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Abstract

Purpose—The optimization and analysis of spin ensemble trajectories in the hybrid state—a 

state in which the direction of the magnetization adiabatically follows the steady state while the 

magnitude remains in a transient state.

Methods—Numerical optimizations were performed to find spin ensemble trajectories that 

minimize the Cramér-Rao bound for T1-encoding, T2-encoding, and their weighted sum, 

respectively, followed by a comparison between the Cramér-Rao bounds obtained with our 

optimized spin-trajectories, Look-Locker sequences, and multi-spin-echo methods. Finally, we 

experimentally tested our optimized spin trajectories with in vivo scans of the human brain.

Results—After a nonrecurring inversion segment on the southern half of the Bloch sphere, all 

optimized spin trajectories pursue repetitive loops on the northern hemisphere in which the 

beginning of the first and the end of the last loop deviate from the others. The numerical results 

obtained in this work align well with intuitive insights gleaned directly from the governing 

equation. Our results suggest that hybrid-state sequences outperform traditional methods. 

Moreover, hybrid-state sequences that balance T1- and T2-encoding still result in near optimal 

signal-to-noise efficiency for each relaxation time. Thus, the second parameter can be encoded at 

virtually no extra cost.

Conclusions—We provided new insights into the optimal encoding processes of spin relaxation 

times in order to guide the design of robust and efficient pulse sequences. We found that joint 

acquisitions of T1 and T2 in the hybrid state are substantially more efficient than sequential 

encoding techniques.
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1 | INTRODUCTION

The dynamics of large spin-1/2 ensembles in a magnetic field are commonly described by 

the Bloch equations, which capture the macroscopic effects of spin-lattice and spin-spin 

interactions with the characteristic time constants T1 and T2, respectively. Robust and rapid 

quantification of these parameters may lead to more objective diagnoses, improved 

longitudinal studies, and simplify computer aided diagnosis. The large dynamic range of 

inversion-recovery experiments makes them a natural choice for quantitative T1 mapping. 

Similarly, a series of spin-echo experiments with varying echo times probe a wide dynamic 

range for estimating T2. Both methods effectively strive to trace exponential relaxation 

curves following a single perturbation from thermal equilibrium—without being affected by 

the other relaxation time. However, T1 and T2 can also—and arguably more efficiently—be 

estimated by measuring magnetization in various steady-state conditions,2–5 or even in more 

complex conditions that depart from the steady state.6–8 Magnetic Resonance Fingerprinting 

(MRF),8 e.g., opened a door for flexible parameter mapping and initiated various research 

efforts to increase the signal-to-noise ratio (SNR) efficiency of quantitative MRI. However, 

the large number of design options for MRF pulse sequences has limited the optimization of 

MRF experiments to heuristic approaches.1,8–12 Furthermore, the lack of an intuitive 

understanding of the spin dynamics in MRF, and the over-simplified nature of the Bloch 

models employed in typical MRF implementations, creates a risk of introducing biases in 

the estimated relaxation times.11 We have recently analyzed the biases introduced by 

inhomogeneities of the RF-excitation field B1
+  and the main magnetic field (B0), including 

intra-voxel dephasing, which is also known as inhomogeneous broadening.13 It is known 

that this sensitivity to inhomogeneities originates from the magnetization component 

orthogonal to the steady-state magnetization.14 Therefore, we derived an upper bound for 

variations of the flip angle and the phase increment of the RF-pulses that forces the direction 

of the magnetization to adiabatically follow the steady state. We found that this adiabaticity 

condition is considerably less stringent than the condition that ensures adiabaticity of the 

magnetization’s magnitude (cf. Ref. 13 for details). Flip angle variations in between these 

bounds result in a so-called hybrid state, which combines the steady state’s robustness—by 

virtue of the direction’s adiabaticity—with the efficiency of the transient state—by virtue of 

the magnitude’s diabaticity, i.e. non-adiabaticy.13

The adiabaticity of the magnetization’s direction effectively decouples the Bloch equations 

when formulated in spherical coordinates. The angular dimension can be described by the 

well-established steady-state equations,15,16 whereas the entire spin dynamics is trapped in 

the radial dimension, i.e., in the magnitude of the magnetization. Section 2.1 recaps and 

visualizes the hybrid-state equation of spin motion, which is the decoupled Bloch equation 

along the radial dimension, and highlights that the polar angle is the effective force that 

drives these dynamics. Thereafter, we provide an in-depth analysis of hybrid-state sequences 

and discuss how relaxation times can be encoded efficiently with this approach. By 
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comparing hybrid-state sequences that were optimized to encode either T1 or T2 alone 

against those that resulted from joint optimizations, we show that the second parameter can 

be measured at virtually no extra cost.

2 | METHODS

2.1 | Hybrid-state spin dynamics

We start by describing the spin dynamics in spherical coordinates,16 which are here defined 

by x = r sin ϑ cos φ, y = r sin ϑ sin φ and z = r cos ϑ, where r is the radius, ϑ the polar angle 

or the angle between the magnetization and the z-axis and φ the azimuth or the angle 

between the x-axis and the projection of the magnetization onto the x-y-plane. For 

practicability, we use the limits −1 ≤ r ≤ 1, 0 ≤ ϑ ≤ π/2, and 0 ≤ φ < 2π to uniquely identify 

the polar coordinates. Recapitulating Ref. 13, the entire spin dynamics in hybrid state is 

captured by the radius r of the magnetization, i.e., its magnitude combined with a sign, 

which is controlled only by the polar angle ϑ:

ṙ(t) = −
cos2ϑ(t)

T1
+

sin
2
ϑ(t)

T2
r(t) +

cosϑ(t)

T1
(1)

Here, ṙ(t) denotes the partial derivative of r with respect to time.

The flip angle and the phase of the radio frequency (RF) pulses, as well as the repetition 

time TR have only an indirect and joint effect on the spin dynamics:

tanϑ =
tan

α

2

sin
ϕ

2

, (2)

where ϕ =ωzTR describes the phase accumulated during one repetition time TR and α 
denotes the flip angle. This equation reduces to ϑ = α/2 for ϕ = π, which we define as the 

on-resonance condition. In practice, ϕ = π is assigned to the on-resonant spin isochromat by 

the common phase increment of π in consecutive RF pulses. Note that Equation (2) is 

equivalent to Equation (3) described by Schmitt et al17 (given a different definition of ϕ), as 

well as to Equation (5) in Ref. 13. Further, Equation (1) generalizes the transient-state 

behavior described by Schmitt et al6,17 to variable ϑ (cf. Equation (6) in Ref. 6 and the 

supporting information of Ref. 13).

In order to provide some intuition for the hybrid-state spin dynamics, we visualize its 

governing differential equation (Equation (1)) in Figure 1A. One can identify the so-called 

steady-state ellipse,15–20 which separates areas of the Bloch sphere in which the 

magnetization grows (red) or shrinks (blue). The absolute value of the derivative of Equation 

(1) with respect to T1 is in the upper limit twice as high on the southern hemisphere as it is 

on the northern hemisphere (note the asymmetric color bar in Figure 1B), which indicates 

that T1 can be encoded faster on the southern hemisphere. A second benefit of inversion 

recovery experiments becomes evident when comparing the derivative with respect to T1 

(Figure 1B) to the one with respect to T2 (Figure 1C). One changes sign between the 

hemispheres while the other does not. Thus, encoding data on the southern and northern 
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hemisphere minimizes the correlation between the derivatives, which should yield a superior 

SNR in the estimated relaxation times by virtue of a lower Cramér-Rao bound21,22 (cf. 

Equations (3)–(5)).

When considering T1 only, Figure 1B suggests that there is a benefit in keeping the 

magnetization close to the z-axis on the southern hemisphere, and close to the origin on the 

northern hemisphere, since the absolute value of the derivative is largest in those areas. The 

derivative with respect to T2, on the other hand, reaches its maximum far away from the z-

axis (Figure 1C). This suggests that spin trajectories with large r may be desirable in order to 

probe these areas.

2.2 | Numerical optimizations

In order to verify this intuitive understanding, and to glean some insights on how to best 

probe the important areas of the Bloch sphere, we numerically optimize spin ensemble 

trajectories for a maximal SNR per unit time. To this end, the Cramér-Rao bound21,22 is 

used to provide a universal limit for the noise variance of the estimated parameters. Given an 

unbiased estimator, i.e., the fitting algorithm used to calculate the proton density (M0), T1, 

and T2, the noise variance of these parameters is at least as big as the corresponding Cramér-

Rao lower bound. This very general and established metric has been utilized for optimizing 

MR parameter mapping experiments in Refs. 23–25 among others, and for MRF in particular 

in Ref. 26.

Assuming balanced gradient moments and small intravoxel dephasing, the hybrid state 

allows us to approximate a voxel’s signal at the echo time TE = TR∕2 by a single isochromat,
13 similar to balanced steady-state sequences.27 With s(t) = M0r(t) sin ϑ(t), where M0 

captures the complex valued proton density incl. coil sensitivity effects, we can calculate a 

discretized signal vector s ∈ ℂ
1 × Nt from Equations (1) and (2). This vector describes the 

observed signal at Nt time points, and is used to calculate the Fisher information matrix 

F ∈ ℂ
3 × 3 whose entries are Fi, j = bi

H
bj/σ2, where the vectors bi describe the derivatives of 

the signal evolution with respect to all model parameters

b1 = ds/dM0, b2 = ds/dT1, b3 = ds/dT2, (3)

and the superscript H denotes the complex conjugate transposed. By normalizing with M0, 

the input variance σ2, the duration of the experiment Texp = NtTR, the repetition time TR, 

and the squared relaxation time, we can define the relative Cramér-Rao bounds to be

rCRB T1 = M0
2

F
−1

2, 2

σ2T1
2

Texp

TR
(4)

rCRB T2 = M0
2

F
−1

3, 3

σ2T2
2

Texp

TR
. (5)
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The normalization by M0
2 cancels out the M0 scaling factor in the input signal, as does the σ2 

with the variance in the definition of the Fisher information matrix. The normalization by 

the squared relaxation time is performed in order to best reflect the T1,2-to-noise ratio 

(defined as T1, 2/σT1, 2
), and the normalization with Texp∕TR makes the rCRB invariant to the 

number of measurements so that it describes the noise efficiency per unit time. In absolute 

numbers, the noise in the resulting parameter estimations is given by

σT1, 2
≥

σ ⋅ T1, 2

M0
rCRB T1, 2

TR

Texp
. (6)

Note that the simulations published in Ref. 13 indicate that the actual noise in the estimated 

parameters is close to this bound. Without loss of generality, we assume M0 = 1 for all 

theoretical considerations.

Given that ϑ is the effective drive of the spin dynamics,13 we optimized ϑ directly and 

picked the sequence parameter (α, TR, ϕ) retrospectively (cf. Equation (2)). Equation (1) is 

an uncoupled first order differential equation and can be solved for different boundary 

conditions.13 Here, we focus on inversion-recovery balanced hybrid-state free precession 

(IR-bHSFP) sequences, i.e., hybrid-state sequences that depart from thermal equilibrium by 

the application of an inversion pulse, which is accounted for by the boundary condition r(0) 

= −1.

We used a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm28 with rCRB(T1), 

rCRB(T2) and rCRB(T1) + rCRB(T2) as objective functions. The numerical optimization 

was based on (nTR) with the repetition time of TR = 4.5 ms and with n ∈ {1, 2, …, Nt}. The 

derivatives in Equation (3) were calculated analytically, as was the gradient of the objective 

function with respect to each (nTR).

Since the rCRB intrinsically compares a fingerprint to its neighborhood in the parameter 

space, only a single set of relaxation times was used for the optimization. In particular, we 

used the relaxation times T1 = 781 ms and T2 = 65 ms, which correspond to values reported 

for white matter1 at 3T. All optimizations were initialized with the pattern provided in Ref. 

11.

We performed the above optimizations of IR-bHSFP sequence that exploit the full quadrant 

of the Bloch sphere (0 ≤ ϑ ≤ π/2), and repeated the same optimizations with 0 ≤ ϑ ≤ π/4 in 

order to limit the flip angle to α ≤ π/2, ensuring consistent slice profiles by virtue of the 

linearity in the small tip-angle approximation,29 and aiding compliance with safety 

considerations by avoiding high power large flip-angle pulses. For comparison, we also 

performed unconstrained optimizations of Look-Locker30 and multi-spin-echo experiments.

2.3 | In vivo experiments

An asymptomatic volunteer’s brain was imaged following written informed consent, and 

according to a protocol approved by our institutional review board. Measurements were 

performed with the IR-bHSFP sequences that minimize rCRB(T1), rCRB(T2) and rCRB(T1) 

+ rCRB(T2), limited to 0 ≤ ϑ ≤ π/4. All experiments were performed on a 3T Prisma 
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scanner (Siemens, Erlangen, Germany). The 44 head elements of the manufacturer’s 64 

channel head/neck coil were used for signal reception. At the beginning of the sequence, a 

secant inversion pulse31 with a duration of 10.24ms was applied, followed by a spoiler 

gradient. The other RF-pulses were implemented as slice-selective sinc pulses with a time-

bandwidth product of two and a duration of 1 ms.

Spatial encoding was performed with a radial trajectory and a golden angle increment.32 The 

spatial resolution of the maps is 1 mm × 1 mm × 3 mm at a FOV of 256 mm × 256 mm × 3 

mm. The readout dwell time was set to 2.4 μs and an oversampling factor of 2 was applied. 

The total scan time of each sequence was approximately 3.8 s. In order to allow for a noise-

analysis, we repeated the scan with each of the three sequences 49 times, separated by a 10 s 

pause in order to allow the magnetization to relax to thermal equilibrium. The k-space 

trajectory of consecutive scans were rotated by the tiny golden angle33 φtGA ≈ 32.04°.

The raw data were compressed to eight virtual receive coils via SVD compression.34 

Thereafter, image reconstruction was performed with the low rank alternating direction 

method of multipliers35,36 (ADMM) approach proposed in Ref. 37. A rank 6 subspace was 

estimated from a coarse dictionary38 that was computed with Equations (1) and (2) and 

covered the range of T1 values between 300 ms and 6 s and T2 values in the range of 10 ms 

and 3 s, both in logarithmic steps of 10%. The data consistency step of the ADMM 

algorithm was performed with 20 conjugate gradient steps.

In the second step, the relaxation times were estimated with a nonlinear least-squared fit 

directly on the data in this low-rank sub-space. The fitting algorithm accounts for the slice 

profile and finite pulse duration39 by approximating the profile by 12 isochromats, evenly 

distributed over the range with signal larger than 0.5% of the maximum value. For each of 

these isochromats, we calculated ϑ(t) with Bloch- simulations and retrospectively 

discretized this function to steps of 50 μs. This pre-calculated ϑ(t) was then plugged into the 

hybrid-state simulation based on Equation (1). Further, we correct for B0 and B1 based on 

separate scans with a double-echo SPGR and a turboFLASH40 sequence, respectively. In 

order to prevent nonlinear effects from complicating the noise assessment, only a single 

ADMM iteration was performed and no spatial regularization was applied.

3 | RESULTS

3.1 | Spin dynamics on the Bloch sphere

Figure 2 depicts the hybrid-state spin ensemble trajectories and the corresponding driving 

functions ϑ(t) that were numerically optimized for T1 and/or T2 encoding. Some features are 

shared by all patterns, while others differ depending on the figure of merit. In the paragraphs 

that follow, the common features are described first, followed by the optimization-specific 

features.

All patterns are comparatively smooth, which is not explicitly enforced by the optimization. 

They start with a nonrecurring inversion segment on the southern hemisphere, followed by 

repetitive loops on the northern hemisphere. The beginning of the first loop differs slightly 

from that of the other loops, which can be explained by the initial conditions of the loop. At 
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the time when the magnetization crosses the origin (turquoise segments in Figure 2), the 

derivatives with respect to the relaxation times are comparatively large. Furthermore, the 

derivative with respect to T2 has not yet changed its sign. These two properties make this 

segment a valuable asset to help minimize the correlation between the derivatives with 

respect to the two relaxation times. As a consequence, the optimized trajectories have a 

comparatively large polar angle in this segment. In contrast, the subsequent loops start with a 

segment in which the magnetization recovers along the z-axis, reflecting small and 

correlated derivatives.

Another common feature of all trajectories is that the polar angle decreases rapidly when the 

shrinking magnetization reaches the steady-state ellipse (magnifications in Figure 2A, D, G, 

J, M, P). The arrival at the steady-state ellipse (blue ellipse in Figure 2) also concludes the 

last loop in the T2-specific and in the jointly optimized patterns so that they take advantage 

of the T2-dominated shrinkage of the magnetization (D, G, M, P). By contrast, the T1-

specific trajectories (A, J) conclude by maximizing r and dr∕dT1 and then briefly bringing the 

prepared magnetization close to the equator in order to maximize the signal.

Taking a closer look at the T1-optimized hybrid-state pattern, we observe that the spin 

trajectory stays close to the z-axis on the southern hemisphere and close to the origin on the 

northern hemisphere (Figure 2A), which is exactly the behavior we expect from the intuitive 

understanding of the derivatives (Section 2.1). In fact, the numerical optimization suggests 

that it is beneficial to forgo any signal at the beginning of the sequence (dark blue segment) 

in favor of an information-rich signal thereafter. Comparing the unconstrained optimization 

(0 ≤ ϑ ≤ π/2) with the constrained one (0 ≤ ϑ ≤ π/4), we find that the spin trajectory 

remains virtually unaffected on the southern hemisphere (Figure 2J–L). On the northern 

hemisphere, however, the unconstrained pattern exploits the maximum polar angle of π/2 to 

quickly kill the magnetization and create a sort of saturation- recovery loop. When the polar 

angle is constrained, on the other hand, the magnetization shrinks more slowly and, 

consequently, fewer loops can be performed in the same amount of time.

When a hybrid-state sequence is optimized purely for T2 encoding without constraining the 

polar angle, the magnetization first decays along the equator (Figure 2D), which is in 

agreement with the intuitive understanding described in Section 2.1. As r approaches zero, 

its derivatives with respect to the relaxation times become small as well and the spins follow 

a trajectory along the z-axis (bright blue segment). Thereafter, the spins follow large loops 

that probe the spin dynamics far from the z-axis where the derivative d2|r|∕(dtdT2) is large 

(cf. Figure 1C). Surprisingly, the optimization does not result in further segments with ϑ = 

π/2. Instead, the trajectory traverses this value only briefly as the magnetization approaches 

the origin, before dropping to ϑ = 0. Limiting the polar angle to 0 ≤ ϑ ≤ π/4 distorts the spin 

trajectory and the maximum value ϑ = π/4 is exploited during several segments (M, N).

After the inversion pulse, the trajectory of the combined optimization oscillates between 

large and small ϑ-values. The corresponding derivatives of the magnetization have peaks 

that are shifted with respect to one another (Figure 2G–I). The size of the loops lies in 

between the ones of the T1- and T2-optimized trajectories. When the polar angle is limited to 

0 ≤ ϑ ≤ π/4, the spin trajectory is distorted in a similar way as for the T2-optimized case.
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The hybrid-state equation of spin motion (Equation (1)) can be written in a dimensionless 

form (Equation S1 in the supporting information), which highlights the fact that only the 

ratios Texp∕T2 and T1∕T2 of the involved time constants affect the hybrid-state spin 

trajectories. Varying Texp∕T2 in the joint optimization results in different trade-offs between 

the inversion phase and the repetitive loops (see Supporting Information Figure S1). Short 

sequences (Texp ≈ T2) require a T2-optimized inversion phase similar to Figure 2M since the 

temporal constraints allow only for small, T1-dominated loops. Increasing the sequence 

duration allows for larger loops so that the optimized inversion phase increasingly trades T2 

for T1 encoding (cf. Figure 2P). Long sequences (Texp ≫ T2) use a T1-optimized inversion-

recovery segment (cf. Figure 2J) followed by a combination of large loops, which 

predominantly encode T2, and smaller loops, which provide additional T1 encoding 

(Supporting Information Figure S1). In this limit, the shape of the loops changes little when 

varying Texp and—considering the non-convexity of the optimization landscape—we can 

cautiously conclude that a combination of these two loops is superior to other loops, given 

the particular set of relaxation times.

Supporting Information Figure S2 analyzes the effect of T1∕T2 variations on the spin 

ensemble trajectory and demonstrates that the optimized loop size decreases as the ratio 

between T1 and T2 increases. Large T1 values limit how much the magnetization can grow 

within a given time. Therefore, the optimized ϑ-pattern spends most of the time for this 

recovery and the resulting loop size is small. One can further observe that the optimization 

of rCRB(T1) + rCRB(T2) results in different trade-offs between T1 and T2 encoding at 

different T1∕T2 ratios (Figure S2C). At intermediate ratios, the algorithm slightly favors the 

T1-encoding, which is reflected both in the Cramér-Rao bound and in the corresponding spin 

ensemble trajectory, as evident by the inversion-recovery segment. Both at small and large 

ratios, the individual Cramér-Rao bounds are similar.

3.2 | The Cramér-Rao bound

This section analyzes the SNR-efficiency of different optimized spin ensemble trajectories. 

Examining rCRB(T1), we can observe that the purely T1-optimized trajectories shine most at 

short experiment durations Texp (Figure 3A).As the duration increases, the advantage of the 

T1-optimized trajectories over the joint optimizations starts to vanish. At Texp = 3.8 s, which 

is used for the in vivo experiments, we expect only a minor advantage of the T1-optimized 

sequence in comparison to the joint optimization. In contrast, the T2-optimized sequence 

shows a poor T1-encoding power. Furthermore, we can see that the limit ϑ ≤ π/4 compared 

to ϑ ≤ π/2 has only minor effects on the T1 and joint optimizations (light colored vs. dark 

colored marks in Figure 3). For comparison, we also show the Cramér-Rao bound of an 

optimized Look-Locker sequence30 in which we also allowed the flip angle to vary over 

time. One can observe a substantially worse performance compared to the hybrid state, even 

if one is interested only in T1.

Examining rCRB(T2), we also find the difference of the purely T2-optimized and the jointly 

optimized sequences to be rather small (Figure 3B), especially when limiting the polar angle 

to π/4. The T1-optimized patterns, on the other hand, show a poor T2-encoding. For 

comparison, we also depict the Cramér-Rao bound of a multi-spin-echo sequence. For short 
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experiments, this sequence has the same rCRB(T2) as the hybrid-state sequence that was 

optimized for T2 without constraining ϑ. In fact, in this limit, both optimizations result in 

the same sequences (not shown here). For long experiments, however, the performance of 

the multi spin-echo sequence does degrade and the more general hybrid state allows for 

more efficient sequence design.

Overall, we can observe that the rCRB has a minimum at Texp ≈ T1. For longer Texp, the 

Cramér-Rao bound asymptotically approaches a constant value, which corresponds to the 

standard averaging property SNR ∝ Texp of Gaussian noise. This is in line with the 

optimized spin trajectories in the limit of long Texp, where a change in Texp results in 

negligible changes in the shapes of the loops, instead merely adding averages over the same 

loop.

So far, the Cramér-Rao bound was analyzed only at the specific T1 = 781 ms and T2 = 65 ms 

that were used for the optimization. Figure 4 shows the performance of sequences optimized 

for these particular relaxation times over the range of T1 and T2 values commonly found in 

biological tissue. We found that optimizing for a single set of relaxation times does not 

merely result in good performance in the proximity of this set of parameters (visualized by 

the red dot), but over a large area in the T1-T2-space. In fact, the lowest Cramér-Rao bound 

is located at relaxation times different from those used during the optimization.

3.3 | Correlation coefficients

In order to relate the Cramér-Rao bound analysis in Figure 4 to the matching procedures 

commonly used in MRF, we calculated the correlation coefficient β between the dictionary 

atoms. Figure 5 depicts the correlation between the fingerprint corresponding T1 = 781 ms 

and T2 = 65 ms (red square) and the other fingerprints in the dictionary. These results are in 

good agreement with the rCRB plots shown in Figure 4. Optimizing for a single relaxation 

time results in a comparably narrow peak of high correlation coefficients in the optimized 

dimension and a broad peak along the other dimension. The broadest peak is observed along 

T2 in the T1-optimized sequence, which is in agreement with the Cramér-Rao bound 

analysis (Figure 4). The joint optimization results in narrow peaks along both dimensions 

and confirms that adding a second relaxation time to the optimization has a very small 

penalty on the original relaxation time.

Figure 6 shows maximum intensity projections of the full correlation matrix among all 

fingerprints in the dictionary. These projections can be understood as the worst case 

correlations for a single parameter under consideration of all values of the other parameter. 

The generally larger rCRB(T2) compared to rCRB(T1) (cf. Figure 4) is reflected by the 

correlation coefficients. These findings confirm that the joint optimization results in 

encoding power that is comparable to respective specialized sequences. Further, the least 

precise encoding is along T2 when using the T1-optimized sequence, as already found in the 

Cramér-Rao bound analysis.
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3.4 | In vivo experiments

Figure 7 depicts quantitative in vivo maps acquired with the patterns shown in Figure 2K, N, 

Q. The total scan time of each experiment was 3.8 s. Systematic deviations can be noted in 

the measured relaxation times between the three sequences. This becomes even more evident 

when averaging the relaxation times over 49 experiments (Figure 8). Compared to literature 

(Table 1), we can observe a mild under-estimation of T1, and T2-values that are less than 

half of the relaxation times of ex vivo mouse samples, measured with an extensive protocol 

that does not have the time-, hardware-, and safety-related limitations we have for in vivo 

imaging. This underestimation is slightly less pronounced when using the T2-optimized 

sequence.

Figure 9 verifies the noise properties predicted by the Cramér-Rao bound (Figure 4). As 

anticipated, the purely T1-optimized pattern has superior noise performance in T1, most 

notably in gray matter. This agrees with Figure 4A, which reveals a lower Cramér-Rao 

bound for longer relaxation times, as typically found for gray matter in comparison to white 

matter. The predicted poor T2-encoding of the T1-optimized sequence is also reflected in a 

low T2/σT2
, especially in white matter (Figure 9D). We find a higher T2/σT2

 in gray matter, 

which is also in good agreement with the Cramér-Rao bound (Figure 4D). As predicted, the 

purely T2-optimized and the jointly optimized sequences have very similar noise 

performance, with a slightly higher T1/σT1
 in the jointly optimized sequence (Figure 9B vs. 

C) and a slightly higher T2/σT2
 in the T2-optimized sequence (Figure 9E vs. F).

4 | DISCUSSION

Steady-state free precession sequences15 are known for their superior signal-to-noise 

efficiency. However, in first approximation, they only allow for a T1∕T2 contrast, limiting 

their clinical versatility. In the context of quantitative MRI, it has been suggested to 

disentangle T1 and T2 information with a second measurement using an SPGR sequence,4 or 

by exploiting deviations from this first order approximation.42 The latter approach requires 

deviating from the on-resonance condition (ϕ = π) and driving the magnetization into the 

stop band (i.e., the banding artifact). In the stop band, the spin-echo-like nature of the bSSFP 

sequence breaks down,27 which introduces a sensitivity to the Larmor frequency distribution 

and can result in systematic errors in the presence of multiple spectral peaks.43,44 Driving 

the magnetization’s magnitude into a transient state, on the other hand, enables efficient 

encoding of T1 and T2 on resonance.6,13 When the direction of the magnetization is 

maintained in a steady state, the spin-echo-like nature of the bSSFP sequence is preserved, 

and the signal response becomes comparatively robust to the frequency distribution.13

The hybrid state constitutes a large sequence design space, and the main purpose of this 

paper is to shed some light on the optimal encoding of spin relaxation times in this space. 

The adiabatic behavior of the magnetization’s direction traps the spin dynamics in a single 

dimension. This reduces the equation of spin motion to a single, uncoupled first order 

differential equation (Equation (1)), which may be conveniently visualized (Figure 1). 

Insights gleaned from an intuitive understanding of the governing equation were found to 

align well with numerical optimizations (Figure 2). Numerically searching for the optimal 
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spin trajectories is a non-convex problem, so we can only speculate about the optimality of 

our results. However, the notable correspondence to the intuitive understanding of the 

governing differential equation, together with the number of reproducible features in the 

optimized trajectories, gives us confidence that the obtained numerical results are closely 

related to the truly optimal trajectories.

The Cramér-Rao bound was used as figure of merit since it provides a universal lower bound 

for the noise transfer from a time series to the estimated parameters. It also provides the 

flexibility to tailor the acquisition to, e.g., encode T1 while accounting for correlations in T2-

space. Within the limits of this analysis—most notably our neglect of the incomplete spatial 

encoding and the non-convexity of the optimization problems—we showed that the hybrid 

state has superior SNR properties compared to traditional methods, namely Look-Locker for 

T1-encoding and multi-spin-echo sequences for T2-encoding. Moreover, we found that the 

joint optimizations have nearly the same performance in encoding each relaxation time 

compared to hybrid-state sequences that are specialized to encode a single parameter. Thus, 

the second relaxation time can be measured at virtually no extra cost.

The rCRB has a minimum around Texp ≈ T1. For a 2D multi-slice experiment, this suggests 

that one should use this optimal value and interleave multiple acquisitions of each slice. 

However, such short Texp requires the repetition of power-consuming slice-selective 

inversion pulses that could exceed the overall SAR limit. Therefore, we used Texp ≈ 3.8 s as 

a compromise that allows for single-inversion imaging of a single slice with 1mm in-plane 

resolution.

Here, we optimized the sequences only for a single set of relaxation times, which correspond 

to values typical for white matter. However, we found that the resulting optimized sequences 

perform well over a large range of relaxation times. To extend this property further, one 

could optimize for the sum of the Cramér-Rao bounds at different relaxation times. Another 

option could be to minimize the maximum Cramér-Rao bound of multiple parameters and 

multiple parameter values. However, the non-linearity of such norms might impair the 

convergence of the optimization.

Our least-constrained optimizations used the limits −1 ≤ r(t) ≤ 1 and 0 ≤ ϑ(t) ≤ π/2. This 

unusual definition of spherical coordinates was chosen to deliberately prohibit magnetization 

from revisiting the southern hemisphere after passing through the origin. This allows us to 

implement the RF-pulses without major violations of the small tip-angle approximation. 

However, we demonstrated the benefits of the southern hemisphere and for long experiments 

as might be required, e.g., for 3D imaging, it might be desirable to revisit the southern 

hemisphere. This could be achieved by simply changing the limits to 0 ≤ r(t) ≤ 1 and 0 ≤ 

ϑ(t) ≤ π. However, this would change the optimization landscape, and the convergence 

behavior might be impaired. Alternatively, one could use anti-periodic boundary conditions, 

as demonstrated in Ref. 13.

The primary purpose of the present work was to analyze the noise properties of hybrid-state 

sequences when quantifying relaxation times. Even though we correct for B0 and B1
+

inhomogeneities, as well as the slice profile and the finite duration of the RF-pulses, we 
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found substantial systematic errors in the relaxation times measured in vivo (Figures 7 and 

8), whereas, in previous work, we demonstrated good agreement between hybrid-state and 

gold standard measurements in a phantom.13 It is known that the Bloch equation applies 

well to uniform liquids, but is an over-simplification of signal acquired in biological tissue 

as it neglects diffusion-mediated dephasing and magnetization transfer effects, among 

others.41,45–49 Since the hybrid-state model was derived from the standard Bloch equation, it 

inherits this oversimplification, and we believe this to be the predominant cause for the 

systematic deviations from literature values.

Simultaneously avoiding diffusion-mediated dephasing and magnetization transfer is a key 

challenge for in vivo relaxometry. The decay of the transverse magnetization occurs on two 

distinct scales.48 At the molecular level, the intrinsic T2-relaxation originates from 

molecular rotations with a correlation time on the order of nanoseconds.50,51 The cellular 

scale, present in biological tissues, provides a different relaxation mechanism, where spins 

diffuse through susceptibility-induced magnetic fields varying on the scale of ∼1-10 μm, 

causing temporal field fluctuations with a correlation time of ∼1-100 ms, depending on the 

tissue composition.45–48 This loss of coherence can be partially undone by applying 

refocusing pulses. Since the timing of standard MR pulse sequences is exactly in this range, 

the overall T2-relaxation crucially depends on the specifics of the sequence. Thus, measuring 

the intrinsic, molecular T2 in vivo requires employing refocusing pulses with echo-spacing 

shorter than the corresponding correlation time. Depending on the tissue, standard CPMG52 

and bSSFP sequences,15,27 as well as balanced hybrid-state sequences13 approximate this 

requirement well. Therefore, we believe diffusion-mediated dephasing to be negligible in the 

hybrid-state. However, the repeated refocusing in any of those sequences requires a high 

duty cycle of the RF-pulses. In biological tissue, this saturates the magnetization of protons 

bound in macro-molecules, which are found in myelin, cell membranes, etc.53,54 Therefore, 

apart from some very time-consuming methods,41,49 most standard methods for measuring 

relaxation times are corrupted by cross-relaxation between the macro-molecular and the free 

water pool. We attribute the systematic errors observed here (Figure 8) to this effect, similar 

to Ref. 55. Note that the hybrid state model can be extended to include magnetization 

transfer,56 and our preliminary data indicate that such a model describes the spin dynamics 

in good agreement with literature.

5 | CONCLUSION

The goal of this paper was to provide insights into optimized encoding of spin relaxation 

times in order to guide the design of robust and efficient pulse sequences. We reviewed how 

the Bloch equation can be simplified under the hybrid-state adiabaticity condition and 

demonstrated the intuition that can be gained from this simplification. Further, we showed 

that numerical optimizations of hybrid-state sequences reproducibly converge to spin 

trajectories that align well with intuitive understanding. We analyzed the SNR efficiency of 

the optimized hybrid-state sequences, demonstrated superior efficiency in comparison to 

traditional methods, and highlighted the good agreement between theoretical Cramér-Rao 

bounds and experimentally-observed noise properties. Future work will translate the insights 

gained in this work to hybrid-state models that include more complex phenomena, such as 
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magnetization transfer, which we consider central for fast and reproducible quantification of 

tissue properties.
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FIGURE 1. 
Equation (1) describes the spin dynamics and is visualized in (A). The white area indicates 

the steady-state ellipse which separates the area in which the magnetization grows (red) and 

shrinks (blue). This particular sub-figure is valid for the ratio T1∕T2 = 781 ms∕65 ms ≈ 12, 

which are values reported for brain white matter.1 The derivatives of Equation (1) with 

respect to T1 and T2 are depicted in (B) and (C), respectively. These plots are normalized by 

the respective relaxation times and are, therefore, valid for any combination of T1 and T2
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FIGURE 2. 
The spin dynamics in inversion recovery balanced hybrid-state free precession (IR-bHSFP) 

sequences are depicted on Bloch-spheres (A, D, G, J, M, and P). The polar angle patterns are 

shown in (B, E, H, K, N, and Q), with the color scale providing a reference for the 

trajectories on the Bloch-sphere. The absolute value of the magnetization (with a negative 

sign indicating the southern hemisphere) and its normalized derivatives with respect to the 

relaxation times are the foundation of the relative Cramér-Rao bound and are shown in (C, F, 

I, L, O, and R). The optimizations depicted in the left-hand column are limited to 0 ≤ ϑ ≤ 

π/2, while the right-hand column shows the same optimizations with the limit 0 ≤ ϑ ≤ π/4
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FIGURE 3. 
The depicted relative Cramér-Rao bounds are defined by Equations (4) and (5) and can be 

understood as a lower bound of the squared inverse SNR efficiency per unit time. They 

result from numerical optimization for rCRB(T1), rCRB(T2), and rCRB(T1) + rCRB(T2), 

while limiting the polar angle to 0 ≤ ϑ ≤ π/2 (lightly colored markers) and 0 ≤ ϑ ≤ π/4 (dark 

colored markers), respectively
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FIGURE 4. 
The performance of IR-bHSFP sequences optimized with 0 ≤ ϑ ≤ π/4 (Figure 2J–R) is 

illustrated through plots of the relative Cramér-Rao bounds, which provide a lower bound 

for the noise in the estimated relaxation times. All patterns were optimized for T1 = 781 ms 

and T2 = 65 ms, as indicated by the red square, and were tested for the entire parameter 

space in a sample MRF dictionary. Note the logarithmic scale in all three dimensions
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FIGURE 5. 
The performance of IR-bHSFP optimized with 0 ≤ ϑ ≤ π/4 (Figure 2J–R) is illustrated 

through plots of the correlation of the fingerprint using the optimization parameters T1 = 781 

ms and T2 = 65 ms (red square) with the rest of the parameter space
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FIGURE 6. 
The performance of IR-bHSFP optimized with 0 ≤ ϑ ≤ π/4 (Figure 2J–R) is depicted 

through plots of the correlation coefficient. The correlation matrix was calculated for the 

entire parameter space. Thereafter, a maximum intensity projection was performed along the 

T2 (A-D) and the T1-dimension (E-H), respectively. The result can be understood as the 

worst case correlations for a single parameter under consideration of all values of the other 

parameter. The red lines indicates the set of parameters used for optimizing the patterns
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FIGURE 7. 
The in vivo data were acquired with the excitation patterns depicted in Figure 2K, N, and Q 

with the limit 0 ≤ ϑ ≤ π/4. The parameter maps have an in-plane resolution of 1 mm and 

were acquired in 3.8 s. Note the logarithmic scale of the T1 and T2 color maps
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FIGURE 8. 
The parameter maps are the average of 49 measurements like the one shown in Figure 7, 

each acquired in 3.8 s with a 10 s pause in between. Note the logarithmic scale of the T1 and 

T2 color maps. The red rectangles indicate the regions of interest used for calculating the 

values in Table 1
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FIGURE 9. 
In order to verify the theoretically derived noise properties, we depict the mean relaxation 

times divided by the standard deviation over the 49 consecutive experiments. This metric 

provides an analog to the signal-to-noise ratio. The upper limit of this metric is directly 

proportional to the square root of the inverse rCRB(T1,2)
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