enforce finding further Pareto-optimal solutions that may exist in between,
one can use any fixed ratio εM/εC , e.g. at 1, and instead set a given minimum memory
load to spend (which is integer) on optimizing for commLoad only:

maxMemoryLoad ≥ givenMinMemoryLoad

2.3 ILP Optimization Results

We implemented the above ILP model in CPLEX 10.2 [8], a commercial ILP solver.
Table 1 shows all Pareto-optimal solutions that CPLEX found for b = 2 and k =
p = 5, 6, 7. The computations for k = 5 and k = 6 took just a few seconds each,
the time to optimize for k = 7 varied between a few seconds and several hours per
givenMinMemoryLoad. For k = 8, with 5088 binary variables and 6369 constraints,
CPLEX exceeded the timeout of 24 hours and could only produce approximate solu-
tions, including one with maxMemoryLoad of 37 and a commLoad of 2.78125, and one
with 38 and 2.71875, respectively.

By varying εM/εC and keeping εS 	 εC , two of the Pareto-optimal solutions can
be found, namely that with best maxMemoryLoad and that with best commLoad. As
the memory load is often one order of magnitude larger than communication load,
εC 
 εM is necessary to spot the communication-optimal one. The remaining Pareto-
optimal solutions in between can be found by setting givenMinMemoryLoad appro-
priately. We use a very small εS , to give the sibling placement optimization the least
priority and not interfere with communication optimization. Figure 2 shows the gener-
ated tree drawings for two of the solutions for k = 5. The tree computed for k = 7 with
minimum commLoad is shown in Figure 3.

2.4 A Divide-and-Conquer Based Approximation Algorithm

For larger values of k, we use the following divide-and-conquer algorithm (called DC-
map in the sequel) which we first present for b = 2, and then extend to arbitrary b.

To construct a mapping for a k1-level binary tree onto k1 processors, we distinguish
two cases. If k1 ≤ k0, where k0 is a constant, we take a precomputed optimal mapping.
Currently we use k0 = 7. If k1 > k0, we place the tree root onto one processor, and
interpret the remaining k1−1 processors as two sets of k1−1 processors, each with half
the computational power. We map a (k1 − 1)-level tree onto each set recursively. Then



Optimized Pipelined Parallel Merge Sort on the Cell BE 137

Fig. 2. Two Pareto-optimal solutions for mapping a 5-level tree onto 5 processors, computed by
the ILP solver. — Left hand side: max. memory load 10 and communication load 1.75, obtained
e.g. for εM = 0.1εC . — Right hand side: max. memory load 8 and communication load 2.5,
obtained e.g. for εM = 10εC .

Fig. 3. The Pareto-optimal solution for mapping a 7-level tree onto 7 processors with least com-
munication load, computed by ILP



138 J. Keller and C.W. Kessler

we sort the processors in each set according to their memory load, one set in ascending
order, one set in descending order. Finally we re-combine the i-th processors from both
lists into one processor with full computational power.

We illustrate DC-map by an example where we employ an optimal mapping for
k0 = 5 (Fig. 2 right hand side), and construct a mapping for k1 = 6. We first place the
root of the 6-level tree onto processor 6. The two 5-level trees are mapped onto 5 ‘half’-
processors each with the help of the optimal mapping, with memory loads of 8, 8, 7, 7, 1.
As this list is already sorted in descending order, we sort the copy in ascending order and
receive 1, 7, 7, 8, 8. Combination of the lists results in memory loads of 9, 15, 14, 15, 9,
and thus a maximum memory load of 15, compared to a sharpened lower bound of 13,
but still representing a Pareto-optimal solution from Table 1.

To map a tree with b > 2, we receive b lists from the recursion step, that we may
successively combine into pairs, as in a balanced binary tree with b leaves. Alternatively,
we might use some form of linear optimization here.

DC-map mainly sorts lists of increasing length, thus its runtime is
∑k1

k=k0
O(k log k)

= O(k2
1 log k1), which can be considered efficient given that typically k1 	 103. By

construction, DC-map produces a mapping where each processor has a computational
load of 1. The maximum memory load may increase by a factor of b when going from
k to k + 1, because b lists are to be combined. In contrast, the lower bound increases by
a factor

bk+1−1
(b−1)(k+1)

bk−1
(b−1)k

≈ b · k

k + 1

Thus, if we start with an optimal solution for k0 and use DC-map to construct a solution
for k1 > k0, the maximum memory load may increase by a factor of bk1−k0 , while
the lower bound increases by a factor bk1−k0k0/k1. Thus, we may be away from the
optimum maximum memory load by a factor of k1/k0.

DC-map does not take special care for the placement of siblings or communication
load. Yet, with respect to siblings, the majority of the nodes and thus the siblings is
in the levels close to the leaves, which are placed with the help of an optimal map-
ping. With respect to communication load, we may employ the following additional
step. Normally, the two ‘half’-processors to be combined into one are from different
lists, i.e. they carry nodes from different subtrees that are not connected by edges. Yet,
when the two lists are combined, we may interchange pairs of ‘half’-processors with
identical memory load without disturbing the algorithm. If the ‘half’-processors to be
interchanged are from different lists, then their partners in the combination are now
from the same list, and the nodes they carry may be connected by edges that now be-
come internal.

We have implemented a prototype version of DC-map, albeit without the improvement
of communication load. We evaluated the prototype on the basis of optimal solutions for
k0 = 3 and k0 = 7. Table 2 depicts the placement results achieved for k1 = 3, 4, . . . , 8
and k1 = 7, . . . , 12, respectively. From the numbers it is clear that the algorithm in
practice is much closer to the lower bound than by a factor of k1/k0.



Optimized Pipelined Parallel Merge Sort on the Cell BE 139

Table 2. Results for DC-map prototype

k0 = 3 k0 = 7
k1 3 4 5 6 7 8 7 8 9 10 11 12
M∗

µ 3 6 8 15 24 46 21 42 84 132 236 453
lower bound 3 5 8 13 21 37 21 37 64 114 205 373
quotient 1.00 1.20 1.00 1.15 1.14 1.24 1.00 1.14 1.31 1.16 1.15 1.21
k1/k0 1.00 1.33 1.66 2.00 2.33 2.66 1.00 1.14 1.29 1.43 1.57 1.71

3 Sorting Algorithm and Performance

In order to test the usefulness of our mappings, e.g. with regard to load balancing, we
implemented a discrete event simulation of the second phase of the parallel merge sort-
ing algorithm. As the runtime of each merger node to produce one chunk of output
is only dependent on the size of the output buffer, it is considered a constant. As fur-
thermore communication and computation are assumed to be overlapped, we believe
the simulation to quite accurately reflect the full algorithm. We chose b = 2 because
quad-trees lead to high memory load, i.e. to very small buffer sizes, even for small k.

In each step, each SPE runs one merger node that has enough input data until it has
produced one chunk, i.e. one output buffer full of data. As buffer size, we use 4 KByte
for the output buffer (holding 1,024 32-bit integers), and 2 × 4 KByte for the input
buffers, in order to allow a merger to commence work on its input data, while its input is
being simultaneously filled with the output of a previous merger. Each merger mapped
to a particular SPE receives a share of the SPE’s processing time at least according to
its position in the merge tree, i.e. a node at level i ≥ 0 receives a share of at least 2−i,
provided that it has enough input to produce one chunk of output. We use a simple
round robin scheduling policy in each SPE, where a merger receives a number of slots
in proportion to its share. A merger not ready to run (e.g. insufficient input or full output
buffer) is simply left out.

We have investigated three mappings resulting from our mapping algorithm. In the
5-level tree of Fig. 2 (right hand side), we have realized a 32-to-1 merge on 5 SPEs,
with the restriction that no more than 8 mergers are to be mapped to one SPE. With 20
KByte of buffering (5 buffers of 4 KByte each) for each merger, this seems to be the
upper limit. We used 32 input blocks of 220 sorted integers each. The blocks were filled
with randomly chosen integers and then sorted. The pipeline ran with an efficiency of
93%, meaning that in 93% of the time steps, the root merger node could run and produce
output. In comparison to [6], our memory bandwidth requirements decreased by a factor
of 2.5. Combined with a pipeline efficiency of 93%, we still gain a factor of 1.86.

By way of comparison, we also consider mapping a 4-level tree where leaf merger
nodes over 4 SPEs, instead of 2, so that we use 6 SPEs in total. Thus, load balancing
should not pose a problem. We have simulated this mapping with 16 input blocks of
220 integers each, chosen as before. In all experiments, the pipeline ran with 100%
efficiency as soon as it was filled. As we realize a 16-to-1 merge, we gain a factor of
2 on the memory bandwidth requirements in relation to [6]. Yet, as we need 6 SPEs
instead of 4 (which would be the normal case p = k), our real improvement is only



140 J. Keller and C.W. Kessler

2 · 4/6 = 4/3 in this case. This mapping would be targeted towards a Cell BE variant
with 6 SPEs as used in a Playstation 3.

Finally, we also simulated an 8-level tree on 8 processors. In this simulation, we had
to reduce the buffer size to 256 bytes (64 integers), because the maximum memory load
is 60 (resulting from DC-map with k0 = 2), so that 300 buffers must be placed into
the local memory of one SPE. As typically at most half the memory is available for
data because of code size, and there are other data structures must be stored, too, using
75 KBytes for buffers seemed the upper limit. The simulation ran with an efficiency
of at least 98% in all simulations. Thus, in comparison to the algorithm running with
4-to-1 mergers on 8 SPEs, i.e. on a complete Cell BE, our algorithm reduces memory
bandwidth requirements by a factor of 0.98 · log4(256) = 3.92. Also we see that our
algorithm can cope with rather small buffer sizes, as long as computation and commu-
nication can be overlapped.

4 Conclusion

We have investigated how to lower memory bandwidth requirements in the Cell BE by
pipelining, with sorting being used as our case study. We have formulated the mapping
of the merge tree onto the processors as an integer linear optimization problem, and
given solutions for small tree sizes. For larger sizes, we presented a divide-and-conquer
approximation algorithm. The mapping turns into a sorting algorithm whose perfor-
mance we have demonstrated by a discrete event simulation. Note that our resulting
sorting algorithm is also able to run on multiple Cell processors, as does [6]. At the be-
ginning, there will be many blocks, and hence many bk-to-1 mergers can be employed.
In the end, when nearing the root, we are able to employ parallel mergers similar to the
case p > k discussed in Sect. 2.1. Approaches similar to the one presented here may
work for other memory-intensive problems as well, such as data-parallel computations.
We therefore plan to investigate other applications in the future.

References

1. Chen, T., Raghavan, R., Dale, J.N., Iwata, E.: Cell broadband engine architecture and its first
implementation—a performance view. IBM J. Res. Devel. 51(5), 559–572 (2007)

2. Huh, J., Keckler, S.W., Burger, D.: Exploring the design space of future CMPs. In: Proc. Int.l
Conf. Parallel Architectures and Compilation Techniques (PACT 2001), pp. 199–210 (2001)

3. Akl, S.G.: Parallel Sorting Algorithms. Academic Press, London (1985)
4. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)
5. Gedik, B., Bordawekar, R., Yu, P.S.: Cellsort: High performance sorting on the cell processor.

In: Proc. 33rd Intl. Conf. on Very Large Data Bases, pp. 1286–1207 (2007)
6. Inoue, H., Moriyama, T., Komatsu, H., Nakatani, T.: AA-sort: A new parallel sorting algorithm

for multi-core SIMD processors. In: Proc. Int.l Conf. Parallel Architectures and Compilation
Techniques (PACT 2007), pp. 189–198 (2007)

7. Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. Journal of Parallel and Distributed
Computing 14, 361–372 (1992)

8. ILOG Inc.: Cplex version 10.2 (2007), http://www.ilog.com

http://www.ilog.com

	Optimized Pipelined Parallel Merge Sort on the Cell BE
	Introduction
	Mapping Trees onto Processors
	Definitions
	ILP Formulation
	ILP Optimization Results
	A Divide-and-Conquer Based Approximation Algorithm

	Sorting Algorithm and Performance
	Conclusion
	References


