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Abstract

Interest in residential batteries to supply photovoltaic (PV) electricity on demand is increas-
ing, however they are not profitable yet. Combining applications has been suggested as a way
to increase their attractiveness, but the extent to which this can be achieved, as well as how
the different value propositions may affect the optimal battery technology, remain unclear. In
this study, we develop an open-source optimization framework to determine the best-suited
battery technology depending on the size and the applications combined, including PV self-
consumption, demand load-shifting, demand peak shaving and avoidance of PV curtailment.
Moreover, we evaluate the impact of the annual demand and electricity prices by applying our
method to representative dwellings in Geneva, Switzerland and Austin, Texas in the United
States. Our results indicate that the combination of applications help batteries to become
close to break-even by improving the net present value by up to 66% when compared with
batteries performing PV self-consumption only. Interestingly, we find that the best-suited
battery technology in Austin is lithium nickel cobalt aluminum oxide (NCA) as for Geneva
lithium nickel manganese cobalt oxide (NMC) batteries reach in average a higher net present
value than NCA-based batteries. However, NCA-based batteries could be a more promising
alternative in the future.
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applications.

∗Corresponding author.
Email address: Alejandro.penabello@unige.ch (Pena-Bello, A.)

Preprint submitted to RSER May 31, 2019



List of abbreviations.

PV Photovoltaics
FiT Feed-in Tariff
PVSC PV self-consumption
PVCT Avoidance of PV curtailment
DLS Demand load-shifting
DPS Demand peak shaving
NMC Lithium nickel manganese cobalt oxide
NCA Lithium nickel cobalt aluminum oxide
LFP Lithium iron phosphate
LTO Lithium titanium oxide
ALA Advanced lead-acid
VRLA Valve-regulated lead-acid
FT Flat tariff
DT Double tariff
NPV Net present value
LCOES Levelized cost of energy storage
LVOES Levelized value of energy storage
SOC State of charge
DoD Depth of discharge

Word Count: 6997 Words

Highlights:

• Open-source model supporting different battery technologies, generation and demand
data.

• NCA and NMC-based batteries are the best-suited for both locations.

• Medium impact of battery technology on PV-coupled battery systems profitability.

• High impact of the combination of applications on PV-coupled battery systems prof-
itability.

• The combination of applications may accelerate the PV-coupled battery systems prof-
itability before 2030 for some battery technologies.

1. Introduction

The modularity of solar photovoltaics (PV) is enabling the installation of substantial amounts
of generation capacity embedded in the distribution network close to domestic electricity
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demand. In 2016, new installations in the residential sector of the United States (U.S.)
represented 67% of the PV installations with a nominal power lower than 2 MW [1], while in
Germany for the same year, new PV installations in the residential sector accounted for 50%
of the total number of installations [2]. This PV development has been facilitated by the
rapid decrease in cost of PV modules during the last decade, (e.g. in Germany and the U.S.
the price of installed rooftop systems has declined by 60% and 55% respectively since 2009)
[1, 3]. In parallel with these cost declines, retail electricity prices have risen steadily for the
last decade across many countries (e.g. by 78% in Spain, 52% in Germany, and 48% in the
U.K. since 2007) [4], while the subsidies for PV electricity fed to the grid, referred to as feed-in
tariffs (FiT), have markedly declined (e.g. by 71% in Germany since 2009) [5]. Additionally,
FiT are being restricted, for example, there is a cap on the installed capacity that can profit
of the FiT in Australia and Switzerland [6]. Furthermore, the stochastic nature of the solar
energy resource prevents PV systems from supplying electricity on demand as is possible with
many other conventional technologies such as fossil plants and hydro storage. All of these
factors are significantly increasing residential consumers interest in increasing the amount of
self-generated PV that they consume in-home (this is referred to as PV self-consumption)
by using battery systems [6]. Typical rates of PV self-consumption which ranges between 20
and 40% for residential consumers can be increased by 13 to 24% when battery storage is
included in the system, using an elementary charging approach [7].

In parallel with this increased consumer interest, battery costs, especially lithium-ion tech-
nologies, are following a similar trend as experienced by PV systems and the International
Renewable Energy Agency (IRENA) reported a cost reduction of 65% since 2010 for lithium-
ion batteries [8]. To encourage battery development, dedicated subsidies have been imple-
mented [9, 10]. In Germany, more than 30000 new residential PV-coupled battery systems
have benefited from the federal program since 2013 and in 2017, half of every small PV sys-
tem was installed with a coupled battery as a result of government economic incentives [10].
Home battery storage is still an emerging market but some projections estimate that house-
holds and businesses may account for nearly 60% of installed storage capacity worldwide by
2040 [11].

Due to its great potential, many authors have investigated key factors impacting on PV-
coupled battery systems’ profitability. Previous studies have focused on capital and oper-
ational expenditures associated with the design [12] and operation [13–16] of PV-coupled
battery systems. In addition to cost improvement, the simultaneous provision of various
applications has been presented as an alternative strategy to increase the economic attrac-
tiveness of energy storage technologies thereby enabling accelerated deployment [17, 18]. The
combination of different storage applications has already been investigated at the distribution
and transmission networks [17, 19, 20] and for different battery technologies [21]. However,
despite the fact that behind-the-meter systems are anticipated to represent major business
for stationary storage, previous research on the simultaneous provision of various applications
applied to these systems is scant.

The influence of solar resource, demand profiles, jurisdiction and electricity prices across
locations has been evaluated for PV self-consumption individually [16, 22]. Other authors
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investigated either various types of applications or geographical dependence and/or using
a technology-agnostic approach [12–16, 18, 23–31]. Therefore, various battery technologies
available in the market have not been evaluated with the same method and for the full
combination of consumer applications.

The main aim of this work is to determine the best-suited battery technology for various
combinations of applications. For this, we develop an open-source optimization framework
using linear programming to solve the management problem of a PV-coupled battery sys-
tem. The model is robust and can consider different combinations of applications (e.g. PV
self-consumption and demand load shifting), tariff structures, export prices and battery char-
acteristics such as aging, efficiency, lifespan and cycles. Moreover, we evaluate which addi-
tional, currently unexploited economic benefit can be reaped by combining applications and
compare different battery sizes. Our model can be used by consumers and utility companies
to explore different batteries and electricity tariffs for a given demand, PV generation and
combination of applications. Importantly, the comparison of our results for Geneva (Switzer-
land) and Austin (U.S.) allow us to understand whether or not the optimal technology and
break-even point for the various combinations of applications is geographically dependent in
view of the different pricing structures, annual electricity demand and irradiance of the two
locations.

Considering the relevance of these research questions and in order to promote the use of our
model by other peers, we also make our model and data open. With this, we contribute
towards openness in energy research is lagging behind other fields [32]. Open-source energy
models permit more meaningful collaboration between academics, are important basis for
energy policy and benefit not only academics but the public in general [32, 33]. In the
interest of transparency, collaboration and science reproducibility in the energy field, this
work joins other open-source efforts such as openmod, renewables-ninja [34] and the Linux
Foundation Energy.

The remainder of this paper is structured as follows. The materials and methods are presented
in the next section. Section 3 gives the optimization results as a function of the combination
of applications, battery technology and geography. Section 4 presents the implications of our
results and finally the main conclusions are presented.

2. Material and methods

Fig. 1 is a schematic representation of our method. In first place, we specify the input data for
electricity demand and PV generation (Section 2.1). The applications and their combinations
are subsequently defined along with the respective electricity tariff structure (Section 2.2).
Then, the battery technologies, system topology, components and techno-economic indicators
are presented (Sections 2.3, 2.4 and 2.5). Finally, the schedule optimization is described
(Section 2.6). Across the study we use USD as common currency for both locations1.

1Exchange rates used: 1 USD/CHF and 1.18 USD/EUR.
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Fig. 1: Schematic representation of the modeling approach proposed.

2.1. Demand and PV generation

We use electricity consumption data with 15-minute temporal resolution monitored in single
dwellings in Western Switzerland (636 dwellings) and Austin, Texas (308 dwellings) during
the year 2015. Considering this amount of data, we opt to form representative consumer
groups in order to reduce the computational time required. To generate these representative
consumer groups, we employ clustering to produce groups of consumers with similar be-
haviors. We split the consumers according to their annual consumption into three separate
groups, i.e. a low, medium and high consumption group in both locations. Finally, within
these three groups we cluster based on the average daily load profile. We opt to produce four
clusters in each consumption bracket, noting that selecting the number of clusters in highly
dimensional data is a difficult task. From each cluster we select the household that is closer
to the centroid which is subsequently optimized. The results presented in this study are the
average of the four representative households of each cluster per consumption bracket. For
further information see Section 1.1 of Supplementary Information (SI).

Environmental variables including outdoor temperature and horizontal solar irradiance mon-
itored across both locations are used to model PV generation. We focus on the median PV
size of the empirical distribution across Switzerland (i.e. 4.8 kWp) [35] and Texas (i.e. 5 kWp)
[36] for our baseline results (i.e. unchanged PV size), while alternative scenarios including
the 25th (i.e. 3.2 and 3.15 kWp for Geneva and Austin respectively) and 75th percentiles
(i.e. 6.9 and 6.4 kWp for Geneva and Austin respectively) are shown in Section 4 of the
Supplementary Information.
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2.2. Electricity tariff and battery applications

The operation of a residential battery as well as the number of applications it can deliver
depends on the tariff structure. Since there is not a market mechanism incentivizing the
export of electricity from residential batteries to the main grid, this case is not considered
either.

Electricity prices used in this study are based on available tariffs which are offered by the
local utility companies in the two locations. Both, single tariffs and double tariffs (also called
Time-of-Use tariffs, which have a peak and off-peak periods) are considered in the analysis.
In Geneva, double tariffs are applied all-year-round, while in Austin, they are applied only in
summertime. The export price is assumed to be the wholesale electricity price as is the case
for traditional electricity generators. This is already the case in Switzerland for installations
which are on the waiting list to be granted a one-off subsidy for the capital investment in
PV [6] and this is expected to become a widespread policy as a consequence of falling cost
of PV technology. We use 2015 wholesale electricity prices from the Electric Reliability
Council of Texas day-ahead market (ERCOT southern load zone) and from the European
Power Exchange day-ahead market for Switzerland (EPEXSPOT). It is important to note
that, apart from the electricity price, electricity bills include other fixed costs as well, such
as taxes and grid usage.

Capacity tariffs, which bill the peak electricity demand (i.e. in USD/kW) during a billing
period, have been widely applied for large consumers, typically belonging to the secondary
and tertiary economic sectors. For residential customers capacity tariffs have only being
marginally applied (e.g. by the Arizona Public Services in the U.S.), although their im-
plementation is being suggested following the penetration of air conditioning, heat pumps
and electric vehicles [37]. As a first attempt to include them we assume low capacity tar-
iffs applied to large consumers by the local utilities in the two locations (i.e. around 10
USD/kW/month), taking a more conservative approach than other studies (e.g. see [31]). In
order to ensure that the tariffs are revenue neutral in average for all the households evaluated
(i.e. the consumer bill remains similar), the per-kWh rates are reduced by 20% in Geneva
and 30% in Austin whenever the capacity tariff is used. Finally, following the example in
Germany, a (physical) feed-in limit of 50% of the nameplate PV-system capacity for both
countries is assumed as a preventive measure to keep the power system stable during periods
of high PV production [12]. Table 1 provides the input data for every battery application
depending on the tariff structure.

On-grid batteries can perform up to 15 applications depending on the discharge duration,
scale and stakeholder [38]. Consumer applications refer to those which help consumer to
minimize the electricity bill, with the number of relevant applications depending on the bill
structure. Considering the various components of a household electricity bill, a residential
battery can perform the following applications (see Fig. 2):

PV self-consumption (PVSC): PV surplus electricity is stored in a battery and used later
on to meet local demand when it is higher than PV generation (see Fig. 2 a.). The main
driver is the price difference between the electricity imported from the grid (i.e. retail price)
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Table 1: Various electricity tariffs components depending on the bill structure and for the two locations used
in this study to test various battery applications.

Name Units Austin Geneva Based on

Flat Tariff USD/kWh 0.073 0.22 Energy

Double Tariffa On-peakb USD/kWh 0.183 0.24 Energy
Off-peak USD/kWh 0.056 0.152 Energy

Export price USD/kWh 0.027c 0.047b Energy
Capacity tariff USD/kW/month 10.14 9.39 Power
Feed-in limit %kWp−PV 50% 50% Regulation

a When the capacity tariff is applied, the Double tariff is reduced by 20%
in Geneva and 30% in Austin.

b In the U.S. on-peak time is only from June to September from 1 p.m. to
7 p.m. on weekdays. In Switzerland, on-peak time is all year-round from
7 a.m. to 10 p.m. on weekdays and from 5 p.m. to 10 p.m. on weekends.

c We use real hourly wholesale price for ERCOT and EPEXSPOT markets.
The price shown in the table is the average wholesale price.

and the electricity exported to the grid (i.e. FiT or wholesale price as in this study).

Avoidance of PV curtailment (PVCT): In some regions with substantial PV penetra-
tion, a feed-in limit is set above which PV power cannot be injected to the grid to keep
grid stability (see Fig. 2 b.). Electricity dissipation is typically done using the PV inverter
[12]. Batteries can prevent this PV curtailment by storing this electricity and meeting local
demand later on. The implementation of PV curtailment is determined by regulation.

Demand load-shifting (DLS): A battery is used to exploit varying tariff differentials (see
Fig. 2 c.). The battery charges from the grid when prices are low (off-peak periods) and
it discharges when they are high (peak periods). The existence of varying-price tariffs is a
prerequisite for demand load-shifting.

Demand peak-shaving (DPS): The discharge of a battery is used to reduce the maximum
power drained from the grid (in kW) used during a specified period. Demand-peak shaving
can be used to mitigate demand electricity peaks which can result in distribution network
upgrading as well as expensive electricity supply (see Fig. 2 d.). The main driver is therefore
the presence of a capacity-based component in the electricity tariff.

Back-up power is excluded from this study since we focus on distribution areas with a high
level of grid stability (for both utilities referred in this study, the number of minutes of power
failure experienced by a typical customer in a year was below 100 minutes in 2016) [39].
However, we acknowledge that in some locations back-up power is the main motivation for
battery installation (e.g. Hawaii).

2.3. Battery technologies

Battery technologies widely differ in cost, aging, lifetime and round trip efficiency [38], and we
compare here six representative products of different technologies within both the lithium and

7



200 400 600 800 1000 1200 14000

2

4

6
Po

we
r 

[k
W]

a. PV self-consumption
PV Generation
PV surplus

Demand load
PV stored

Use of stored energy

200 400 600 800 1000 1200 14000

2

4

6

Po
we

r 
[k

W]

b. Avoidance of PV curtailment
PV Generation
PV surplus

PV stored Use of stored energy

200 400 600 800 1000 1200 1400
Time (Minutes)

0

2

4

6

Po
we

r 
[k

W]

d. Demand peak shaving
Demand load
Energy stored
Use of stored energy

200 400 600 800 1000 1200 14000

5

Po
we

r
[k

W]

c. Demand load shifting
Demand load Grid energy stored Use of stored energy

200 400 600 800 1000 1200 1400
Time (Minutes)

0.20

0.25

Pr
ic

e
[U

SD
/k

Wh
]

Prices

Fig. 2: Schematic representation of the four applications analyzed in this study. a. PV self-consumption,
b. Avoidance of PV curtailment, c. Demand load shifting and d. Demand peak shaving. This figure is
explanatory and does not fully represent the model constraints or approach, which are suitably explained in
the Section 2.6.

Table 2: Battery specifications for the six technologies compared in this study. SOC denotes the state of
charge.

Technology
Cathode
Material

Cycles
@ DoD

Maximum
lifetime
[years]

Roundtrip
Efficiency

Energy Costs
[USD/nominal kWh]

Maximum charge/
discharge rate [kW]

∆SOC
Maximum

SOC
Minimum

SOC

Cycle & calendar
aging factor per yeara

Reference

Li-ion NMC 5000 @ 100% 15 91.8% 410 0.4*C 1 1 0 0.059 & 0.07 [41–43]

NCA 8000 @ 100% 20 92.5% 650 1*C 1 1 0 0.047 & 0.05 [44]

LFP 6000 @ 100% 20 94% 980 2*C 1 1 0 0.024 & 0.05 [41, 42, 45]

LTO 15000 @ 100% 25 96.7% 1630 4*C 1 1 0 0.003 & 0.04 [46], personal
communication

Lead-acid VRLA 1500 @ 50% 10 85% 330 0.1*C 0.5 1 0.5 0.236 & 0.1 [12, 47]

ALA 4500 @ 70% 15 91% 750 1*C 0.7 0.9 0.2 0.06 & 0.07 [41, 42, 48]

aThe cycle aging factor is given for a 50% depth-of-discharge. For further information please refer to the section 2 of the

supplementary information.

lead-acid families. Within lithium-ion technologies, we include the most common technolo-
gies in grid applications, namely lithium nickel manganese cobalt oxide (NMC) and lithium
iron phosphate (LFP). Additionally, we include lithium nickel cobalt aluminum oxide (NCA)
which have relative competitive installation costs, and lithium titanium oxide (LTO) that is
the more thermally stable technology and has extremely high cycle lifetime [8]. As for lead-
acid we include traditional valve-regulated lead-acid (VRLA) and advanced lead-acid (ALA).
The latter incorporates an ultra-capacitor into a conventional lead-acid cell, increasing effi-
ciency and cycle life. Advanced lead-acid batteries are currently in the demonstration phase
and hence costs are currently higher than for conventional lead-acid batteries. The selected
representative products are compared with the most likely values found in the market accord-
ing to Schmidt et al. [40] (the values are presented in the Section 1.5 of the Supplementary
Information).

The technical and economic battery input data required by the model were collected from
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Table 3: Values selected for the technical and economic assessment of PV-coupled battery systems.

Component Units Value Reference

Charge controller efficiency % 98 [50]

Inverter efficiency % 94 [50]

Bi-directional inverter cost [USD/kW] 600 [51]

Bi-directional inverter lifetime years 15 [1]

Balance of plant cost [USD/kW] 100 [13]

Installation costs [USD] 2000 [52]

Operation and maintenance costs [USD/kW] 0 [43, 47]

Discount rate %/a 4 [17]

End of life (EoL) % 70 [53]

Inverter load ratio (ILR) p.u. 1.2 [54]

publicly available data-sheets and personal communication with representative manufactur-
ers. Table 2 presents the key specifications for the six battery technologies defined by the
type of cathode material. Other relevant values for the techno-economic assessment of PV-
coupled battery systems, such as the inverter and converter efficiencies, discount rate and
costs are given in Table 3. Three currently available battery sizes were assessed, small (3
kWh), medium (7 kWh) and large (14 kWh). Moreover, battery aging is modeled on a daily
basis for the first year using the maximum among the daily calendar factor and the daily
cyclic factor. The former is calculated as the multiplicative inverse of the calendar lifetime,
whereas the cyclic aging factors are based on Woehler curves2 for every technology. The
cyclic aging is then given by the number of cycles per day at the given depth of discharge
(depth-of-discharge), divided by the maximum number of cycles at a given depth-of-discharge
[49]. Further details and a detailed example are presented in Section 2 of the Supplementary
Information.

2.4. PV-coupled battery system

This study focuses on the combined investment in a PV-coupled battery system; more specifi-
cally, we analyze the techno-economic implications of adding a battery system when purchas-
ing a new PV system that would otherwise be installed on its own. We consider a DC-coupled
topology (i.e., coupled on the direct current side) since a lower investment is required and
the overall efficiency of stored PV electricity is higher than in AC-coupled topologies (i.e.,
coupled on the alternating current side) [51]. Moreover, the prevention of PV curtailment is
possible (for further information see Section 1.4 of supplementary information). Since manu-
facturers claim no operational costs required for residential PV and battery technologies, we

2The Woehler curves show the number of remaining cycles of a battery as a function of depth of discharge
until the end of lifetime. This curve is given by some battery manufacturers in data sheets.
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set them to zero [43, 47]. Installation costs are considered for the inverter and battery and
are assumed to be high for both countries (i.e. USD 2000).

2.5. Techno-economic indicators

Three complimentary indicators are used to analyze the techno-economic performance of
batteries coupled with PV systems, i.e. the PV system is excluded in the analysis since
we are interested in the decision of adding a battery. The levelized cost of energy storage,
LCOES (USD/kWh) quantifies the cost associated with the total electricity supplied by the
battery throughout the life of the system (see Eq. 1). The second indicator is the levelized
value of energy storage, LVOES (USD/kWh). It quantifies the revenue associated with the
battery discharge throughout the life of the system (see Eqs. 2 and 3). Finally, the net
present value (NPV) calculated as the sum of the discounted cash flows over the lifetime of
the battery system (Eq. 4) is used to appraise the overall impact of the system configuration
and operation for each combination (geography, technology, consumer type and combination
of applications) on the economic profitability of residential batteries.

LCOES =

∑N

i=0
CAPEX
(1+r)i

+
∑N

i=1
OPEX
(1+r)i

∑N

i=1
Edis

(1+r)i

(1)

LV OES =

∑N

i=1

CFBatti

(1+r)i
∑N

i=1
Edis

(1+r)i

(2)

CFBatti = CFPV−Batti − CFPVi
(3)

NPV =
N∑

i=1

CFBatti

(1 + r)i
−

N∑

i=0

CAPEX

(1 + r)i
(4)

Where CAPEX are the capital expenditures (in USD), OPEX are the operational expendi-
tures (in USD), r is the discount factor, Edis is the energy discharged from the battery and N
is the lifetime of the project (i.e., the same as the inverter which in this study is considered to
be 15 years). The cash flows of the PV-coupled battery system are represented as CFPV−Batt,
CFBatt are the cash flows due to the battery only, and CFPV are the cash flows due to the
PV system.

2.6. Optimization of the battery schedule

The management problem of a PV-coupled battery system is solved by Mixed Integer Linear
Programming, using Pyomo, an open-source tool for modeling optimization applications in
Python [55] and solved with CPLEX. The battery schedule is optimized for every day (i.e.
24 h optimization framework) and we assume perfect day-ahead forecast of the electricity
demand load, solar PV generation and wholesale prices in order to determine the maximum
economic potential regardless of the forecast strategy used. Battery aging was treated as an
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exogenous parameter, calculated on daily basis and was not subject to optimization (for fur-
ther information we invite the reader to see section 2 of the Supplementary Information). The
temporal resolution of the input data and simulation is 15 minutes, with this value providing
a reasonable compromise between the modeling real performance and computational speed
[56]. The model objective function have two components, namely the energy and power com-
ponents of the electricity bill. As the tariff structure depends on the applications considered,
a boolean parameter activates the power-based factor of the bill when is necessary.

Every optimization was run for one year and then the results are linearly-extrapolated to reach
the battery end of life. We assume 30% of capacity depletion as the end of life [53] and when
the battery lifetime exceeds the inverter lifetime, the residual value of the battery is considered
using straight-line depreciation [57]. Replacement is considered when the battery cannot
match the inverter lifetime which is taken as the project lifetime, we take a conservative
approach maintaining the same cost in the future discounted to the present, due to the high
uncertainty linked to future battery costs for different battery technologies. The analysis is
done with same electricity prices for all years across battery lifetime. The model objective
function, constraints, variables and parameters are presented below. The validation of the
model can be found in Section 3 of the Supplementary Information. The model and the
U.S. data (the Swiss data is confidential) are publicly available in https://github.com/
alefunxo/Basopra.

Min(

Energy-based tariff
︷ ︸︸ ︷
t∑

i=0

(Egridi ∗ πimporti − EPV−gridi ∗ πexporti) + (Pmax−day ∗ πcapacity ∗ PS
︸ ︷︷ ︸

Power-based tariff

)) (5)

Where the energy-based tariff is given by Egridi which is the electricity drawn from the grid,
πimporti is the import price (i.e., retail price), EPV−gridi is the PV-electricity exported to the
grid, πexporti is the export price (i.e., the wholesale price in this study), all these variables have
the sub-index i representing every time step from 0 to t (i.e., 15-minutes step for this study).
As for the power-based tariff, it is given by Pmax−day, which is the maximum power required
from the grid for the day, πcapacity which is the capacity tariff (i.e., in USD/kW/day) and
PS is a boolean variable which indicate the use of demand peak shaving in the combination
of applications. The objective function is subject to the constraints introduced below.

Subject to:

Battery constraints:

SOCmin ≤ SOCi ≤ SOCmax (6)

Echari = EPV−batti + Egrid−batti (7)

Edisi ≤ (SOCi−1 − SOCmin) ∗ C
nom
batt (8)
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Where, SOCmin and SOCmax are the minimum and maximum states of charge and SOCi is
the state of charge at the instant i, below and above which the battery is never discharged
and charged. Echari the energy charged into the battery, EPV−batti is the PV energy flow
to the battery and Egrid−batti is the grid energy flow to the battery. Edis is the electricity
discharged from the battery and Cnom

batt is the nominal capacity of the battery.

Energy balance constraints:

Egridi = Egrid−loadi + Egrid−batti + Eloss−inv−gridi (9)

EPVi
= EPV−loadi + EPV−batti + EPV−gridi + EPV−curti + Eloss−convi + Eloss−inv−PVi

(10)

Eloadi = EPV−loadi + Egrid−loadi + Edisi ∗ ηinv (11)

SOCi =
(SOCi−1 ∗ C

nom
batt + Echari − Edisi − Eloss−batti)

Cnom
batt

(12)

Edisi = Ebatt−loadi + Eloss−inv−batti (13)

Energy balance constraints verify that all the energy flows sum up to the total energy provided
by the grid (Egridi), the PV system (EPVi

) and to cover the household demand (Eloadi), as
well as to define the state of charge and the energy discharged from the battery. The energy
flows are represented using the convention Efrom−to, for instance, EPV−grid is the energy
from the PV system injected into the grid. The losses are represented using the convention
Eloss−device−dueto, for instance, Eloss−inv−PV represents the losses in the inverter due to PV
electricity flows. The efficiencies are represented using the convention ηdevice, where the device
can be the converter (ηconv), the inverter (ηinv) or the battery (ηbatt).

Efficiency losses constraints:

Eloss−convi = (EPV−loadi + EPV−batti + EPV−gridi + Eloss−inv−PVi
) ∗ (1− ηconv) (14)

Eloss−biinvi = Eloss−inv−PVi
+ Eloss−inv−gridi + Eloss−inv−batti (15)

Eloss−inv−PVi
= (EPV−loadi + EPV−gridi) ∗ (1− ηinv)/ηinv (16)

Eloss−inv−gridi = Egrid−batti ∗ (1− ηinv)/ηinv (17)

Eloss−inv−batti = Edisi ∗ (1− ηinv) (18)

Eloss−batti = Echari ∗ (1− ηbatt) (19)

Efficiency losses constraints account for the losses of the converter (Eq. 14), of all the losses
in the inverter (Eq. 15), of the losses in the inverter due only to the PV (Eq. 16), of the
losses in the inverter due to grid charging (Eq. 17), of the losses in the inverter due to the
energy discharged from the battery (Eq. 18), and the losses in the battery (Eq. 19). Energy
flows are, for convention, considered after the inverter, to calculate the converter losses, the
inverter efficiency has to be considered (see Fig. 7 of the Supplementary Information). The
PV curtailed is not taken into account as losses and it is assumed to be curtailed at the
converter.
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Power constraints:

Pchari ≤ Pmax−char (20)

Pdisi ≤ Pmax−dis (21)

PPVi
≤ Pconv (22)

PPV−gridi + PPV−loadi + Pdisi + Ploss−inv−PVi
+ Ploss−inv−batti ≤ Pinv (23)

Pgrid−batti + Ploss−inv−gridi ≤ Pinv (24)

Power variables are designated using P and follow the same conventions previously presented.
The battery maximum charging and discharging power are represented by Pmax−char and
Pmax−dis. Pconv and Pinv represent the converter and inverter rating.

Application selection:

PPV−gridi ≤ Plimit ∀ i if PV CT = 1 (25)

Egrid−batti = 0 ∀ i if DLS = 0 (26)

Pgridi ≤ Pmax−day ∀ i if DPS = 1 (27)

Since the model allows to select from a pool of applications (i.e., PV self-consumption,
avoidance of PV curtailment, demand load shifting and demand peak shaving), when one of
the applications is selected the corresponding constraint is applied (except for PVSC which
is applied by default and includes all the constraints mentioned above). Thus, when PVCT
is selected, a constraint to the power feed-in PPV−gridi is applied (Eq. 25), when demand
load shifting is not applied (i.e., DLS=0), the battery cannot charge from the grid. Finally,
when demand peak shaving is applied (i.e., DPS=1), a constraint on the maximum power
drawn from the grid Pgridi is applied (Eq. 27) and limited to the minimum possible power
(Pmax−day), which is a result from the optimization.

3. Results

Since we aim to determine the best-suited battery technology for various combination of
applications and analyze the impact of geography and size, we present first the results for a
typical battery size of 7 kWh depending on the battery technology, location and for different
combinations of applications and tariff structures (see Table 5). PV self-consumption is
common across all combinations since this application is the baseline for residential batteries.
Depending on the combination of applications, different tariff structures are needed, thus
combinations of tariffs are done (e.g if demand peak shaving is combined with PV self-
consumption, then a combination of flat tariff with capacity tariff is made - combination 2 in
Table 5). Afterward, we evaluate the impact of the battery size. All results are based on a
representative (median of the distribution) fixed PV size in each geographical region (4.8 kWp

for Geneva and 5 kWp for Austin). Results for other PV sizes and alternative combinations
of applications are given in Sections 4 and 5 of the Supplementary Information.
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Table 4: List of model parameters and variables.

Modeling parameters Name Units Modeling variables Name Units

Converter efficiency ηconv % PV generation fed to the load EPV−load kWh

Inverter efficiency ηinv % PV generation exported to the grid EPV−grid kWh

Inverter rating Pinv kW PV generation injected to the battery EPV−batt kWh

Battery Efficiency ηbatt % PV generation curtailed EPV−curt kWh

Maximum discharge power Pmax−dis kW Energy lost due to converter efficiency Eloss−conv kWh

Maximum charge power Pmax−char kW
Total energy lost due to bi-directional
inverter efficiency

Eloss−binv kWh

Battery nominal capacity Cnom
batt kWh

PV energy lost due to bi-directional
inverter efficiency

Eloss−PV inv kWh

Battery lifetime N years
Grid energy lost due to bi-directional
inverter efficiency

Eloss−gridinv kWh

Battery maximum state of charge SOCmax %
Battery energy lost due to bi-directional
inverter efficiency

Eloss−battinv kWh

Battery minimum state of charge SOCmin % Energy lost due to battery efficiency Eloss−batt kWh

Retail prices πimport USD/kWh Energy drained from the battery Edis kWh

Export prices πexport USD/kWh Energy injected to the battery Echar kWh

Capacity tariff πcapacity USD/kW Energy delivered from the battery to the load Ebatt−load kWh

Feed-in limit Plimit % Energy imported from the grid to the battery Egrid−batt kWh

Combination of applications [PVCT, PVSC, DLS, DPS] Boolean array Energy imported from the grid to the load Egrid−load kWh

Load demand Eload kWh Energy drained from the grid Egrid kWh

PV generation EPV kWh Maximum power drained from the grid Pmax−day kW

Optimization time framework t minutes Power related to any energy parameter Px = Ex/∆t kW

Temporal resolution ∆t fraction of hour State of charge SOCi %

Table 5: Various combination of applications and the respective electricity tariff structure compared in this
study. If the application indicator is ON, it means that the referred application is included in the combination,
same is valid for the electricity tariff structure indicators.

Combination name
Applications Electricity tariff structure

PV Self-
consumption

(PVSC)

Avoidance of
PV curtailment

(PVCT)

demand-load
shifting
(DLS)

Demand peak
shaving
(DPS)

Flat tariff
(FT)

Double
tariff
(DT)

Capacity
tariff

Feed-in
limit

Combination 1
(Baseline scenario)

ON OFF OFF OFF ON OFF OFF OFF

Combination 2 ON OFF OFF ON ON OFF ON OFF

Combination 3 ON OFF ON OFF OFF ON OFF OFF

Combination 4 ON ON OFF OFF ON OFF OFF ON

Combination 5 ON ON ON ON OFF ON ON ON
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Fig. 3: Levelized cost of energy storage of a 7 kWh battery for all battery technologies depending on the
type of combination of applications for Auxtin, U.S. (top) and Geneva, Switzerland (bottom). The size of
the PV system correspond to the median installed capacity across both locations (i.e. 4.8 for Geneva and 5
kWp for Austin). The black point in the graph corresponds to the optimization results for the most likely
values for every technology in terms of battery pack cost, calendric and cycle lifetime, depth of discharge
and round-trip efficiency according to [40] (except for advanced lead-acid, for which there is no public data
available beyond the proposed manufacturer). Note that for the LCOES the lower is the bar the better are
the results.

3.1. Levelized cost

Fig. 3 displays the levelized cost of energy storage for six battery technologies and five
combinations of applications in Geneva and Austin. Three major observations can be made.
First, NCA and NMC-based batteries offer lower levelised cost for all combinations, the
former due to an elevated lifespan and a high number of cycles, while for the latter the reason
is a combination of low cost (technology with the lowest cost after VRLA) and a reasonable
compromise between number of cycles and lifespan. Secondly, batteries performing in Austin
offer lower cost per kWh since they are heavily cycled, (i.e. the average battery in Austin
supplies 62% more electricity throughout its lifetime than in Geneva). As for Geneva, the
LCOES also clearly decreases as household electricity consumption increases (demand data
for both countries is analyzed in Section 1.1 of Supplementary Information). These results
have important implications for the energy transition since residential batteries cycle more
for consumers with large electricity consumption and consumers with low consumption could
group themselves under communities battery schemes in order to reach lower costs.

Finally, in terms of combination of applications, demand load-shifting increases the use of
the battery, reducing the levelized cost, particularly in Geneva where battery use increases
on average by 23% when demand load-shifting is included. This is mainly due to the double
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tariff structure which is applied all year-round and low PV surplus in winter, in contrast to
Austin where there is a relatively high PV surplus in winter and the double tariff is applied
only during summertime. Accordingly, demand load-shifting reduces the LCOES in average
by 14% in Geneva and by 9% in Austin.

Additionally, Fig. 3 shows the optimization results for the most likely values for every
technology in terms of battery pack cost, calendric and cycle lifetime, depth of discharge and
round-trip efficiency according to [40] (except for ALA, for which there is no public data
available beyond the proposed manufacturer, for further information see Section 1.5 of the
Supplementary Information). These values are very close to the chosen manufacturer. The
greater difference corresponds to LTO chemistry, mainly due to the great cost’s deviation
(i.e. 1650 USD/kWh in this study vs. 1060 USD/kWh in [40]).

3.2. Levelised value

Fig. 4 displays the levelized value for all battery technologies depending on the combination
of applications. The differences among technologies regarding added value per-kWh for
combinations that do not include demand peak shaving is relatively small (i.e. less than
9% for both countries). Conversely, ALA-based and VRLA-based batteries add more and
less value per-kWh respectively than other battery chemistries when demand peak shaving
is included (on average 25% and 15%, respectively) because in both cases, less electricity is
supplied by the battery due to a shallower depth-of-discharge. However, in the case of ALA-
based batteries, the battery is used mostly for demand-peak shaving since it is the application
that adds most value and this technology offers significant discharge rating (see Section 3.4).
On the other hand, the cash flow is significantly lower for VRLA-based batteries due to low
depth-of-discharge (50%), efficiency (85%) and crucially the limited power characteristics (i.e.
maximum charge and discharge power of 0.1*C) leading to lower levelized value. In terms
of geography, more value per-kWh is added in Geneva (i.e. in average 0.21 USD/kWh),
compared to Austin. (i.e. in average 0.09 USD/kWh), due to higher electricity prices.
Furthermore, when excluding demand peak shaving, batteries in households with higher
demand create slightly more value per-kWh due to a higher self-consumption. On the other
hand, when demand peak shaving is included, batteries in Geneva households with lower
demand create more value per-kWh, due to a higher relative influence of the capacity tariff,
i.e. the battery is primarily used for demand peak shaving.

The addition of applications such as demand load shifting (combination 3) or avoidance of
PV curtailment (combination 4) to the baseline scenario (PV self-consumption referred to as
combination 1) adds only marginal value, however, when the four applications are combined,
the results are significantly better than the combination of PV self-consumption and demand
peak shaving (i.e. value per-kWh is on average 27% higher). This improvement is due to
the synergies between demand load shifting and demand peak shaving (see Section 4 of the
Supplementary Information). Demand peak shaving is the application adding most value
per-kWh (i.e. 0.11 and 0.15 USD/kWh in the U.S. and Switzerland, respectively), owing to
the importance of the capacity tariff in the final bill even if the bill is revenue neutral when
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Fig. 4: Levelized value of energy storage of a 7 kWh battery for all battery technologies depending on the
type of combination of applications for Austin, U.S. (top) and Geneva, Switzerland (bottom). The size of
the PV system correspond to the median installed capacity across both locations (i.e. 4.8 for Geneva and 5
kWp for Austin). The black point in the graph corresponds to the optimization results for the most likely
values for every technology in terms of battery pack cost, calendric and cycle lifetime, depth of discharge
and round-trip efficiency according to [40] (except for advanced lead-acid, for which there is no public data
available beyond the proposed manufacturer). Note that for the LVOES the higher is the bar the better are
the results.

it is added. The LVOES obtained When the optimization is run using the most likely values
for every technology remains very similar (see the black points in Fig. 4).

3.3. NPV

Fig. 5 displays the net present value for all battery technologies depending on the type of
combination of applications for Geneva and Austin. It can be seen that due to high costs
(as well as reduced cycle life, depth-of-discharge and lifespan in the case of VRLA) there is
no positive economic case. However, we can see that the profitability is markedly improved
for most technologies by combining applications. Since the battery operation adds more
value in Geneva than in Austin, the NPV is higher as a result. In the U.S., similar NPV
across the consumption brackets is present, with the clear exception of medium demand
households using LFP-based batteries. This exception is due to a replacement battery for
consumers 3 months before the project lifetime in this consumption bracket, which includes a
supplementary investment to replace the battery and therefore further reduces the net present
value (the same applies to high demand households for full combination of applications in
Austin). In terms of applications, the combination of PV self-consumption with demand
peak shaving increases the NPV on average by 15%, which can be improved 6% more when
demand load-shifting is included. The NPV obtained When the optimization is run using
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Fig. 5: Net present value of a 7 kWh battery for all battery technologies depending on the type of combi-
nation of applications for Austin, U.S. (top) and Geneva, Switzerland (bottom). The size of the PV system
correspond to the median installed capacity across both locations (i.e. 4.8 for Geneva and 5 kWp for Austin).
The black point in the graph corresponds to the optimization results for the most likely values for every
technology in terms of battery pack cost, calendric and cycle lifetime, depth of discharge and round-trip
efficiency according to [40] (except for advanced lead-acid, for which there is no public data available beyond
the proposed manufacturer). Note that the y-axis presents negative NPV for both countries, thus the lower
is the bar the better are the results.

the most likely values for every technology remains very similar (see the black points in Fig.
4). The greater difference corresponds to LTO chemistry, mainly due to the great cost’s
deviation (i.e. 1650 USD/kWh in this study vs. 1060 USD/kWh in [40]).

3.4. Impact of battery size

Fig. 6 displays the average levelized cost, levelized value and net present value across the three
groups of consumers (see Material and methods Section and Section 1.1.1 of Supplementary
Information), for small (i.e. 3 kWh), medium (i.e. 7 kWh) and large (i.e. 14 kWh) batteries
performing simultaneously all consumer applications depending on the battery technology.
Since batteries are heavily cycled in Austin, lower levelized cost is reached. The per-kWh cost
difference between the two countries increases when the battery size increases. In Geneva, a
large battery incurs higher per-kWh cost due to relatively low number of cycles and higher
capital expenditure. In contrast, in Austin, large batteries reduce further the levelized cost.

VRLA and NMC-based batteries increase their added value when the battery size increases.
This is due to their lower charge and discharge rates (0.1*C and 0.4*C, respectively) which
means that they need a large energy capacity to provide significant power, while added
value decreases with battery size for other chemistries with larger charge and discharge rates.
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Fig. 6: Comparison of the average LCOES (left), LVOES (middle) and NPV (right) for various battery tech-
nologies performing simultaneously all consumer applications in Austin, U.S. (red) and Geneva, Switzerland
(blue) depending on the type of annual electricity demand, namely small (top), medium (middle) and large
(bottom).

For small size batteries, NCA-based batteries have better results in both countries, whereas
VRLA batteries reach worst results for the full combination of applications. NCA-based
batteries are preferred in Austin and very competitive with NMC-based batteries in Geneva
for medium-sized batteries, while for large-sized batteries NMC chemistry get the better net
present value. Overall, the net present value results of Fig. 6 indicate that batteries in Geneva
are on average 13% (10% for small sizes, 16% for medium sizes and 12% for large sizes) more
attractive than in Austin, due to higher value added as a result of higher electricity electricity
prices.

4. Discussion

Based on our experiments for Geneva and Austin, we find that NCA and NMC are the
best-suited battery technologies for various combinations of applications (i.e. PV self-
consumption, avoidance of PV curtailment, demand load shifting and demand peak shav-
ing). When all the applications are combined NCA is the best-suited battery technology in
Austin, which represent a place with high irradiance, in general high electricity consump-
tion, low electricity prices and where the use of air conditioning is extended. On the other
hand, NMC-based batteries reach in average a net present value 7% higher than NCA-based
batteries (i.e. NPV is very similar) in Geneva, where electricity consumption and irradiance
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are lower, electricity prices higher and where there is no air conditioning in summer. The
household demand marginally affects the profitability of PV-coupled battery systems and
we find the NPV difference among the three consumption brackets for all technologies and
combinations of applications is less than 10% (2% in the U.S. and 8% in Switzerland, on
average). On the other hand, geography impacts the battery’s economic viability and the
net present value of battery systems in Geneva are on average 16% more attractive than in
Austin, mainly due to higher electricity prices.

Despite significantly increasing the NPV, batteries simultaneously performing several appli-
cations are not yet profitable under existing market conditions. However, further (expected)
reductions in battery costs, together with combining battery applications may hold the key to-
wards household battery profitability. In particular, adding demand peak shaving to PV self-
consumption brings clear benefits compared to the baseline scenario (PV self-consumption
only), especially for NCA and NMC-based batteries (up to 66% higher NPV). It is expected
that demand peak-shaving would also introduce other benefits for the wider energy system,
since electricity peaks are typically met by more costly or carbon-intense generators across
many countries (this is not however the case of Switzerland where hydropower is used for this
purpose). Moreover, distribution system operators could also defer or even save investment
in infrastructure. Thus, demand peak shaving is an application which provides synergies for
the consumer, utility companies and distribution system operators. Demand load-shifting
increases battery use but when demand peak shaving is not included in the combination, it
barely increases the net present value, even in Switzerland where double tariff is applied all
year-round. Being a regulation-based application, the avoidance of PV curtailment is more
interesting from the grid perspective than from the consumer perspective.

In the residential electricity market, small battery sizes offer the best economic case. Despite
a higher annual electricity demand in Texas compared to Geneva, larger battery capacities
are not economically justified and a small size battery (3 kWh in this study) obtains the
best results in both locations. However, with (installed) cost reductions of 55%, medium size
batteries will get more economically attractive than small size batteries in both countries.
From a market perspective, further cost reduction of lithium-ion technologies may result in
more market competition for NMC-based batteries which have the strongest position in the
market at the moment. For instance, NCA-based batteries are more suitable than NMC-based
ones when combining applications mainly due to higher charge and discharge rates, cycles and
extended lifespan, even if the price is higher, thus a cost reduction of NCA-based batteries
can compromise the leader position of NMC-based batteries in the residential market.

In order to reach economic profitability, battery systems require further cost reductions re-
gardless of battery technology. Installation costs (including permitting, inspection, intercon-
nection, overhead, profit and installation labor) in Geneva and Austin are assumed to be $
2000 in this study [51, 52] but may reduce with increasing installation experience (learning
by doing) and market competition. Fig. 7 displays the break-even point of a 7 kWh bat-
tery performing only PV self-consumption as well as all four applications depending on the
battery technology and location. The current installation cost per kWh considering battery,
inverter and installation are also given for reference purposes. When all applications are
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Fig. 7: Break-even point of a 7 kWh battery for all battery technologies depending on the type of combi-
nation of applications, PV self-consumption only (blue), the full combination of applications (green) and for
comparison, the installed cost per kWh used in this study (red), for the U.S. (right) and Switzerland (left).
The size the PV system correspond to the median installed capacity across both locations.

combined, NCA-based batteries are closest to profitability. They require only 35% reduction
in installed costs to be profitable in Switzerland and 40% in the U.S. NMC-based batteries
in Switzerland require a 30% reduction on installed costs, however, in the U.S. this increases
up to 55%. Due to higher electricity prices, profitability may be reached first in Switzerland
even if PV self-consumption is the only application, however, on average a reduction of 83%
in the cost per-kWh-installed, compared to today’s cost, is required. On the other hand,
when all applications are combined, a reduction of 52% is required. In the case of the U.S.,
further reductions are needed (93% if only PV self-consumption is addressed and 60% if all
applications are combined). According to IRENA lithium-ion batteries’, installation costs
will be reduced by 60% on current levels by 2030 [38], thus residential batteries may reach
profitability (without subsidies) in both countries in the next decade if all applications are
combined. This break-even period may be however shorter if electricity prices increase.
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NCA-based batteries already have the appropriate characteristics to combine applications
and expand their deployment. LFP-based batteries have suitable technical characteristics
but a high number of cycles must be ensured. On the other hand, LTO-based batteries can
be considered as over-designed for household needs which leads to higher cost, and if they
are over-sized, entail a higher cost than other battery types. NMC-based batteries are ex-
pected to lead the cost decline due to their leader position in the market, however, technical
specifications, mainly calendar life, will need further development if manufacturers want to
keep their dominant position in a near future with residential batteries performing several
applications simultaneously. Advanced lead-acid batteries have competitive characteristics
and performance, however, shallow depth-of-discharge and high costs, penalize them when
compared with lithium-ion technologies. Therefore, only aggressive cost reductions and sig-
nificant technical improvements could lead to increase their market share. The environmental
dimension can be an important asset for this technology since its recycling process has been
already established and other criteria such as their material criticality is far lower compared
to lithium-ion batteries [58]. Finally, already-mature traditional lead-acid batteries, which
have limited margin for improvement, are clearly less attractive for exploiting additional
applications which appears to be a strategy that cannot be ignored.

5. Conclusions

The aim of this study was to determine the best-suited battery technology for various com-
bination of applications (i.e. PV self-consumption, avoidance of PV curtailment, demand
load shifting and demand peak shaving) for two locations with different irradiance profiles,
electricity prices and average demand consumption (i.e. Austin, U.S. and Geneva, Switzer-
land) and taking into account three battery sizes (i.e. 3, 7 and 14 kWh). We found that
NCA and NMC are the best-suited batteries in both locations and for all the combinations
of applications, being NCA slightly better in the U.S. example than NMC-based batteries.

Moreover, emerging from the present study, we contribute with four factors that influence
the economic profitability of a PV-coupled battery system: (a) The low influence of annual
household demand, which in this study varies from 4.9% in Austin to 2.2% in Geneva; (b)
the rather high impact of location (i.e. 18% higher NPV in Geneva than in Austin), whose
uncertainty is rather low since the electricity bill structure and environmental factors are
widely known; (c) the medium impact of battery technology which depends not only on the
technical characteristics, which are already good for residential applications, but as well on
battery costs which are still high for the same niche and whose uncertainty is rather high; (d)
the impact of the combination of applications, which can be marked, especially with demand
peak shaving, but there is rather high uncertainty since the number of applications depends
on local regulation by utility companies and policy makers.

Although our study proposes a robust framework to quantify the attractiveness of batteries
and the proposed models are rich in technology details, it is not without limitations, which
in turn call for future research. Other forecast strategies different to perfect forecast could
be introduced in the optimization framework, with this reducing the revenue. In addition,
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the design of future electricity tariffs including time-of-use and capacity components is still
a topic under investigation. In particular, capacity tariffs are expected to become more
widespread since they offer great cost reflectivity as well as revenue variability for network
businesses in the face of current and expected disruptions and conduct to flexibility [59].
Additionally, while the scope of the research presented in this paper is limited to electricity
demand in dwellings, future research should also incorporate heat and transport demand and
the trade-offs of different low carbon technologies such as residential batteries, heat pumps
and electric vehicles. Finally, the proposed optimization framework could be extended to
more geographies.

The open-source model used in this study is publicly available in https://github.com/
alefunxo/Basopra, and could be used for different PV generation profiles and demand pro-
files, as well as different tariff structures and batteries with user-defined characteristics.
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1. Supplementary material and methods

1.1. Demand datasets

Two demand datasets covering Austin, Texas in the U.S. and a western Swiss city with 15-
minute smart meter data covering the whole year 2015 were used in this study. For Austin
the data were obtained from the Pecan Street project, for 308 households, as for the 636 Swiss
dwellings data confidentiality agreements apply, however we treated the data as if it was from
Geneva. In terms of average yearly electricity consumption the American households use 3.7
times more electricity than Swiss households from the datasets. The two cities present a
completely different consumption behavior, while in Austin there is a clear seasonality with
a summer peak that is the double of winter or fall consumption, in Geneva summer is the
less electricity-demanding season and winter and fall present comparatively only 16% more
electricity demand. In terms of monthly average consumption, in Austin, excluding summer
months, the average consumption is 837 kWh/month and almost two times greater during
summer months. On the other hand, in Geneva a clear mean of 274 kWh/month is maintained
all year-round with a slightly lower consumption in spring and fall (see Fig. 1).
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Fig. 1: Average consumption per household in both locations, Geneva, Switzerland is shown in red while
Austin, Texas is presented in blue. a. Per season and b. Per month.

1.1.1. Demand clustering

Rather than run individual simulations for all the household consumers, which would lead to
very long simulation times, we instead aim to find representative consumers which exemplify
typical consumption patterns within the data in both countries. Therefore, for both the U.S.
and Switzerland we create groups of consumers with similar behavior in terms of the shape
and overall magnitude of their average daily load profiles. From each group, we then select
the consumer whose load is closest to the centroid of the group, designating that consumer
as the representative from that group. Simulations are run for each representative consumer.

To generate the representative consumer groups, we employ a clustering method. In the
literature, a range of clustering methods have been employed to form consumer segments
(for a review of the clustering techniques applied to electricity load data see [1]), however
k-means is the most commonly used clustering framework and has been used in a range of
studies regarding household load profiles[2–5]. Therefore, we form our consumer groups using
k-means clustering.

When clustering daily load profiles, previous work typically normalizes the load profiles,
bringing the daily shapes to a similar scale for pattern recognition [2, 3], as described by Eq.
1:

ec(t) =
lc(t)

∑t=24
t=1 lc(t)

(1)
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Fig. 2: Electricity consumption in a. Geneva, Switzerland and b. Austin, Texas. The dashed lines represent
the dataset first, second (median) and third quartiles and the continuous line marks the limit to outliers.

Where ec(t) is the normalized load at time t and lc(t) is consumer cs load at time t before
normalization.

While this approach is successful for forming groups of load profiles with similar shapes
independent of consumption magnitudes, in this work we also want to study the effect of
differing levels of overall consumption. Therefore, first we look at the distributions of total
yearly consumption in both locations and form groups with similar consumption levels. As
shown in Fig. 2, we see that there are several consumers with abnormally high consumption
in both locations (above 7500 kWh in Switzerland is considered an outlier and above 25000
kWh in the U.S. is considered an outlier) and we do not consider these consumers, since our
ultimate aim is to find representative consumers. We then split the remaining consumers
whose consumption is within our defined normal range into 3 separate groups, i.e., a low
consumption group, a medium consumption group and a high consumption group in both
locations. The low consumption group is defined by consumers in the 0th to 33rd percentiles,
the medium consumption group is defined by consumers in the 34th to 66th percentiles, and
the high consumption group contains consumers with yearly consumption greater than the
67th percentile.

After forming the consumption brackets based on overall consumption, we further subdivide
these by clustering according to the load shape. Within the 3 consumption brackets the
normalized consumer average daily load profiles are clustered to form 4 subgroups in each
bracket. We use the k-means clustering method, which randomly assigns an initial set of
centroids, and then iteratively moves these to minimize the objective function shown in Eq.
2.
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Fig. 3: Percentage of the variance explained in function of the number of clusters used for a. Geneva,
Switzerland and b. Austin, Texas for the three electricity consumption brackets (high, medium and low).

J =
K
∑

j=1

nj
∑

i=1

√

√

√

√

t=24
∑

t=1

(ei,j(t)− ζj(t))2 (2)

Here, j indexes the clusters from 1 to K and i indexes the load shapes assigned to cluster
j, where nj is the total number of shapes in cluster j. ei,j is the i -th load shape assigned
to cluster j and ζj is the centroid of cluster j. As can be seen we minimize the Euclidean
distance metric between centroids and the normalized load profiles.

Since we cluster average daily load profiles, we ultimately produce groups with similar average
behaviors, recognizing that there may be significant deviation away from the average daily
load shape for an individual on any given days [2, 3]. We opt to produce 4 clusters in each
consumption bracket, noting that the selecting the number of clusters in highly dimensional
data where it is not known is a difficult task. However, to provide some justification we look
at the variance explained by the cluster centroids compared to the total variance in the data.
Fig. 3 shows the elbow plots for both locations, and illustrates that in general the additional
variance accounted for through by an extra cluster diminishes below 5-7% after adding more
than four clusters.

1.2. PV generation

Environmental variables including outdoor temperature and horizontal solar irradiance mon-
itored across both locations are used to model PV generation. We simulate PV generation

4



using a standard one-diode model and PV panel input data with a nominal efficiency of
18.6%, representative of the current state of the art [6]. The model also includes a maximum
power point tracker system, as is the case of most PV systems, to maximize the output
regardless of the environmental conditions. The PV system’s installed capacity is modeled
based on the empirical distribution across Switzerlanda and Texasb (see Section 1.3 of the
supplementary information). We finally focus on the median PV size of the distributions for
our baseline results (i.e. unchanged PV size), while alternative scenarios including the 25th
and 75th percentile are shown in Section 5 of the supplementary information.

In order to do a comprehensive comparison, hereon in this section we refer to a generation
profile generated for each location using a PV installation of 1 kWp of nominal power. In
terms of yearly generation, a PV system in Austin generates 15% more electricity than the
same PV system in Geneva. The capacity factor in Austin is 18.8% while in Geneva is 16.3%,
being these values congruent with related literature [7]. We assume the same generation for
every PV system for every household in this study being then adjusted according to the
PV size distribution in each location. Fig. 4 presents the differences per season and per
month between the two locations, as can be observed throughout the year Austin have more
generation than Geneva, except during spring when the PV system in Geneva produces 11%
more electricity than in Austin. As for fall and winter, a PV system in Austin produces 75%
and 34% more electricity than the same PV system in Geneva, respectively. In summer the
difference is less than 6%.

The distribution of PV sizes for both locations and the first, second and third quartiles are
presented in Fig. 5. Since A limit of 10 kWp of nominal power for residential systems is
usually used by national reports [8, 9], we selected the same limit for this study. We take
into account all the country installations under the mentioned threshold, as for USA we take
only Austin installations under the same threshold. For both datasets the three quartiles are
very close, the first quartile is 3.15 kWp and 3.2 kWp for Austin and Geneva, respectively,
as for the third quartile Austin presents a smaller system size (6.4 kWp) than Geneva (6.9
kWp). The medians are again very close, being only 0.2 kW greater in Austin (5 kWp) than
in Geneva.

1.3. Electricity tariff and battery applications

The operation of a residential battery as well as the number of applications it can deliver
depends on the tariff structure. In this study we include all existing consumer applications,
excluding back-up power since we focus on distribution areas with a high level of grid stability
(for both utilities referred in this study, the number of minutes of power failure experienced
by a typical customer in a year was below 100 minutes in 2016c). Since there is not a market

aSwiss Federal Office of Energy
bhttps://openpv.nrel.gov
cFor the utility in Texas, the number of minutes of power failure amounted to 95.6 minutes (which is 30%

lower than the average in the U.S. [10] ) while it was only 7.8 minutes in the canton of Geneva.
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Fig. 4: Electricity generation of a 1 kWp PV installation in both locations, Geneva, Switzerland is shown in
red while Austin, Texas is presented in blue. a. Per season and b. Per month.
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Fig. 6: Electricity prices in both locations, Geneva, Switzerland is shown in red while Austin, Texas is
presented in blue. a. Per season and b. Per month.

mechanism incentivizing the export of electricity from residential batteries to the main grid,
this case is not considered either.

Energy tariffs are based on Electricit vitale Bleu for households in Geneva and on TOU
for residential customers in Austin. Both, single tariffs and double tariffs (with a peak and
off-peak periods) are considered in the analysis. In Switzerland, double tariffs are applied
all-year-round, while in the U.S. they are applied only in summertime. The export price is
assumed to be the wholesale electricity price as is the case for traditional electricity gener-
ators. This is already the case in Switzerland for installations which are on the waiting list
to be granted a one-off subsidy for the capital investment in PV [9] and this is expected to
become a widespread policy as a consequence of falling cost of PV technology.

We use 2015 wholesale electricity prices from the day-ahead market for Texas (ERCOT south-
ern load zone) and Switzerland (EPEXSPOT). In general, Swiss export prices are larger than
prices in Texas with average daily prices of 0.04 USD/kWh and 0.027 USD/kWh respectively.
However, the differences among average electricity prices per season indicate a general trend
in Geneva where spring and summer months are usually low (around 0.033 USD/kWh) while
fall and winter prices are around 0.047 USD/kWh (see figure 6). As for Austin, prices are
similar among winter, spring and fall (around 0.024 USD/kWh), however in summer prices
are larger (0.035 USD/kWh in average) but can be as high as 2.25 USD/kWh. It is important
to note that, apart from the electricity price, electricity bills include other fixed costs as well,
such as taxes and grid usage.
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Fig. 7: DC-coupled PV-battery system with integrated inverter used in this study. Arrows indicate the
direction of possible energy flows between the individual components.

1.4. PV-coupled battery system

The DC-coupled system used in this study is illustrated in Fig. 7 and it includes an integrated
inverter with a buck-boost charge controller with a maximum power point tracking system
and a bi-directional inverter (required to charge from the grid). An inverter loading ratio
(i.e. the ratio between the inverter rating and the PV rating, referred to as ILR) of 1.2 is
considered for this study [11].

DC-coupled topology allows to select a smaller inverter (i.e. increase the ratio between
the inverter rating and the PV rating beyond 1) and store otherwise clipped energy [? ].
Likewise, this topology prevents from curtailing PV export exceeding a regulatory threshold
as in Germany where PV generators with a installed capacity of maximum 30 kW must be
able to reduce the feed-in power in case of network overload or limit the power supply of the
PV-system to the grid to 70% of installed capacity which can be enforced to 50% if a storage
installation is funded by the government subsidy program [12, 13]de.

DC -coupled systems require a single power conversion to store energy (through the charge

d9 subsection 2
eIn the literature curtailed and clipped energy are often interchangeable, however in this work we use

the term clipped energy to refer to wasted energy due to technical restrictions (e.g. inverter rating) while
curtailed energy is used when we refer to wasted energy due to legal restrictions.
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controller), whereas AC-coupled systems require two power conversions (from the PV array
through the PV inverter and then through a bi-directional inverter to the battery). Therefore,
in applications where PV output storage is frequent, DC-coupled systems are generally more
efficient than AC-coupled systems. In the DC-coupled system, the efficiency of the charge
controller is set at 98% while that from the bi-directional DC/AC inverter is set at 95% [14].
Thus, the DC/AC efficiency from the PV system to the grid or to the demand load is 93%. On
the other hand, when PV electricity is stored, one must consider battery roundtrip efficiency,
therefore lowering efficiency depending on battery technology, for instance, it goes down to
79% for the VRLA. As for grid charging, the AC-AC efficiency (i.e. grid-to-battery-to-load
efficiency) is within a range of 76% (for VRLA) to 87% (for LTO).
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1.5. Most likely cost of stationary batteries

Technology Siting Parameter Unit m. likely

NMC customer
Battery
Pack Cost

EUR/kWh 335

NMC customer
O&M
Cost (fixed)

EUR/kW
p.a.

0

NMC independent
Calendric
lifetime

#
years

12

NMC independent
Cycle
lifetime

#
cycles

4’996

NMC independent DOD % 93%

NMC independent
Roundtrip
Efficiency

% 89%

LFP customer
Battery
Pack Cost

EUR/kWh 461

LFP customer
O&M
Cost (fixed)

EUR/kW
p.a.

0

LFP independent
Calendric
lifetime

#
years

12

LFP independent
Cycle
lifetime

#
cycles

6’529

LFP independent DOD % 93%

LFP independent
Roundtrip
Efficiency

% 87%

NCA customer
Battery
Pack Cost

EUR/kWh 281

NCA customer
O&M
Cost (fixed)

EUR/kW
p.a.

0

NCA independent
Calendric
lifetime

#
years

12

NCA independent
Cycle
lifetime

#
cycles

2’498

NCA independent DOD % 93%

NCA independent
Roundtrip
Efficiency

% 89%

LTO customer
Battery
Pack Cost

EUR/kWh 900

LTO customer
O&M
Cost (fixed)

EUR/kW
p.a.

0

LTO independent
Calendric
lifetime

#
years

23

LTO independent
Cycle
lifetime

#
cycles

15’000

LTO independent DOD % 100%

LTO independent
Roundtrip
Efficiency

% 91%

VLA customer
Battery
Pack Cost

EUR/kWh 263

VRLA customer
O&M
Cost (fixed)

EUR/kW
p.a.

0

VRLA independent
Calendric
lifetime

#
years

9

VRLA independent
Cycle
lifetime

#
cycles

1’500

VRLA independent DOD % 55%

VRLA independent
Roundtrip
Efficiency

% 75%

Table 1: Distribution parameters for technology characteristics and cost parameters in [15]
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2. Aging

Battery aging and durability are parameters with a great uncertainty for battery energy
storage technologies [16]. In this paper, we model battery aging process through the battery
capacity depletion since it limits the battery lifetime. The aging behavior is typically divided
in two, calendar aging (when the battery is standby) and cycle aging (when the battery is
used) [17]. We acknowledge the battery aging process is non-linear, particularly in the first
hundreds of cycles, but as pointed out in earlier papers, capacity losses can be assumed to
be linear without compromising lifetime predictions markedly [17, 18] and this approach is
followed in this study. Furthermore, previous studies have reported that one of the two aging
factors dominates (typically cycle aging for small batteries) in typical operation conditions
[17], thus the model can be simplified across the different technologies through the use of the
maximum of both, see Eq. 3. The aging factor is calculated in daily basis.

Typically a 20% reduction of the initial capacity is applied to define the end of life (EoL) of a
battery [17], especially for industrial application since under this value the manufacturers do
not guarantee the battery performance. However, lower values are often stated for residential
applications which are less demanding [18, 19], in this study we use a 30% capacity depletion
as EoL.

Calendar losses have been previously modeled using the Arrhenius formula since they are
mainly dependent on the battery temperature [19]. However, the temperature is controlled
by the battery management system in new models available in the market. Therefore, the
proposed model neglects its effect on the battery aging. Eq. 4 defines daily calendar aging
(cald)as the multiplicative inverse of the battery calendar lifetime (Battcal−life).

As for the cyclic aging (cycd), we use a similar approach as the presented by Magnor et al.
[17] which is based on Woehler curvesf for different battery technologies. We extend this
method to other technologies adapting the maximum number of cycles performed by the
battery. The cyclic aging is then given by 1 (i.e. the number of cycles per day at the given
DoD), divided by the maximum number of cycles at the given DoD (NDoD⋆

max ), as indicated
by Eqs. 5 and 6. Since the energy discharged from the battery in one day can exceed the
nominal capacity (e.g., if the battery is fully charged and discharged two times in a day),
the cycling aging is considered to be the sum of one cycle at 100% DoD and one cycle at the
remaining DoD.

agingd = max(cycd, cald) (3)

cald =
1

Battcal−life

(4)

DoD⋆ =

∑t

i=1 Edisi

C
(5)

fThe Woehler curves show the number of cycles of a battery as a function of depth of discharge until the
end of lifetime. This curve is given by most battery manufacturers in data sheets.
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Fig. 8: Example of the battery scheduling in a typical day.

cycd =
1

NDoD⋆

max

(6)

As an example, let us consider the battery scheduling presented in Fig. 8, which is the
result of a given day for a 14 kWh NMC-based battery. The total energy discharged in the
given day is 9.88 kWh, thus the given DoD (i.e., DoD⋆) is found dividing the total energy
discharged by the total battery capacity, that is, 0.706. We proceed to use the corresponding
equation from Table 2, for the NMC technology, and it is found that at DoD⋆, the number
of cycles at 0.706 DoD is 4062.7, thus, the cycling aging will be the inverse multiplicative,
that is 0.000246.

The Woehler curves used in this study are displayed in Fig. 9 and the equation that mathe-
matically describes every curve is presented in Table 2. Each curve is based on manufacturers’
datasheets.
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Fig. 9: Woehler curves for every technology used in this study.

Technology Number of cycles as a function of DoD Reference

LTO exp

(

log(DoD)−log(771.51)
−0.604

)

− 45300 [20]

LFP exp

(

log(DoD)−log(70.869)
−0.54

)

+ 1961.37135 [21]

NCA exp

(

log(DoD)−log(1216.7)
−0.869

)

+ 4449.67011 [22]

NMC exp

(

log(DoD)−log(1E8)
−2.168

)

[23]

ALA exp

(

log(DoD)−log(37403)
−1.306

)

+ 330.656417 [24]

VRLA exp

(

log(DoD)−log(667.61)
−0.988

)

[25]

Table 2: Number of cycles for every technology used in this study.
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3. Model validation

In order to validate the model, some test scenarios with intuitive solutions for the optimum
schedule of operation of the battery are considered. The three scenarios are run with a LFP
battery with a large capacity (100 MWh) and efficiency of 100%. The demand is considered
to be constant at 100 kW.

In the first case, presented in figure 10, the time-series test price presents a single time slot
with a low price of 10 USD/kWh and a peak price of 100 USD/kWh. The battery charging
and discharging limits are set at 2*C. The output is as expected a schedule where the battery
is charged in the low-price time slot and discharged afterwards.

Fig. 10: Result for optimization of the single off-peak time slot test case. The output schedule for charge
(positive y-axis) and discharge of the battery with the given price input.

In the second test, shown in figure 11 the time-series test price is a square wave varying
between 100 USD/kWh and 10 USD/kWh. The battery charging and discharging limits are
set at 100 kW. Therefore, we would expect the optimized result to output a schedule that
charged when the prices are low, then discharged to cover the demand when the prices are
high. The figure of the model results is an excellent fit with the expected schedule. A positive
power flow means the battery is charging.

In the last test, shown in figure 12 the time-series test price is a sinus wave varying between
50 USD/kWh and -50 USD/kWh. The battery charging and discharging limits are set at
100 kW. Therefore, we would expect the optimized result to output a schedule that charged
when the prices are lower than 0 USD/kWh, then discharged to cover the demand when the
prices are high. We can see how at the end of the day, the battery charges only when prices
are strictly below 0 USD/kWh, since the battery does not charge if it does not need the
energy before the end of the day.

14



Fig. 11: Result for optimization of the square wave price test case. The output schedule for charge (positive
y-axis) and discharge of the battery with the given price input.

Fig. 12: Result for optimization of the sinus wave price test case. The output schedule for charge (positive
y-axis) and discharge of the battery with the given price input.
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4. Other combinations of applications

Results are presented here for a typical size of 7 kWh depending on the battery technology and
for both locations. Since we aim to analyze the impact of geography, battery technology and
size on the attractiveness of the combination of applications, our baseline results are based
on a representative (median) fixed PV size in each geographical region. Three additional
combinations of applications are analyzed besides the five presented in the main paper.
In order to give the reader a point of comparison, PV self-consumption only and the full
combination of applications are as well deployed.

The main result drawn from Figs. 13,14 and 15 is the influence of demand load shifting when
combined with PV self-consumption and demand peak shaving, which helps to reduce the
levelized cost and slightly enhance the added value. At the end it results in an improved
NPV which is significantly higher than the scenario where avoidance of PV curtailment is
combined with the same two applications.
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Fig. 13: Levelized cost of energy storage of a 7 kWh battery for all battery technologies depending on the
type of combination of applications for the U.S. (top) and Switzerland (bottom). The size the PV system
correspond to the medium installed capacity across both locations.
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Fig. 14: Levelized value of energy storage of a 7 kWh battery for all battery technologies depending on the
type of combination of applications for the U.S. (top) and Switzerland (bottom). The size the PV system
correspond to the medium installed capacity across both locations.
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Fig. 15: Net present value of energy storage of a 7 kWh battery for all battery technologies depending on the
type of combination of applications for the U.S. (top) and Switzerland (bottom). The size the PV system
correspond to the medium installed capacity across both locations.
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5. PV size impact

Fig. 16 displays the average LCOES, LVOES and NPV across the three groups of consumers,
for the 25th, median and 75th quartiles of the PV size distribution for Switzerland and Fig
17 for the U.S., for a 7 kWh battery performing simultaneously all consumer applications
depending on the battery technology.

In general, the combination of applications reaches smaller levelized cost, higher levelized
value and higher NPV for all batteries, with the exception of LFP-based batteries in the U.S.
when median PV size is assessed (due to replacement near the end of life). Moreover, the
difference between a battery performing PV self-consumption only and one performing all
the applications simultaneously is higher as the PV size raises for the levelized value and the
NPV, as for the levelized cost the difference diminishes with PV size.
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