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 
Abstract— With the increasing size of wind farm, the impact 

of the wake effect on wind farm energy yields become more 

and more evident. The arrangement of the wind turbines’ 

(WT) locations will influence the capital investment and 

contribute to the wake losses which incur the reduction of 

energy production. As a consequence, the optimized 

placement of the wind turbines may be done by considering 

the wake effect as well as the components cost within the wind 

farm. In this paper, a mathematical model which includes the 

variation of both wind direction and wake deficit is proposed. 

The problem is formulated by using Levelized Production 

Cost (LPC) as the objective function. The optimization 

procedure is performed by Particle Swarm Optimization 

(PSO) algorithm with the purpose of maximizing the energy 

yields while minimizing the total investment.  The simulation 

results indicate that the proposed method is effective to find 

the optimized layout, which minimizes the LPC. The 

optimization procedure is applicable for optimized placement 

of wind turbines within wind farms and extendible for 

different wind conditions and capacity of wind farms. 

 
Index Terms— Wake effect, energy yields, optimized 

placement, wake model, Levelized Production Cost (LPC), 

Particle Swarm Optimization (PSO). 

 

Nomenclature 
 
V0 [m/s]                  the input wind speed at the first line WT 

Vx [m/s] the wind speed in the wake at a distance x 
downstream of the upstream WT 

R0 [m]  the radius of the WT’s rotor  
Rx [m] the generated wake radius at x distance 

along the wind direction 

Soverlap [m2]   the affect wake region 

Vij [m/s] the wake velocity generated by the WT at 

ith row, jth column of wind farm 

Vnm [m/s] the wind velocity at the WT at row n, 
column m  

Nrow the number of WTs in a row 
Ncol the number of WTs in a column 

                                                           
This work has been funded by Norwegian Centre for Offshore Wind 

Energy (NORCOWE) under grant 193821/S60 from Research Council of 

Norway (RCN). NORCOWE is a consortium with partners from industry and 

science, hosted by Christian Michelsen Research. 

The authors are with the Department of Energy Technology, Aalborg 

University, Aalborg, Denmark (e-mail: pho@et.aau.dk; whu@et.aau.dk; 
sms@et.aau.dk; zch@et.aau.dk). 

xnm, y
nm

 [m] the position of the downstream WT at 
row n, column m in coordinate system 

xij, y
ij
 [m]                the position of the upstream WT at row i, 

column j in coordinate system 
C the center of the upstream WT 
Onm the center of the downstream WT at row 

n, column m 
Oij the center of the wake that developed 

from the upstream WT at row i, column j 
α [°] the wind deviation angle which is the 

angle between line C-Oij and x axis 
β [°] the angle between line C-O

nm
 and x axis 

𝛽′ [°] the angle between C-O
nm

 and x axis in 

second case 
Rij [m] the radius of the wake that generated from 

the upstream WT rotor at row i, column j 

Sij [m
2]   the fan shaped area of the wake area 

generated by upstream WT at row i, 
column j 

Snm [m2]   the fan shaped  area of the sweeping area 
that generated by the downstream WT 
rotor at row n, column m 

μ [°]  the chord angle corresponding to Snm 
γ [°] the chord angle corresponding to Sij 

Lij [m] the distance between upstream WT at 
row i, column j and downstream WT at 
row n, column m 

Soverlap,ij [m
2] the overlapped area in Fig.1 

Sq,ij [m
2] one temporary variable that is needed in 

the deviation process. 
hji [m] the length of diagonal line in green 

quadrangle 
dji [m] the distance from Oij to Onm 

Sr [m
2] the sweeping area generated by the rotor 

downstream WT  

𝛽" [°] the pitch angle 

λopt the optimal tip speed ratio for the pitch 
angle 𝛽′, at which the power coefficient 
will be maximum  

ρ [kg m3⁄ ] the air density,  

Cp,opt the power coefficient at λ𝑜𝑝𝑡  

Pm,ij [MW] the mechanical power generated by WT 
at row i, column j 

v [m/s] the injected wind speed 
R [m] the rotor radius 
Ptol,t [MW] the total power production during 

interval t 
Ptol,loss,t [MW] the total power losses during interval t 
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TE [day] duration interval for energy yields 
calculation 

Tt [h] the duration when the wind farm 
generating power of Ptol,t 

Etol [MWh] the energy yields of the wind farm 
t [hour] the energy yields calculation time 
Ploss,i [MW] the power losses of cable i 

Ii [kA] the current in cable i 

Re,i [ohm/m] the resistance of cable i  

ρ
R,i

 [ohm*m/mm2] the resistivity of selected cable i 

lR,ij [m] the length of cable i 

SR,i [m
2] the sectional area of cable i 

dx [m] the interval of WTs in x direction or 
rather the distance between WTs in a row 

dy [m] the interval of WTs in y direction or 
rather the distance between each row of 
WTs 

Ci [MDKK/km] the unit cost of cable i 

Sn,i [W]               the rated apparent power of cable in line i 

N total number of cables in a wind farm  
Ap, Bp, Cp  the coefficient of cable cost model 

Ii,rated [A] the rated current of cable in line i 

Ui,rated [V] the rated voltage of cable in line i 

Li [km]    the length of cable i 
w the inertia weight  
winital the initial inertia weight at the start of a 

given run 
wfinal the final inertia weight at the end of a 

given run 
n the nonlinear modulation index 
l1, l2  learning factors 

rand1, rand2  the stochastic numbers which can 
generate some random numbers within [0, 
1] 

xi
k, xi

k+1 [m] the position of particle i at iteration k and 
k+1 respectively 

vi
k, vi

k+1 [m] the speed of particle i at iteration k and 
k+1 respectively 

locali
k
 [m] the best position of particle i at iteration k 

global
k
 [m] the best position of all particles at 

iteration k 

I.  INTRODUCTION 

According to the wind report 2013 of Global Wind Energy 
Council (GWEC), wind energy has become the second largest 
renewable energy source and will take up to 25% of total 
renewable energy by 2035 [1]. Compared with onshore wind 
farm, offshore wind farm always has higher energy production 
efficiency and is not limited by land occupation problem; 
however, the investment is relatively larger. In order to 
maximize the energy production while getting the minimum 
investment, more and more researchers are concentrating on 
solving the Wind Farm Layout Optimization (WFLO) 
Problem with evolutional algorithms. Since the scale of wind 
farms in early stage are relatively small, the initial attempts 
focus on maximizing energy yields or minimizing total losses 
within the wind farm using evolutional algorithms without 
taking the wake effect into consideration. In [2], a multi-
objective PSO algorithm is used to minimize the layout costs 
and maximize the energy output without considering the wake 
effect and the discounted costs of wind farm during life-cycle. 

The optimization for offshore wind farm electrical system is 
done in [3], in which the configuration with minimal LPC 
under required reliability is found via Genetic Algorithm (GA) 
while similar work is also presented by considering the cost 
and losses of each main component within wind farm [4]. 

The wake deficit can be explained as the impact of upstream 
WT to the downstream ones which incur the reduction of the 
total energy yields of the wind farm due to the wind speed 
drop downstream [5]. With the development of wind energy 
technology, both the capacity of the WT and wind farm 
increases a lot. Since the size of WT is larger, the wake 
effect’s impact on energy yields becomes evident [6]. Three 
wake models commonly are the Jensen model, Ainslie model 
and G.C. Larsen model [7]. In Jensen model, the wakes behind 
the WTs are assumed to expand linearly and the wind speed 
within the wake of different heights is regarded to be the 
same. Ainslie developed a parabolic eddy viscosity model in 
which the wake turbulent mixing and ambient turbulence on 
wake are included. Since the results are obtained by solving 
the differential equations, it needs more time to get the 
solution and is more suitable for dynamic analysis of WT. The 
semi-analytic wake model is constructed by Larsen. As 
reported in [8], the model is recommended for solving wake 
loading problem. Besides, some works of developing new 
model to help forecasting the energy yields of wind farm has 
been done in Risø National Laboratory [9][10]. In [9] an 
analytical model which divided the wake into 3 regimes and 
the phenomena of multiple wakes merging, wake expanding 
and wake hitting ground, etc. are all specified. The developed 
wake models provide researchers with the basic tool to 
continue the optimization work within the wind farm 
considering wake effect. All the models can be used for 
energy yields calculation, however, most of the wind farm 
layout design work are using Jensen model [11]-[15]. The 
main reason is that calculation of energy yields using Jensen 
model requires the least computation time in comparison with 
the other models. Moreover, Jensen model shows better 
performance on the accuracy of energy yields calculation 
which is demonstrated through a case study in [7] and in [14]. 
Taking into account the reasons mentioned above, Jensen 
model is selected in this paper. 

As it is known, the wake would recover and expand before 
encountering the other WTs. The wind direction is of 
particular importance for deciding the distance for wake to 
recover, in other words, the placement of WTs should consider 
the wake effect along with the varying wind speed’s influence 
[16]. In order to reduce the wake losses and make the wind 
farm more cost-efficient, some works have been done on the 
planning of wind farm by comparing the energy yields from 
different layouts by using some commercial software as 
LENA-tool [16] or MaWind [18]. In [19], Patel proposed that 
the beneficial distance between WTs in prevailing wind 
direction is 8 rotor diameter (RD) to 12RD while in the 
direction perpendicular to prevailing wind direction the 
distance should be 3RD to 5RD. The placements of WTs are 
based on this empirical conclusion. In [20], the impact of wind 
directions on the energy production is studied. The energy 
yields are calculated by considering the wake effect with 
varying wind speed, however, the spacing of WT to the 
neighboring WTs are not in the optimization procedure. In fact, 
the optimal spacing for WTs is different for various wind 
farms and even in the same wind farm the optimal spacing for 
different types of WTs should be different as well. The authors 
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are proposing more advanced method for wake rather than the 
simple models and we believe that if the spacing of the WTs is 
obtained as a result of an optimization problem, the annual 
power production will increase compared to the production of 
the wind farms whose layouts are designed based on some 
empirical methods.  

In order to get the solution, some evolutional algorithms are 
also widely used.  In [21][22], the layouts are found by GA 
and the results are also compared with those obtained in 
commercial software WindFarmer as well as in the work of 
Mosetti et al in [21] while Net Present Value (NPV) is adopted 
to evaluate the cost variables in the wind farm and the 
foundation cost model is proposed that is suitable for wind 
farm optimization [14]. The optimized locations of WTs and 
the most economical way to lay the cables within the wind 
farm is presented in [23], in which the wind direction is 
considered from northeast – southwest. The optimized layout 
is found at the maximum energy yields efficiency with given 
number of WTs and 5 times diameter of WTs’ blade’s spacing 
between the WTs in a row and the same distance between the 
rows. In [24], a developed algorithm, binary PSO, is presented 
which is more efficient to fulfil the same target compared with 
GA. As indicated in [25], evolutionary algorithms as GA and 
PSO have a good performance of finding the near optimal 
solution for the constrained nonlinear optimization problem. 
In this project, the PSO algorithm is adopted to implement the 
simulation since it has higher computation efficiency in 
solving nonlinear problems with continuous design variables 
compared with GA [26]. In [27]-[29], the PSO algorithm was 
adopted to find the near optimal WT positions. 

 In this paper, there are two main contributions: one is 
setting up a new wake model based on Jensen model which 
takes both varying wind velocity and direction into 
consideration for calculating the wind speed at each WT 
within the offshore wind farm. The other is to find the 
optimized distances between WTs in a line and distances 
between each WT row with minimal LPC. The power losses 
as well as the wake deficit are considered so that the optimized 
layout can be found. Since the problem is nonlinear, the 
heuristic algorithm (PSO) is adopted to get these optimized 
distances. The parameters, such as the size of particle, 
iteration times are carefully designed to get the near optimal 
result while saving the computation time. The FINO3 
reference wind farm with 800 MW capacities is chosen to 
demonstrate the effectiveness of the new method.       

The paper is organized as follows. The analytical equations 

for calculating the wake velocity with varying wind speed are 

proposed in Section II. The objective function which is based 

on the LPC is specified in Section III. The theory of non-

linearly inertia weight PSO and the optimization framework 

are discussed in Section IV. The simulation results and 

analysis are presented in Section V and Conclusions are given 

in Section VI. 

II.  WIND FARM MODEL 

    Firstly, a comprehensive model is set up. Both the wake 

effect impact from all upstream WTs as well as the impact of 

the wind speed variation on wake effect itself is included in 

this model. Then the energy yields calculation model is 

described in this section. 

A.  Wake Model 

In this paper, the Jensen model is chosen as the baseline to 
develop a comprehensive wake model. The analytical 
equations for calculating the wake velocity considering 
varying wind speed is derived in the following. 

1) Jensen Wake Model 

 In Jensen model, the wind speed of the downstream WT is 
formulated as [30][31]:  

    
2
  
    

   

overlap0
x 0 0 t

x 0

SR
V =V -V 1- 1-C

R S
                 (1) 

x 0R =R +kx                                           (2) 

Where, Ct is the thrust coefficient of the WT and k is the 
wake decay constant. The recommended value of k is 0.04 for 
offshore environment [32].  

2) Wake Combination 

In a large wind farm, the downstream WT would be affected 
by several upstream WTs. In order to evaluate wake effects of 
corresponding turbines, Katic et al proposed a method in 
which the multiple wakes are calculated by using the ‘sum of 
squares of velocity deficits’. Hence, the wind velocity at the 
WT at row n, column m can be derived as [16]: 

 
 
  
 

 
N_rowN_col

ij 2
n,m 0

0i=1 j=1

V
V =V [1- [1- ] ]

V
                  (3) 

3) Wake Model with Varying Wind Direction 

If the wind direction changed, the WT would change its 
nacelle so that the normal vector to the rotor plane is aligned 
with the wind direction. The variation of the wind velocity as 
well as the direction will both influence the wind speed deficit. 
This change can be described by using a modified model with 
coordinate system illustrated in Fig. 1. The wind direction is 
defined as the wind deviation angle to north clockwise. 

 
Fig. 1. The wake model with varying wind speed. 

As can be seen in Fig.1, the wind can come from four 
quadrants. In each quadrant, two cases should be considered. 
The turbine is overlapped with the right half or the left half of 
the wake plane. The green area is Soverlap,ij  and the blue 

quadrangle area is Sq,ij. The solid line represents the first case 



 4 

and the dotted line corresponding to the second case. The 
derivation process for the analytical equations of condition 
one can be seen below.  

    
2 2

ij ij nm ij nmL = x -x + y -y                            (4) 

ji jid =L sin(α+β)                                     (5) 

ij 0 jiR =R +kL cos(α+β)                               (6) 

 

2 2 2
nm ji ij-1

nm ji

R +d -R
=2cos

2*R *d
                              (7) 

2 2 2

 
ij ji nm-1

ij ji

R +d -R
2cos

2*R *d
                            (8) 

ji ih =2R sin(μ/2)                                    (9) 

 
2

r nmS =πR                                        (10) 

2
ij

ij

γ(R )
S =

2
                                     (11) 

2
nm

nm

μR
S =

2
                                     (12) 

q,ij ji jiS =h d                                        (13) 

overlap,ij ij nm qS =S +S -S                               (14) 

Combining (2) to (14), the wind velocity at the downstream 
WT at row n, column m with wind speed V0 and wind angle α 
in quadrant (I) can be rewritten as:  

        
         
         

 
2N_rowN_col

ij overlap,ij

n,m 0
0 ri=1 j=1

V S
V =V 1- 1-

V S
      (15) 

If the wind turbine is in the dotted line circle location, that is 
the second condition, then the analytical equations should be 
modified by substitute the (α+β) term in the equation (5) and 

(6) with (β'-α) while keeping all the other parts the same. 

4) Wake Effect Region Judgment 

There are three cases that should be considered in the wake 
velocity calculation, that is, full wake effect, partial wake 
effect and non-wake effect as illustrated in Fig. 2. 

(a) (b) (c)
 

Fig. 2. (a) Partial wake effect. (b) Full wake effect. (c) Non-wake effect. 

The judgment process can be summarized in TableⅠas 

follow. 
TABLE I 

WAKE EFFECT REGION JUDGMENT FOR WAKE MODEL WITH VARYING WIND 

DIRECTION 

Case Condition Analytical Equations 

(a) Rj-Ri<dji<Rj+Ri (4) - (15) 

(b) 0≤dji≤Rj-Ri (1) (2) (3) 

(c) dji≥Rj+Ri Vj=V0 

B.  Energy Model 

The energy yields calculation concerns three elements: the 
power production, the power losses and the duration. The 

analytical equations for calculating energy production are 
derived step by step in the following.  

1) Power Production 

The power produced by WT at row i, column j can be 
calculated using the following equation [33][34]: 

 '' 2 3 6
, ,0.5 ( , ) R /10   m ij p opt optP C v            (16) 

In the simulation, the power production of each WT is 
found by assuming a maximum power point tracking (MPPT) 
control strategy, so (16) is valid when the wind speed is 
between cut-in wind speed and rated wind speed [35]. The 
relationship between wind speed and power output, Cp and Ct 

is listed as a lookup table in [36]. So, the total power 
production that generated by the WTs can be written as:  

 
N_col N_row

tol m, ij

j=1 i=1

P = P                               (17) 

2) Power Losses and Energy Yields 

The power losses of AC cable can be expressed as:  

2
loss,i i e,iP =3I R                                  (18) 

Where, 

 
,

,
,

R i

e,i R i
R i

l
R

S
                               (19) 

The length of the cable is related to the distance between 
WTs. As can be seen in Fig. 3, the cable connection layout is 
illustrated with blue lines. Hence, if the WTs are placed in a 
large interval the energy yields will be increased, however, 
longer cables are required. Then, the total losses within the 
wind farm should be written as:  

 

N

tol,loss loss, i

i=1

P = P                              (20) 

Considering (16) to (20), the energy yields of the wind farm 
can be formulated as:  

 ,

1

ET

tol av tol,t tol,loss,t t

t

E P P T



                     (21) 

III.  PROBLEM FORMULATION 

The investment for an offshore wind farm is large in which 

the electrical system takes a high proportion. It is beneficial to 

maximize the energy production while invest as little as 

possible. The mathematical model is built to evaluate how to 

optimize the layout of the wind farm and the assumptions are 

described at the end of this section. 

A.  Levelized Production Cost

In this simulation, the objective function is constructed 

using LPC index which takes capital investment, operating 

and maintenance discounted costs during the life-cycle into 

account. The mathematical equations for LPC regarding 

offshore wind farm are formulated in [37]. In this project, the 

capital cost is calculated by the total cable cost using the 

model proposed in [38]. 
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8
10

2

p n,i

i p p

C S
C A +B exp

 
 
 

                       (22) 

n,i i,rated i,ratedS = 3I U                            (23) 


N

t i i i

i

CAP C L Q                            (24) 

 
Ny

-t

0 t

t=1

C = CAP 1+r                             (25)              

 

 

0

,

1 1

1 -1

Ny

tNy
tol av

C r r
LPC OAM

Er


 



 
 
  

              (26) 

As it can be seen from above equations, LPC is determined 

by two parts: total discounted costs and the total discounted 

energy output.  The total investment C0 is assumed to be made 

in the first year and paid off during the lifetime of the wind 

farm. The generated energy Etol,av is the average energy yield 

per year. 

B. Objective Function 

The wind farm could be divided into a grid of the areas in 
the center of which a WT is placed. The wind farm layout is 
assumed to be designed as in Fig. 3. 

Collection system

Transmission 

system

Sylt

Coast

x

y

W

S

E

N

Wind 

turbine

V0
O

ffsh
o

re stu
b

-

statio
n

O
n

sh
o

re 

su
b

statio
n

dx

dy

  
Fig. 3. The proposed wind farm layout for simulation. 

In Fig. 3 each solid square represents a WT. The blue lines 

represent the cable connection. The problem can be expressed 

as:  

Obj:              x ymin{LPC(d , d )} min  

   

   ,

1

, 

Ny

0 x y

Ny
tol av x y

C d ,d r 1+r
+OAM

E d d1+r -1

  
  
 
 
 
  

       (27) 

Constraint:      8    x yR d 40R, 8R d 40R              (28) 

C0 should be related to the types as well as the length of 

each cable, so its value it’s related to dx and dy  of the wind 

farm, Etol  will be related to the wake effect as described in 

Section I and wind speed deficit is highly dependent on dx and 

dy so that the changing of optimization variable dx and dy will 

induce the changing of Etol.  

C. Assumptions and Constraints 

In this simulation, some assumptions are made as follows: 

1) The reference wind farm is assumed to be a regular 
shaped wind farm with a rectangle or square shape.  

2) All cables in the collection system are assumed to be 3-
core Cross Linked Polyethylene (XLPE) AC cable, the cables’ 
length is selected according to the geometrical distance without 
considering detailed practical situations, such as the barriers, 
restriction in sea, the length from WT foundation to sea 
bottom, etc. The HVDC light cable is adopted for transmitting 
power from offshore substation to onshore substation because 
of the long distance. 

3) When the wind direction changes, the WT’s nacelle 
will change its position as well, however, the yaw speed 
cannot follow the wind direction changing speed. That is so-
called yaw misalignment [39]. In this project, the yaw 
misalignment impacts on the final energy yields are neglected. 

4) As mentioned in section Ⅱ, there should be a tradeoff 

which concerns the energy output as well as the cable 
investment. However, the costs of the other components 
within the wind farm are not highly related to this distance. In 
this simulation, only the costs and losses of cables are 
considered. 

5) The dx and dy is restricted in the range of 8R0 to 40R0 

as the lifetime of the turbine will decrease a lot due to 
turbulence if they are closer than 8R0 [14].  

IV.  WIND FARM LAYOUT OPTIMIZATION METHOD 

A numerical solution is needed to help the construction of 
the optimized layout. In this paper, PSO method is adopted as 
the optimization method. The theory and the optimization 
procedure are presented in the following. 

A. Particle Swarm Optimization (PSO) 

Based on the social behavior of fish schooling and bird 
flocking, Kennedy and Eberhart [40] proposed an evolutional 
algorithm which has a good performance of solving non-linear 
optimization problem. In PSO, each possible solution is 
defined as a particle. The searching space is called particle 
size and the particle position is updated by giving each particle 
with a predefined speed. Then, all the particles will tend to 
move to theirs best positions which are the local optimal 
solutions. The updating process will not be terminated until it 
reaches the maximum iteration or an acceptable value. The 
final value should be stabilized after numbers of iterations. 
Then, this best value that is found by PSO is called the global 
optimal solution. The algorithm can be expressed in following 
equations [41].  

                   k+1 k k k
i i 1 1 i iv =wv +l rand local -x  

 k k
2 2 i+l rand global -x                        (29) 

1 1  k k k
i i ix x v                                  (30) 

Where w is the inertia weight and rand is a function that can 

generate a random number which is in the range of [0, 1]. A 

larger w means the algorithm has a stronger global searching 

ability while smaller w ensures the local searching ability. The 

parameter control methods for w can be concluded into two 

categories [42]: the time-varying control strategy [43]-[46] 

and adaptive parameter control strategy [47]. The first strategy 

indicate that the PSO performance can be improved by using 

linear, non-linear or fuzzy adaptive inertia weight while the 

other introduce evolutionary state estimation (ESE) technique 
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[48] to further improve the performance of PSO. In this 

project, the non-linear inertia weight [49] control method is 

adopted since the optimization variables are only the distances 

between each WT row and column. The time-varying control 

strategy could find the optima when the problem is not so 

complex [43]. The expression of nonlinear inertia weight is as 

follow: 

max

max

( - )

n

final initial finalw w
I t

w w
I


 

  
 

            (31) 

Where t is the current iteration number and Imax  is the 
maximum iteration. 

B. Wind Farm Layout Optimization by PSO 

As proposed above, the LPC index is used to evaluate the 
wind farm layout. The simulation procedure to access the 
wind farm layout by PSO is shown in Fig. 4. The parameters 
of PSO are initialized in the first step. The LPC will be 
calculated by a random generated particle position, dx and dy. 

Then the position will be updated to find the minimum LPC. 
The LPC is calculated in a Fitness function. The function will 
be run when a new position is loaded. The above procedure 
would not stop the PSO main function until it is run beyond 
the maximum iteration time. Finally, the optimized dx and , 
will be selected which generated the minimum LPC. 

Climatological Information: The data is obtained from the 
work of Norwegian Meteorological Institute [49][51], in 
which the wind speeds are sampled per 3 hours, for the 
convenience of calculation, the raw data is formulated into 
wind rose which is used for the energy production calculation 
of  a year. 

Cable Database: In [52], various voltage levels’ cables 
with different conducting sectional areas could be found. In 
this simulation, the cables in the wind farm are 500 or 630 
mm2 XLPE-Cu HVAC cables operated at 66 kV nominal 
voltage for the collection system and 1000 mm2 Cu 300kV 
HVDC light cable [53] is selected for the transmission system. 

PSO main function

Initial particle 

population

k=1

Update particle 

position and velocity

Energy yields 

calculation

Power losses 

calculation

LPC calculation

Climatological 

Information

Cable 

Database

Fitness Function

Optimal dx, dy 

and LPC

PSO Algorithm

Fitness Evaluation

Min{LPC}

Stop criteria

k>Iteration

N
o

Yes

 
Fig. 4. The optimization procedure of finding optimized wind farm layout. 

V.  CASE STUDY 

In this section, a reference wind farm is firstly introduced 
and then four study cases are presented. The relations between 
parameters of PSO and the final results are also discussed to 
assure the accuracy of the algorithm in this section. 

A. FINO3 Reference Wind Farm 

The reference wind farm is located in vicinity of FINO3 - 
80km west of German island of Sylt. The installed capacity of 
the wind farm is 800 MW [54][55]. 

 
Fig. 5. FINO3 reference wind farm siting. 

The site of the reference wind farm can be seen in Fig. 5. 
The wind farm is assumed to be with a rectangular shape with 
8 rows and10 columns layout. 

In this simulation, the 10 MW DTU WT is adopted as the 
reference WT. The specification of which is listed in Table II 
and the wind velocity and direction is shown as a wind rose in 
Fig. 6 which is the Climatological Information as described in 
section IV.  

TABLE II 
DTU 10MW WIND TURBINE SPECIFICATION [36] 

Parameter 10 MW DTU Wind Turbine 

Cut-in Wind Speed 4 m/s 

Rated Wind Speed 11.4 m/s 

Cut-out Wind Speed 25 m/s 

Rotor Diameter 178.3 m 

Rated Power 10MW 

 
Fig. 6. Wind rose for wind climate in the vicinity of FINO3. 

The power production of a wind farm can be estimated by 
using probabilistic models, such as Weibull distribution 
function for a number of wind speed ranges which is a 
stochastic approach. While in this paper, the wind rose is 
adopted to calculate the wind farm energy yields during 
optimization process. 

Based on the measured wind data in the vicinity of FINO3, 
the wind rose is generated by dividing the wind direction into 
12 sections with 30 degree per section, furthermore, in each 
section the wind velocity is divided into 5 ranges with each 
interval of 5 m/s. So the used wind rose likes the Weibull 
distribution with a number of wind speed ranges, plus wind 
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direction. Consequently, the uncertainties have been 
considered. The approach could be able to give more detailed 
results than Weibull distribution, since it may have a 
probabilistic distribution model in each direction if more data 
available. 

B. Wake Effect Calculation 

Four samples, which is the wind from northeast, north, east 
and southwest are selected from wind datasheet to validate the 
effectiveness of the new wake model. The information of the 

input parameters is listed in Table Ⅲ. 
TABLE III 

SAMPLE DATASHEET 

Sample Wind direction (º) Wind Velocity (m/s) X (m) Y (m) 

(a) 0 

12 800 1000 
(b) 45 

(c) 90 

(d) 135 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Wind speed distribution of wind farm considering wake effect. 

The wind speed distributions at WTs considering the wake 

effect are illustrated in Fig. 7. X and Y indicate the spacing of 
WTs between rows and columns respectively. The wind 
distribution is changed with the wind velocity and direction 
which is corresponding to the expected results, that is, the 
wake effect will incur the reduction of the wind velocity at the 
downstream WTs.  
C. Case Study 

1) Case 1:Optimized layout for constant dx and dy  
The relations of the iteration and results (fitness value) are 

studied and shown in Fig. 8.   

 
Fig. 8. The fitness value corresponding to each iteration for constant dx and 

dy layout. 

The optimized length and width of the FINO3 reference 
wind farm is found by PSO. The energy yields and total cable 
costs for this layout is calculated and listed in Table IV.  

TABLE IV 
LAYOUT RESULTS FOR CONSTANT DX AND DY 

Duration 365 day 

dx 713.2 meter 

dy 981.82 meter 

LPC 238.4549 DKK/MWh 

Annual  Cable Power Losses 45.28 GWh 

Annual Energy Yields 3556.46 GWh 

Cable Cost 837.01 MDKK 

Annual Energy Yields without 
Considering Wake Effect 

4419.36 GWh 

Wake losses percentage 19.53% 

Iteration 45 

 
The wake losses percentage is 19.53% in this case which 

demonstrate the necessity of considering the wake effect in 
energy yields calculation.  The best layout for this reference 
wind farm should be dx  equals to 713.2 meter while  
dy is 981.82 meter. The results correspond to the fact that in 

vicinity of FINO3 the prevailing wind is from southwest 
which has been shown in Fig. 6 (b). The increase of  dy means 

to increase the width of the wind farm from north to south by 
which the energy yields will be increased. Moreover, the 
number of cables laying on that direction is less than those in 
x direction. As a consequence, dx is relatively smaller than dy.   

2) Case 2: Optimized Sparse Layout  
In this case, the spacing between WTs in a row and the 

spacing between each WT column in reference FINO3 wind 
farm is assumed to be different. In other words, the 
optimization variable will be changed as: 

dx=[dx,1, …, dx,i], i∈[1, N_row-1] 

dy=[dy,1, …, dy,j], j∈[1, N_col-1] 

Where N_row is the total number of rows and N_col is the 
total number of columns. The relations of the iteration and 
results are shown in Fig. 9 and the results of optimized sparse 
layout are listed in Table V. 
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Fig. 9. The Fitness value corresponding to each iteration for optimized sparse 
layout. 

TABLE V 
LAYOUT RESULTS FOR OPTIMIZED SPARSE LAYOUT 

Duration 365 day 

dx,i 713.2 meter 

dy,j 

1750.66 meter 

1945.90 meter 
713.20 meter 

1004.81 meter 

713.20 meter 
1700.96 meter 

713.20 meter 

1954.65 meter 
1950.83 meter 

LPC 236.3054 DKK/MWh 

Annual Cable Power Losses 46.80 GWh 

Annual Energy Yields 3637.96 GWh 

Cable Cost 848.36 MDKK 

Annual Energy Yields without 

Considering Wake Effect 
4419.36 GWh 

Wake losses percentage 17.68% 

Iteration 150 

For the optimized sparse layout, the wake losses decreased 
to 17.68%, however, the power losses and the investment on 
cables are both increased.  

The results are also compared with a regular wind farm 
layout with 7 rotor diameter distance (1248.1 m) between two 
WTs and 7D spacing for rows which is concluded in Table VI. 

 TABLE VI 
LAYOUT COMPARISONS OF TWO OPTIMIZED LAYOUTS 

Name Optimized layout for 

constant dx and dy  

Optimized sparse 

layout 

7D layout 

Annual 

Cable 

Power 
Losses 

45.28 GWh 46.80 GWh 51.71 GWh 

Annual 

Energy 
Yields 

3556.46 GWh 3637.96 GWh 3839.94 GWh 

Cable 

Cost 
837.01 MDKK 848.36 MDKK 959.41 MDKK 

LPC 
238.4549 

DKK/MWh 
236.3054 

DKK/MWh 
253.3376 

DKK/MWh 

Layout  
4.99km*8.84km 

=44.11 km
2
 

4.99km*12.45km

=62.13 km
2
 

8.73km*11.23 

km=98.04 km
2
 

As can be seen in Table VI, the cable costs and power losses 
is reduced by sparse layout and further reduced by constant dx 
and dy  layout. The energy yields of optimized layout for 

constant dx and dy is minimal while minimal LPC is obtained 

by optimized sparse layout. The 7D layout has the largest 
energy yields and occupies the largest sea area while 
optimized layout with dx  and dy  is converse. The proposed 

method is succeeded in finding optimized layouts which 
improves the LPC with 5.87% for constant dx  and dy  layout 

while optimized sparse layout reduce the LPC with 6.72% 
comparing with 7D layout, however, the optimized layout 
with constant dx  and dy  save 55% area occupation while 

optimized sparse layout only save 36.63%. The best layout in 

the simulation should be optimized sparse layout while in 
practical, the optimized layout for constant dx  and dy  maybe 

draw more attention since the less area occupation means less 
installation cost.  

VI.  CONCLUSIONS 

The wind flow within a wind farm would be disturbed by 
the wake effect. This incurs the reduction of energy 
production. In large scale wind farms, the wake losses which 
depend on the spacing of the wind turbines are obvious. In this 
paper, the wake model for calculating the wake losses has 
been developed. The effectiveness of the model was well 
demonstrated by a study case. The results show that the 
proposed model can be used for wake losses calculation with 
varying wind direction and velocity. The optimized layouts are 
found using PSO algorithm. From comparison, it can be 
concluded that the proposed method may be used for the 
regular shaped wind farm layout design. 

The method proposed in this paper is under the assumption 
that the wind farm is under MPPT control strategy all the time. 
If the wind farm is under power regulation mode, then the 
problem may become a reserve dispatch issue, which may be 
considered in future work. Actually, the offshore wind farms 
are mostly running in MPPT, due to being expensive to run in 
regulation. 

This paper focused on the regular shaped wind farm layout, 
as Horns Rev I, optimization which should be rectangular or 
square shape. All other shaped wind farm layouts are 
classified into irregular shaped wind farm. In the future, the 
optimization of irregular shaped wind farm layout considering 
wake effect will be addressed. In that case, other optimization 
variables as the locations of each WT within the wind farm 
instead of the spacing between each pair of WTs would be 
introduced. In order to place the wind turbines optimally, 
binary PSO will be adopted to decide the suitable locations to 
arrange the WTs. The robustness of PSO will be illustrated for 
this type of study. Since the energy yields calculation of 
irregular shaped wind farm layout is more complex compared 
with regular shaped wind farm layout, the optimization 
process will be more time consuming. 
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