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Optimized Query Forgery for Private
Information Retrieval

David Rebollo-Monedero and Jordi Forné

Abstract—We present a mathematical formulation for the opti-
mization of query forgery for private information retrieval, in the
sense that the privacy risk is minimized for a given traffic and
processing overhead. The privacy risk is measured as an infor-
mation-theoretic divergence between the user’s query distribution
and the population’s, which includes the entropy of the user’s dis-
tribution as a special case. We carefully justify and interpret our
privacy criterion from diverse perspectives. Our formulation poses
a mathematically tractable problem that bears substantial resem-
blance with rate-distortion theory.

Index Terms—Entropy, Kullback–Leibler divergence, privacy
risk, private information retrieval, query forgery.

I. INTRODUCTION

I N August of 2006, AOL Research released a text file
intended for research purposes containing twenty mil-

lion search keywords from more than 650 000 users over
a three-month period. Occasionally, the queries submitted
by those users contained personally identifiable information
written by themselves such as name, address or social security
number. In addition, records corresponding to a common
user were linked to a unique sequential key in the released
file, which made the risk of cross referencing even higher,
thereby seriously compromising the privacy of those users. In
September of the same year, the scandal lead to a class action
lawsuit filed against AOL in the U.S. District Court for the
Northern District of California.

The relevance of user privacy is stressed in numerous exam-
ples in the literature of information retrieval. These examples
include not only the risk of user profiling by an Internet search
engine, but also by location-based service (LBS) providers, or
even corporate profiling by patent and stock market database
providers.

A. State of the Art in Private Information Retrieval

The literature on information retrieval also provides nu-
merous of solutions to user privacy [1]. We would like to touch
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Fig. 1. Anonymous access to an LBS provider through a TTP.

upon some of these solutions, often extensible to scenarios
other than the ones they were intended for. Please bear in
mind that, throughout the paper, we shall use the term private
information retrieval in its widest sense, not only to refer to
the particular class of cryptographically-based methods usually
connected with the acronym PIR. In any case, such particular
class of methods will be briefly discussed later in this section.
While keeping a general perspective on the main large classes
of existing solutions for private information retrieval, in order
to make our exposition more concrete, we occasionally relate
these solutions to the specific application scenario of LBSs,
even though most ideas are immediately extensible to Internet
search. Recent surveys with a greater focus on anonymous
Internet search include [2], [3].

One of the conceptually simplest approaches to anonymous
information retrieval consists in including a trusted third party
(TTP) acting as an intermediary between the user and the infor-
mation service provider, which effectively hides the identity of
the user. In the particularly rich, important example of LBSs, the
simplest form of interaction between a user and an information
provider involves a direct message from the former to the latter
including a query and the location to which the query refers. An
example would be the query “Where is the nearest bank?”, ac-
companied by the geographic coordinates of the user’s current
location. In this case, the TTP-based solution, depicted in Fig. 1,
would preserve user privacy in terms of both queries and loca-
tions. An appealing twist that does not require that the TTP be
online is that of pseudonymizing digital credentials [4]–[6].

Additional solutions have been proposed, especially in the
special case of LBSs, many of them based on an intelligent per-
turbation of the user coordinates submitted to the provider [7],
which, naturally, may lead to an inaccurate answer. The prin-
ciple behind TTP-free perturbative methods for privacy in LBSs
is represented in Fig. 2. Essentially, users may contact an un-
trusted LBS provider directly, perturbing their location informa-
tion in order to hinder providers in their efforts to compromise
user privacy in terms of location, although clearly not in terms of
query contents and activity. This approach, sometimes referred
to as obfuscation, presents the inherent trade-off between data
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Fig. 2. Users may contact an untrusted LBS provider directly, perturbing their
location information to help protect their privacy.

Fig. 3. Communication between a set of users and an untrusted provider
without using a TTP.

utility and privacy common to any perturbative privacy method.

Fig. 3 is a conceptual depiction of TTP-free methods relying
on the collaboration between multiple users, in the special case
of LBSs. A proposal based on this collaborative principle con-
siders groups of users that know each other’s locations but trust
each other, who essentially achieve anonymity by sending to the
LBS provider a spatial cloaking region covering the entire group
[8]. An effort towards -anonymous [9], [10] LBSs, this time not
assuming that collaborating users necessarily trust each other, is
[11], [12]. Fundamentally, users add zero-mean random noise
to their locations and share the result to compute the average,
which constitutes a shared perturbed location sent to the LBS
provider.

Alternatively, cryptographic methods for private information
retrieval (PIR) enable a user to privately retrieve the contents
of a database, indexed by a memory address sent by the user, in
the sense that it is not feasible for the database provider to ascer-
tain which of the entries was retrieved [13], [14]. Unfortunately,
these methods require the provider’s cooperation in the privacy
protocol, are limited to a certain extent to query-response func-
tions in the form of a finite lookup table of precomputed an-
swers, and are burdened with a significant computational over-
head.

An approach to preserve user privacy to a certain extent, at the
cost of traffic and processing overhead, which does not require
that the user trust the service provider nor the network, consists
in accompanying original queries with bogus queries. Building
on this simple principle, several PIR protocols, mainly heuristic,
have been proposed and implemented, with various degrees of
sophistication [2], [15], [16]. An illustrative example for LBSs
is [17]. Query forgery appears also as a component of other pri-
vacy protocols, such as the private location-based information
retrieval protocol via user collaboration in [18], [19]. Simple,
heuristic implementations in the form of add-ons for popular
browsers have begun to appear recently [20], [21]. In addition
to legal implications, there are a number of technical consider-
ations regarding bogus traffic generation for privacy [22], as at-
tackers may analyze not only contents but also activity, timing,

routing or any transmission protocol parameters, jointly across
several queries or even across diverse information services. In
addition, automated query generation is naturally bound to be
frowned upon by network and information providers, thus any
practical framework must take into account query overhead.

B. Contribution and Organization of the Paper

A patent issue regarding query forgery is the trade-off be-
tween user privacy on the one hand, and cost in terms of traffic
and processing overhead on the other. The object of this paper
is to investigate this trade-off in a mathematically systematic
fashion. More specifically, we present a mathematical formula-
tion of optimal query forgery for private information retrieval.
We propose an information-theoretic criterion to measure the
privacy risk, namely a divergence between the user’s and the
population’s query distributions, which includes the entropy of
the user’s distribution as a special case, and which we carefully
interpret and justify from diverse perspectives. Our formulation
poses a mathematically tractable problem that bears substantial
resemblance with rate-distortion theory.

Section II presents an information-theoretic formulation of
the compromise between privacy and redundancy in query
forgery for private information retrieval. The privacy criterion
proposed is justified and interpreted essentially in Section III.
Section IV contains a detailed theoretical analysis of the
optimization problem characterizing the privacy-redundancy
trade-off, illustrated by means of simple, conceptual examples
in Section V. Conclusions are drawn in Section VI.

II. FORMAL PROBLEM STATEMENT

We model user queries as random variables on a common
measurable space. In practice, rather than specific, complete
queries, these random variables may actually represent query
categories or topics, individual keywords in a small indexable
set, or parts of queries such as coordinates sent to an LBS
provider. A sequence of related queries may be modeled as a
single multivariate random variable, in order to capture any
existing statistical dependence and, in this way, hinder privacy
attackers in their efforts to exploit spacial and temporal cor-
relations. Alternatively, conditional probability distributions
given previous values of statistically dependent queries may be
contemplated.

To avoid certain mathematical technicalities, we shall assume
that the query alphabet is finite, for example given by finite dis-
cretizations of continuous probability distributions, suitable for
numerical computation. Having assumed that the alphabet is fi-
nite, we may suppose further, although this time without loss of
generality, that queries take on values in the set for
some , even in the case of multivariate queries.

Accordingly, define as the probability distribution of the
population’s queries, as the distribution of the authentic
queries of a particular user, and as the distribution of the
user’s forged queries, all on the same query alphabet. Whenever
the user’s distribution differs from the population’s, a privacy
attacker will have actually gained some information about the
user, in contrast to the statistics of the general population.
Inspired by the measures of privacy proposed in [23]–[26], we
define the initial privacy risk as the Kullback–Leibler (KL)
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divergence [27] D between the user’s and the population’s
distributions, that is

Section III below is devoted to the interpretation and justifica-
tion of this privacy criterion.

Define as the query redundancy, measured as
the ratio of forged queries to total queries. The user’s apparent
query distribution is the convex combination ,
which, for brevity, we shall occasionally denote by . Accord-
ingly, we define the (final) privacy risk as the divergence be-
tween the apparent distribution and the population’s

Suppose that the population is large enough to neglect the im-
pact of the choice of on . Consistently, we define the pri-
vacy-redundancy function

(1)

which characterizes the optimal trade-off between query privacy
(risk) and redundancy. We would like to remark that the opti-
mization problem inherent in this definition involves a lower
bounded, lower semicontinuous function over a compact set,
namely the probability simplex to which belongs. Hence, we
are justified in using the term minimum rather than infimum. On
a side note, analogous theoretical results can be developed for
an alternative definition of privacy risk, given by the inversion
of the two arguments of the KL divergence.

From a practical perspective, while a user wishing to solve
the optimization problem formulated may be able to easily keep
track of its own query distribution , estimating the popula-
tion’s query distribution may be trickier, unless the informa-
tion provider is willing to collect and share reliable aggregated
data, as Google Insights [28], for instance, intends. Section III-A
will elaborate on the alternative of measuring privacy risk as an
entropy, for which only the knowledge of is required, and will
argue that this is formally a special case of our general diver-
gence measure; precisely, when is (assumed to be) the uniform
distribution.

For simplicity, we use natural logarithms throughout the
paper, particularly because all bases produce equivalent opti-
mization objectives.

III. KL DIVERGENCE AS A MEASURE OF PRIVACY RISK

Before analyzing the theoretical properties of the privacy-re-
dundancy function (1), defined as an optimization problem in
the previous section, we would like to interpret and justify our
choice of KL divergence as a privacy criterion, mainly inspired
by [23]. In this section, we shall emphasize what we find to be
the essential interpretations of our privacy criterion.

In spite of its information-theoretic appeal and mathematical
tractability, we must acknowledge that the adequacy of our for-
mulation relies on the appropriateness of the criteria optimized,
which in turn depends on the specific application, on the query
statistics of the users, on the actual network and processing over-
head incurred by introducing forged queries, and last but not

least, on the adversarial model and the mechanisms against pri-
vacy contemplated. The interpretations and justifications that
follow are merely intended to aid users and system designers
in their assessment of the suitability of our proposal to a spe-
cific information-retrieval application.

We would like to stress as well that the use of an informa-
tion-theoretic quantity for privacy assessment is by no means
new, as the work by Shannon in 1949 [29] already introduced
the concept of equivocation as the conditional entropy of a pri-
vate message given an observed cryptogram, later used in the
formulation of the problem of the wiretap channel [30], [31]
as a measure of confidentiality. We can also trace back to the
fifties the information-theoretic interpretation of the divergence
between a prior and a posterior distribution, named (average)
information gain in some statistical fields [32], [33]. More re-
cent work reaffirms the applicability of the concept of entropy
as a measure of privacy. For example, [26] (see also [34]) is one
of the earliest proposals for measuring the degree of anonymity
observable by an attacker as the entropy of the probability dis-
tribution of possible senders of a given message.

A. Entropy Maximization

Our first interpretation arises from the fact that Shannon’s
entropy may be regarded as a special case of KL divergence.
Precisely, let denote the uniform distribution on ,
that is, . In the special case when , the privacy
risk becomes

In other words, minimizing the KL divergence is equivalent to
maximizing the entropy of the user’s apparent query distribution

Accordingly, rather than using the measure of privacy risk rep-
resented by the KL divergence, relative to the population’s dis-
tribution, we would use the entropy as an
absolute measure of privacy gain.

This observation enables us to connect, at least partly, our
privacy criterion with the rationale behind maximum-entropy
methods, an involved topic not without controversy, which arose
in statistical mechanics [35], [36], and has been extensively ad-
dressed by abundant literature [37] over the past half century.
Some of the arguments advocating maximum-entropy methods
deal with the highest number of permutations with repeated el-
ements associated with an empirical distribution [38], or more
generally, the method of types and large deviation theory [27,
§ 11]. Some others deal with a consistent axiomatization of en-
tropy [37], [39]–[41], further to the original one already estab-
lished by Shannon [42], slightly reformulated in [43], [44], and
generalized by Rényi in [45], and some relate Bayesian infer-
ence to divergence minimization [46].

B. Hypothesis Testing

We turn back to the more general case of KL divergence as
a measure of privacy, that is, when the reference distribution

is not necessarily uniform. The above-mentioned arguments
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concerning a consistent axiomatization of the Shannon entropy
have been extended to the KL divergence [37], [39]–[41], which
may in fact be regarded as an entropy relative to a reference
probability measure.

We believe, however, that one of the most interesting justifi-
cations for measuring privacy risk as a KL divergence stem from
the arguments based on the method of types and large deviation
theory. More precisely, through Stein’s lemma [27, § 11] we
shall interpret KL divergences as false positives and negatives
when an attacker applies hypothesis testing to ascertain whether
a sequence of observed queries belongs to a predetermined user
or not. We explain this justification here.

Our interpretation contemplates the scenario where an at-
tacker knows, or is able to estimate, the apparent query distribu-
tion of a given user. Further, the attacker observes a sequence
of i.i.d. queries, and attempts to decide whether they belong to
that particular user or not. More precisely, the attacker considers
the hypothesis testing between two alternatives, namely whether
the queries have been drawn according to , the user’s apparent
distribution (first hypothesis), or , the general population’s dis-
tribution (second hypothesis). Define the acceptance region
as the set of sequences of observed queries over which the at-
tacker decides to accept the first hypothesis. Accordingly, define
two probabilities of decision error:

(a) The error of the first kind , which is the
probability of a false negative.

(b) The error of the second kind , which is the
probability of a false positive.

Above, denotes the complement of . , for example,
represents the probability of all query sequences in , i.i.d.
according to , and similarly for .

For any , define

in other words, we choose the acceptance region with least false
positive rate among those with a bounded false negative rate.
Stein’s lemma asserts that

Less formally, for large . The minimization of
in the definition of the privacy-redundancy function (1)

maximizes the exponent in the error rate of false positives, for
an optimal choice of acceptance region with a false negative rate
constraint. Simply put, the optimal forgery strategy makes the
attacker’s job more difficult.

Clearly, we might very well exchange the roles of and
in this interpretation, and concordantly define privacy risk as

in lieu of . It turns out that most of the results
obtained in this work can be easily adapted to this alternative
formulation, but some of the additional interpretations we have
presented, and particularly the important entropy case of the
previous subsection, would not apply.

IV. OPTIMAL QUERY FORGERY

This section investigates the fundamental properties of the
privacy-redundancy function (1) defined in Section II, and

presents a closed-form solution to the inherent minimization
problem. In the interest of brevity, our theoretical analysis
only considers the case when all given probabilities are strictly
positive

for all (2)

The general case can easily be dealt with, occasionally via con-
tinuity arguments. We shall suppose further, without loss of gen-
erality, that

(3)

It is immediate from the definition of the privacy-redundancy
function that its initial and final values are and

. The behavior of at intermediate values of is
characterized by the theorems in this section.

A. Monotonicity and Convexity

Theorem 1: The privacy-redundancy function is non-
increasing and convex.

Proof: First, let . Based on the solution
to the minimization problem corresponding to , construct
the distribution , satisfying

Because is not necessarily a minimizer of the problem corre-
sponding to , it follows that , and conse-
quently, that the privacy-redundancy function is nonincreasing.

Secondly, we prove convexity by verifying that

for all , , . The solutions corresponding to
and are denoted by and , respectively. Define

and

We have

where
(a) follows from the fact that the KL divergence is convex in

pairs of probability distributions [27, § 2.7];
(b) reflects that is not necessarily the solution to the mini-

mization problem corresponding to .
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Fig. 4. Conceptual plot of the privacy-redundancy function.

The convexity of the privacy-redundancy function (1) guar-
antees its continuity on the interior of its domain, namely (0, 1),
but it is fairly straightforward to verify, directly from the defini-
tion of and under the positivity assumption (2), that conti-
nuity also holds at the interval endpoints, 0 and 1. Sections IV-D
and IV-E analyze in greater detail the behavior of the function
at extreme values of .

B. Critical Redundancy

Our second theorem will confirm the intuition that there must
exist a redundancy beyond which perfect privacy is attainable,
in the sense that . Precisely, this critical redundancy
is

according to the labeling assumption (3). It is important to re-
alize that unless . The key idea is that ,
for otherwise and , a contradic-
tion. On the other hand, the positivity assumption (2) ensures
that . Unsurprisingly, becomes worse (closer to
one) with worse (larger) ratio . Fig. 4 is a con-
ceptual depiction of the results stated by Theorems 1 and 2 .
The same theorems imply that for

.

Theorem 2 (Critical Redundancy): Suppose . Then,
. In addition, the optimal forged query distribution is

, for which the user’s apparent distribution

and the population’s match: .
Proof: We consider only the nontrivial case when ,

thus . It is clear from the form of that
, thus it suffices to verify that is nonnegative to ascertain

whether it is a probability distribution. Observe that requiring
that for all is equivalent to

, to , and finally to . But
this is also equivalent to requiring that

as assumed in the theorem. To complete the proof, it is routine
to check that the proposed satisfies ,
thereby vanishing the privacy risk.

After routine manipulation, we may write the optimal solu-
tion at exactly the critical redundancy as

equal to zero if, and only if, . Owing to the fact that
we are dealing with relative rather than absolute frequencies, it
is not surprising that at . More generally, in
accordance with the labeling assumption (3), observe that only
the last components of may vanish.

C. Closed-Form Solution

Our last theorem, Theorem 4, will provide a closed-form so-
lution to the minimization problem defining the privacy-redun-
dancy function (1). Our solution will be based on a resource
allocation lemma, namely Lemma 3, which addresses an exten-
sion of the usual water filling problem. Even though Lemma
3 provides a parametric-form solution, fortunately, we will be
able to proceed towards an explicit closed-form solution (albeit
piecewise), trivially derivable from the implicit form presented
in the theorem for elegance.

The lemma in question considers the allocation of resources
minimizing the sum of convex cost func-

tions on the individual resources. Resources are assumed to be
nonnegative, and to amount to a normalized total of ,
thus is a probability distribution. The well-known water-filling
problem [47, § 5.5] may be regarded as the special case when

, for .

Lemma 3 (Resource Allocation): For all , let
be twice differentiable on , with and,

therefore, strictly convex. Thus, is strictly increasing, and,
interpreted as a function from to , invertible. De-
note the inverse by . Consider the following optimization
problem in the variables

minimize

subject to for all and

(i) The solution to the problem exists, is unique and of the
form , for some such that

.
(ii) Suppose further, albeit without loss of generality, that

. Then, either
for , or for , and for the
corresponding index

and

Proof: The existence and uniqueness of the solution is
a consequence of the fact that we minimize a strictly convex
function over a compact set. Systematic application of the
Karush–Kuhn–Tucker (KKT) conditions [47] leads to the
Lagrangian cost
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which must satisfy , and finally to the conditions

(primal feasibility)

(dual feasibility)

(complementary slackness)

(dual optimality)

Eliminating the slack variables , we may rewrite the comple-
mentary slackness and the dual optimality conditions equiva-
lently as

(complementary slackness)

(dual optimality).

Recall that is strictly increasing, as . We now con-
sider two cases for each . First, suppose that , or
equivalently, . In this case, the only conclusion con-
sistent with the dual optimality condition is . But then, the
complementary slackness condition implies that , or
equivalently, . We may interpret this finding as a
Pareto equilibrium. Namely, for all positive resources ,
the marginal ratios of improvement must all be the same
( is a common constant for all ). Otherwise, minor allocation
adjustments on the resources could improve the overall objec-
tive.

Consider now the opposite case, when , or equiv-
alently, . Suppose that as in the previous
case, so that by complementary slackness, .
But this contradicts the fact that is strictly increasing. Conse-
quently, , and in summary

This proves claim (i) in the lemma. To verify (ii), observe
that whenever holds for some

, then , and, there-
fore, . This argument is valid even for
the invalid index , negating the possibility that ,
which would lead to the zero solution, running contrary to the
constraint .

We now proceed to obtain a closed-form solution for the
privacy-redundancy function. Denote by and

the cumulative distributions corresponding to
and . Define

for and . Observe that , that
, and consistently with Theorem 2, the

solution corresponding to in this last theorem becomes
, for . Define

distributions in the probability simplex of dimensions.

Theorem 4: For any , , with
equality if, and only if, . For any and
any , the optimal is given by the equations

for and for . The cor-
responding, minimum KL divergence yields the privacy-redun-
dancy function

Proof: The first statement, regarding the monotonicity of
the thresholds , can be shown from their definition by routine
algebraic manipulation, under the labeling assumption (3). To
that end, it is helpful to observe that

We shall, however, give a more direct argument within the proof
of the rest of this theorem.

Only the nontrivial case is shown. Using the defini-
tion of KL divergence, write the objective function as

, with . This exposes the structure of
the privacy-redundancy optimization problem as a special case
of the resource allocation lemma, Lemma 3, with the strictly
convex, twice differentiable functions of . In

this special case, and

the (Pareto equilibrium) solution for when .
Assumption (3) is equivalent to the assumption that

in the lemma, because is a

strictly increasing function of . On account of the second part
of the lemma

thus

Combining the expressions for and for the optimal when
, that is, , leads to the expression for the optimal

solution for in the theorem. It remains to confirm the interval
of values of in which it is defined.

To this end, note that the condition in the lemma
becomes

or equivalently
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and after routine algebraic manipulation

One could proceed to carry out an analogous analysis on the
upper bound condition of the lemma to deter-
mine the interval of values of in which the solution is defined.
However, it is simpler to realize that because a unique solution
will exist for each , then the intervals resulting from imposing

must be contiguous and nonoverlapping,
hence, of the form . Further, because is contin-
uous on , one may write the intervals as in lieu
of . This argument also means that the (strict) mono-
tonicity of is equivalent to the (strict) monotonicity of , as
stated at the beginning of the theorem.

To complete the proof, it is only left to express the privacy
risk in terms of the optimal distribution
of forged queries. But first, we split the sum into two parts. The
first term, corresponding to , is

where we exploit the fact that in the sum does not depend on
. The second term, corresponding to , is

Finally, we immediately identify the terms of as a diver-
gence between the distribution

and the distribution .

The optimal forgery strategy of Theorem 4 lends itself to an
intuitive interpretation. On the one hand, only queries corre-
sponding to the categories are forged, precisely
those corresponding to the smallest ratios , loosely speaking,
those with probabilities furthest away from the population’s dis-
tribution. On the other, the optimal user’s apparent query dis-
tribution within those categories is proportional to the popu-
lation’s, which means that, given that a query belongs to one
of these categories, the conditional distribution of submitted
queries is equal to the conditional distribution of the population.

A number of conclusions can be drawn from the closed-form
solution in Theorem 4. In the following two sections, we focus
on the behavior of the privacy-redundancy function at low re-
dundancies on the one hand, and low risk on the other.

D. Low-Redundancy Case

In this section, we characterize for .

Proposition 5 (Low Redundancy): In the nontrivial case when
, there exists a positive integer with redundancy thresh-

olds satisfying . For all ,
the optimal forgery strategy contains nonzero components,

and the slope of the privacy-redundancy function at the origin is
.

Proof: The hypothesis implies that , and
the existence of a positive integer enabling us to rewrite the
labeling assumption (3) as

At this point, we observe that the ratio between the th compo-
nents of the cumulative distributions equals the common ratio

On account of Theorem 4

and for all

It is routine to check that

and to compute the slope of the privacy-redundancy function at
the origin

but , therefore

and finally, .

Define the relative decrement factor

Proposition 5 means that

for or, in terms of relative decrement

(4)

Conceptually speaking, the ratio characterizes the privacy
gain at low redundancy, together with , in contrast to the
fact that the ratio determines , the maximum redundancy
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for zero privacy risk, defined in Section IV-B. We mentioned in
that section that . An entirely analogous argument shows
that , thus in our first order approximations,
and consequently . In other words, the relative risk reduc-
tion (4) is conveniently greater than the redundancy introduced.
The risk decrement at low redundancies becomes less noticeable
with worse ratio (closer to 1), for a fixed . We may,
however, improve our bound on the relative decrement factor ,
as the next proposition shows.

Proposition 6 (Relative Decrement): In the nontrivial case
when , , with equality if, and only if, is
affine.

Proof: The statement of the proposition is a consequence
of Theorems 1 and 2. Since , it is clear that

, and, as argued in Section IV-B, . Consider
now any continuous, convex function , defined at least on

, satisfying , with a positive root. A
straight line with slope at the origin must fall under the
segment connecting at , and 0 at , strictly so
unless the function is affine. Mathematically, ,

or equivalently, .

The proof of Proposition 6 suggests that is a
measure of the convexity of , and ties the behavior of the
function at low redundancies and low risk. On account of this
bound, the relative risk reduction (4) satisfies , which
means that the relative risk reduction cannot be smaller than
the redundancy introduced, relative to its critical value. This
convenient result is fairly intuitive from the graphical repre-
sentation of Fig. 2, in Section IV-B. An explicit restatement
of the proposition leads to the interesting inequality

.

E. Low-Risk Case

We now turn to the case when , and thus, .
Use to confirm that, if

whenever . (Recall that .) Evidently,
we are assuming that so that, on account of Theorem
4, , to avoid an empty interval. More explicitly

From this expression, it is routine to conclude that
and

(left-side differentiation), and finally

We would like to remark that the fact that admits a
quadratic approximation for , with ,
may be concluded immediately from the fundamental prop-
erties of the Fisher information [27]. Recall that for a
family of distributions indexed by a scalar parameter ,

, where
is the Fisher information. Denote by
the family of optimal apparent distributions, indexed by the
redundancy. Theorem 2 guarantees that , thus we may
write . Under this formulation, it is clear
that the Fisher information associated with the redundancy is

.
Finally, the observation at the end of Section II that

at is consistent with the fact that is the endpoint
of the interval corresponding the the solution for with
nonzero components in Theorem 4.

F. Maximizing the Entropy of the User’s Query Distribution

We mentioned in Section III-A that Shannon’s entropy could
be regarded as a special case of KL divergence. As in that sec-
tion, let be the uniform distribution on , so that
the privacy risk becomes

This of course means that our theoretical analysis addresses the
problem of maximizing the entropy of the user’s apparent query
distribution. In this case, our assumption on the labeling of the
probabilities becomes .

Clearly, the critical redundancy of Theorem 2 becomes
. Theorem 4 gives the forgery distribution

maximizing the entropy, namely

for , and otherwise. Observe that the
resulting apparent distribution is constant, water filled if you
wish, for , the indices corresponding to the smallest
values of . The thresholds of the intervals of are

, and the maximum privacy attainable

V. SIMPLE, CONCEPTUAL EXAMPLES

In this section, we illustrate the formulation of Section II and
the theoretic analysis of Section IV with numerical results for
two simple, intuitive examples. First, we contemplate the spe-
cial case of entropy maximization described in Section IV-F,
and secondly, we address the more general case of divergence
minimization in Section IV-C.

A. Entropy Maximization

We set the population’s distribution to the uniform distribu-
tion
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Fig. 5. Entropy maximization example. Privacy-redundancy function for � �
� � � � � � � and � � � � � � � � �.� � ����� ����.

across three categories, so that

and assume the user’s distribution

The three categories are sorted to satisfy the labeling assumption
(3).

The redundancy thresholds of Theorem 4 are ,
and . The initial privacy

risk, without query forgery, is ,
and the first and second-order approximations of Sections IV-D
and IV-E, characterizing the privacy-redundancy function
(1) at extreme values of the redundancy , are determined by
the quantities and . The re-
sulting function has been computed both theoretically, ap-
plying Theorem 4, and numerically.1 The function is depicted in
Fig. 5, along with the corresponding thresholds and approxima-
tions.

We now turn to analyze the optimal apparent distribution
for several interesting values of ,

which contains the optimal forged query distribution . The
population’s distribution , the user’s distribution and the
apparent distribution are shown in the probability simplexes
represented in Fig. 6. The contours correspond to the diver-
gence from a point in the simplex to the reference
distribution . The smaller triangle depicts the subsimplex

of possible apparent query distributions,
not necessarily optimal, for a fixed . In Fig. 6(a), a redundancy

below the first nonzero threshold has been chosen
to verify that in this case . In the notation of
Theorem 4, has exactly nonzero components, which,
geometrically, places the solution at one vertex of the sub-
simplex. It is also interesting to notice that a redundancy of just
8% lowers the privacy risk to a 44% of the original risk .

1The numerical method chosen is the interior-point optimization algorithm
[47] implemented by the Matlab R2008a function �������.

The coefficient in the relative decrement formula (4) for low
redundancies of Section IV-D is , conveniently high,
and , consistently with Proposition 6.

In Fig. 6(b), , thus contains nonzero
components, which places the solution on one edge of the
subsimplex. In this case, a redundancy of 25% reduces the risk
to a mere 4% of its original value. The case , for which

, is shown in Fig. 6(c), where still , thus ,
as argued at the end of Section IV-B. The impractical case when

is represented in Fig. 6(d), which leads to and
in the interior of the subsimplex.

B. Divergence Minimization

We assume that the population’s distribution is

and the user’s distribution

The three categories are sorted to satisfy the labeling assumption
(3)

The redundancy thresholds are , and
. The initial privacy risk is ,

and the first and second-order approximations are determined
by and . The resulting func-
tion is depicted in Fig. 7, along with the corresponding
thresholds and approximations.

We now turn to analyze the optimal apparent distribution
for several interesting values of , which contains the optimal
forged query distribution . The population’s distribution , the
user’s distribution and the apparent distribution are shown
in the probability simplexes represented in Fig. 8. In Fig. 8(a), a
redundancy below the first nonzero threshold has been
chosen to verify that in this case . Observe that
has exactly nonzero components, which, geometrically,
places the solution at one vertex of the subsimplex. It is also
interesting to notice that a redundancy of just 12% lowers the
privacy risk to a 46% of the original risk . The coefficient
in the relative decrement formula for low redundancies is

, again conveniently high, and .
In Fig. 8(b), , thus contains nonzero

components, which places the solution on one edge of the
subsimplex. In this case, a redundancy of 38% reduces the risk
to a mere 5% of its original value. The case , for which

, is shown in Fig. 8(c), where still , thus .
The impractical case when is represented in Fig. 8(d),
which leads to and in the interior of the subsimplex.

VI. CONCLUDING REMARKS

There exists a large number of solutions to the problem of
PIR, in the widest sense of the term, each one with its own ad-
vantages and disadvantages. Query forgery is by itself a simple
strategy in terms of infrastructure requirements, which does not
involve placing the user’s trust on an external entity, namely a
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Fig. 6. Entropy maximization example. Probability simplexes showing �, � and � for several values of �. (a) � � ������, ��� � �����,���� � �����	,
��������� � ����
, � � �	� �� ��, � � ������� ���������
��. (b) � � ���
�, ��� � ��

	, ���� � �������,��������� � ������, � �
���

�����
����, � � ����	�����	�����

�. (c) � � �����, ��� � 	,���� � �,��������� � �, � � �����
���������, � � �. (d) � � �����,
��� � 	���,���� � �,��������� � �, � � ���
���������������, � � �.

Fig. 7. Divergence minimization example. Privacy-redundancy function for
� � � � � � � � � and � � � � � � � � �.

TTP. It is also part of more complex protocols, such as [18].
However, query forgery comes at the cost of traffic and pro-
cessing overhead. In other words, there is a patent trade-off be-
tween privacy and redundancy.

Our main contribution is a systematic, mathematical ap-
proach to the problem of optimal query forgery for PIR.

Precisely, we carefully justify a measure of privacy, and
formulate and solve an optimization problem modeling the
privacy-redundancy trade-off. Inspired by our previous work on
statistical disclosure control [23], the privacy risk is measured
as the KL divergence between the user’s apparent query distri-
bution, containing dummy queries, and the population’s. Our
formulation contemplates, as a special case, the maximization
of the entropy of the user’s distribution.

Queries are modeled fairly generally by random variables,
which might in fact not only represent complete queries, but also
query categories, individual keywords in a small indexable set,
parts of queries such as coordinates sent to an LBS provider,
and even sequences of related queries. This work, however, is
limited to relative frequencies, relevant against content-based
attacks. That is to say, it does not address differences in absolute
frequencies, which could be exploited in traffic analysis.

We justify our privacy criterion by interpreting it from dif-
ferent perspectives, and by connecting it to the extensive ratio-
nale behind entropy maximization and divergence minimization
in the literature. Our interpretations are based on the AEP, hy-
pothesis testing and Stein’s lemma, axiomatizations of (relative)
entropy, Bayesian inference, and the average information gain
criteria in [23].

In spite of its information-theoretic appeal and mathematical
tractability, we must acknowledge that the adequacy of our for-
mulation ultimately lies in the appropriateness of the criteria op-
timized, which in turn depends on the specific application, on
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Fig. 8. Divergence minimization example. Probability simplexes showing �, � and � for several values of �. (a) � � �����, ��� � �����,���� � �����	,
��������� � ���	�, � 
 ��� �� ��, � � �������������������. (b) � � ����
, ��� � ���
�, ���� � �������,��������� � ���
��, � 

����������
����, � � �����������	�������. (c) � 
 ��
, ��� 
 �, ���� 
 �, ��������� 
 �, � � ���		����������, � 
 �. (d) � � ��	��,
��� � ����,���� 
 �,��������� 
 �, � � ���
���������������, � 
 �.

the query statistics of the users, on the actual network and pro-
cessing overhead incurred by introducing forged queries, and
last but not least, on the adversarial model and the mechanisms
against privacy contemplated. In a way, this is not unlike the oc-
casionally controversial issue of whether mean-squared error is
a suitable distortion measure in lossy compression.

We present a closed-form solution for the optimal forgery
strategy and a privacy-redundancy function characterizing
the optimal trade-off. Our theoretical analysis bears certain re-
semblance to the water-filling problem in rate-distortion theory,
and is restricted to the discrete case of query categories. We
show that the privacy-redundancy function is convex, and
that there exists a critical redundancy beyond which per-
fect privacy is attainable. This only depends on the largest
ratio of probabilities between the user’s query distribution
and the population’s . For a given redundancy , the optimal
query forgery distribution contains nonzero components asso-
ciated with the smallest ratios , or in the entropy
case, associated with the smallest . The number of nonzero
categories increases with , being for . In-
tuitively, this is a greedy approach. The optimal user’s apparent
query distribution within those categories is proportional to the
population’s, which means that, given that a query belongs to
one of these categories, the conditional distribution of submitted
queries is equal to the conditional distribution of the population.

Further, we characterize at low redundancies and low
risks. We provide a first-order approximation for when-
ever , which turns out to be a convex combination, gov-
erned by , between and the smallest log-ratio . A con-
venient consequence of the convexity of is that the relative
risk decrement at low redundancies cannot be smaller than the
redundancy introduced, relative to its critical value. We provide
a second-order approximation for , assuming there is a
strictly largest ratio . We interpret the fact that
as a consequence of a fundamental property of the Fisher infor-
mation.
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