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Flux coupling in heteropolar magnetic bearings permits remaining active coils to ass
actions of failed coils to produce force resultants identical to the un-failed actuator.
fault-tolerant control usually reduces load capacity because the redistribution of
magnetic flux which compensates for the failed coils leads to premature saturation i
stator or journal. A distribution matrix of voltages which consists of a redefined bias
voltage vector and two control voltage vectors can be optimized in a manner that red
the peak flux density. An elegant optimization method using the Lagrange multipl
presented in this paper. The linearized control forces can be realized up to ce
combination of 5 poles failed for the 8 pole magnetic bearing. Position stiffness
voltage stiffness are calculated for the fault-tolerant magnetic bearings. Simulations
that fault-tolerant control of the multiple poles failed magnetic bearings with a horizo
flexible rotor can be achieved with reduced load capacity.@S0739-3717~00!01103-X#
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1 Introduction
Magnetic suspension offers a number of practical advanta

over conventional bearings such as lower rotating friction loss
high speeds, elimination of the lubrication, operation at tempe
ture extremes and in vacuum, long life, and quiet operation. M
netic bearings offer adaptable bearing damping and stiffn
which come from the control action. System parameters can
designed to avoid resonance in the operating speed or for
mum damping through resonances. An electromagnet is inhere
attractive because of the pole arrangement. The closed loop
trol algorithm acts to reduce the centering current and force, as
shaft approaches the bearing center. Similarly, the current is
creased as the shaft moves away from the bearing center.
creates an effective stiffness of the bearing, tending to hold
shaft in a centered position. The force in the magnets acting on
shaft is produced by signals proportional to a combination of
shaft displacement and velocity, producing the desired value
stiffness and damping.

A fault-tolerant control seeks to provide continued operation
the bearing when its power amplifiers or coils suddenly fail. T
fluxes in a heteropolar magnetic bearing are strongly coupled.
coil currents are selected to produce desired force resultants i
x andy directions. The control currents must be redefined in
case of single or multiple control coil failures in order to produ
the same force resultants. The determination of this redistribu
matrix of currents is the central objective in the following fau
tolerant magnetic bearing analysis.

Lyons et al.@1# used a three control axis radial bearing stru
ture with control algorithms for redundant force control and ro
position measurement. Therefore, if one of the coils fails,
control axis can be shut down while maintaining control. Fedig
et al. @2# reported a fault-tolerant digital controller designed
meet the demanding performance and reliability requirement
high-speed magnetic bearing applications. Maslen and Meeke@3#
developed the bias current linearization method to accommo
the fault tolerance of magnetic bearings and showed that the
distribution matrix which linearizes control forces can be obtain
even if one or more coils fail. The fault tolerant magnetic bear
system was demonstrated on a large flexible-rotor test rig@4#.

Many researchers investigated load capacity of the magn
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bearing. Maslen et al.@5# presented an expression that describe
maximum bearing load. Bornstein@6# derived equations to ex
press the dynamic load capacity. Rao et al.@7# showed that the
stiffness capacity of a magnetic bearing can be described
function of the ratio of dynamic and static loads.

The present paper extends the preceding work of Maslen
Meeker by minimizing the flux density vector norm to reduce t
possibility of pole material saturation and yields current distrib
tion matrices that are effective even for the case of 5 poles fai

2 Determination of Redistribution Matrices for Mini-
mization of the Flux Density Vector Euclidean Norm

The equivalent magnetic circuit of an 8-pole heteropolar rad
magnetic bearing with 8 independent control currents is show
Fig. 1.

Maslen and Meeker@3# developed equations from~1! to ~4!.

R~x,y!f~x,y!5NI (1)

B~x,y!5A21R~x,y!21NI5V~x,y!I (2)

Magnetic forces can be then described as;

Fx~x,y!52B~x,y!T
]D~x,y!

]x
B~x,y! (3)

Fy~x,y!52B~x,y!T
]D~x,y!

]y
B~x,y!, (4)

where

D~x,y!5diag~gj~x,y!aj /~2m0!! (5)

gj~x,y!5g02x cosu j2y sinu j (6)

Maslen and Meeker@3# presented the necessary conditions
the bias current linearization for the fault-tolerant magnetic be
ings, which are described as;

T̂TGx~x,y!T̂5Mx (7)

T̂TGy~x,y!T̂5M y , (8)

where

Gx~x,y!52KTV~x,y!T
]D~x,y!

]x
V~x,y!K (9)

ion
;
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Gy~x,y!52KTV~x,y!T
]D~x,y!

]y
V~x,y!K (10)

Mx5F 0 0.5 0

0.5 0 0

0 0 0
G (11)

M y5F 0 0 0.5

0 0 0

0.5 0 0
G (12)

Maslen and Meeker@3# suggested a method to obtain usef
solutions to Eqs.~7! and ~8!. One of the criteria to decide which
solution to use is to find the solution ofT̂ which minimizes the
peak flux density, so the maximum load capacity should be
tained before the magnetic bearing saturates. Meeker@8# sug-
gested that the Reduced Gradient method could give good s
tions. Maslen et al.@4# reported that the greatest failures that th
stator can tolerate are certain configurations involving four fail
coils, and that it is not possible to realize the redistribution mat
with four adjacent coils failed.

An alternative optimization method to minimize the norm ofB
is presented in this paper. It is assumed that the orientation of
desired forces is fixed tou and the rotor is at an arbitrary position
then theB is only a function ofT̂. The cost function is;

J~ T̂!5B~ T̂!TB~ T̂!5I TVTVI, (13)

where I 5TVc5KT̂Vc (14)

Vc5@vb ,vcx ,vcy#
T (15)

Magnetic forces of Eqs.~3! and ~4! are in the form of weighted
Euclidean norm of the flux density vectors. The peak flux dens
may be reduced by minimizing the Euclidean norm of flux dens
vector. In this manner, the best solutionT̂ is what minimizes
J(T̂). Substituting Eqs.~2!, ~7!, ~8!, ~11!, ~12!, ~14!, and~15! into
Eqs.~3! and ~4! leads to

Fx5vbvcx (16)

Fy5vbvcy (17)

Fig. 1 Eight pole heteropolar equivalent magnetic circuit
210 Õ Vol. 122, JULY 2000
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Therefore, magnetic forces are completely decoupled and lin
ized even in case of failed control coils if the necessary conditi
~7! and ~8! are met with appropriateT̂. The basic problem is to
obtain theT̂ that satisfies

min J~ T̂! (18)

subject to the constraints;

T̂TGx~x,y!T̂2Mx50I (19)

T̂TGy~x,y!T̂2M y50I , (20)

where T̂5@ T̂bT̂xT̂y# (21)

T̂b5@ t1 ,t2 ,....,tm21 ,tm#T (22)

T̂x5@ tm11 ,tm12 ,....,t2m21 ,t2m#T (23)

T̂y5@ t2m11 ,t2m12 ,....,t3m21 ,t3m#T (24)

Equations~19! and ~20! can be rewritten in 18 scalar forms
SinceGx and Gy are symmetric, those 18 equations can be
duced to 12 equality constraint equations.

h1~ T̂!5T̂b
TGxT̂b50 (25)

h2~ T̂!5T̂b
TGxT̂x20.550 (26)

h3~ T̂!5T̂b
TGxT̂y50 (27)

h4~ T̂!5T̂x
TGxT̂x50 (28)

h5~ T̂!5T̂x
TGxT̂y50 (29)

h6~ T̂!5T̂y
TGxT̂y50 (30)

h7~ T̂!5T̂b
TGyT̂b50 (31)

h8~ T̂!5T̂b
TGyT̂x50 (32)

h9~ T̂!5T̂b
TGyT̂y20.550 (33)

h10~ T̂!5T̂x
TGyT̂x50 (34)

h11~ T̂!5T̂x
TGyT̂y50 (35)

h12~ T̂!5T̂y
TGyT̂y50 (36)

The Lagrange Multiplier method can be applied on the ba
problem to solve forT̂ that satisfies Eqs.~19! and ~20!. Define:

L~ T̂!5B~ T̂!TB~ T̂!1(
j 51

12

l ihj~ T̂! (37)

Partial differentiation of Eq.~37! with respect tot i andl j leads
to 3m112 nonlinear algebraic equations to solve fort i andl j .

f i5
]L

]t i
50, i 51,2,...,3m (38)

f j 13m5hj~ T̂!50, j 51,2,...,12 (39)

A vector form of 3m112 nonlinear algebraic equations is;

F~ t,l!53
f 1~ t,l!

f 2~ t,l!

•

•

•

f 3m111~ t,l!

f 3m112~ t,l!

4 53
0
0
•

•

•

0
0

4 (40)
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Equation~40! can be solved fort i and l j numerically by any
nonlinear algebraic equation solver. A nonlinear algebraic eq
tion solver using a least square iterative method~MATLAB ! was
used to solve Eq.~40! numerically. Since the cost function is no
convex and equality constraints are not affine, there may e
multiple local optima. Various initial guess oft and l may be
tested in order to find a better solution ofT̂. Local minima are
guaranteed and also global minimum can be obtained if an ef
tive global minimum searching algorithm is used. The Jacob
matrix of F(t,l) becomes increasingly poorly conditioned, as t
algorithm converges on a solution. However, the algorithm
converge quite close to a validT̂ that satisfies Eq.~40! without the
Jacobian becoming singular. Another feature of the Lagra
Multiplier method is that it introduces Lagrange Multiplier un
knowns,l, and makes the system of equations square~same num-
ber of equations and unknowns! for any failure case. In case of th
5 poles failed bearing, equality constraint equations have on
unknowns with 12 equations. It is then difficult to solve tho
equations directly. However, 21 nonlinear algebraic equati
with 12 Lagrange Multiplier unknowns and 9 distribution matr
unknowns can be solved fort i andl j .

NonsingularT̂ for the 5 poles failed bearing is nonexistent. F
example,Gx for 2-4-6-7-8th poles failed bearing is of full rank
and Gy is a matrix of rank 2.Gx is not congruent withMx .
However, singularT̂ that satisfies Eqs.~7! and ~8! may exist.
Maslen and Meeker@3# and Meeker@8# showed that the condi
tions for generating the two orthogonal arbitrary forces from
failed bearing are:

~1! Gx andGy should be indefinite.
~2! There exists anyT̂ which satisfy Eqs.~7! and ~8!.
HenceT̂ being nonsingular is not a requirement for realizi

the desired forces. It is notable that the congruence relation is
not satisfied for failure cases other than the 5 poles failed c
For example, for the 4 poles failed case~3-6-7-8th poles failed! a
pseudo-distribution matrix may be formulated as;

T15F Tb1 Tx1 Ty1 Td1

Tb2 Tx2 Ty2 Td2

Tb3 Tx3 Ty3 Td3

Tb4 Tx4 Ty4 Td4

G (41)

Then

T1
TGxT15F 0 0.5 0 0

0.5 0 0 0

0 0 0 0

0 0 0 0

G (42)

T1
TGyT15F 0 0 0.5 0

0 0 0 0

0.5 0 0 0

0 0 0 0

G (43)

should hold.Td’s do not affect the Eqs.~7! and~8!. SinceGx is a
matrix of rank 4 andGy is a matrix of rank 3, a nonsingularT1
does not exist.T1 should be a matrix of rank 2 to satisfy Eqs.~42!
and ~43!. Dummy variablesTd’s can be truncated fromT1 to
obtain the solutionT̂.

3 Optimal Solutions of 8 Pole Heteropolar Magnetic
Bearing

The 8-pole heteropolar magnetic bearing used in this anal
has uniform pole face area of 4.9131024 m2, a nominal gap of
0.001 m, and 200 turn coils. Equation~40! was solved numeri-
cally for some selected combinations of failure cases from 3 p
to 5 poles failure. Some of the example distribution matrices w
Journal of Vibration and Acoustics
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excerpted from the previous works@3#, and were compared with
distribution matrices calculated by the Lagrange Multipli
method. 3m112 nonlinear algebraic equations are solved for
T̂ that minimizes flux density vector Euclidean norm. The fl
density vector is described as;

B~T!5Bb1Bx1By5VKT̂bvb1VKT̂xvcx1VKT̂yvcy (44)

Maslen and Meeker’sT matrix for 6-7-8th poles failed mag
netic bearing is shown in Eq.~45!.

T53
20.198531 20.146643 0.172692

20.052334 0.022060 0.267589

0.034700 20.000865 0.338018

20.078408 20.012076 0.269612

20.198333 0.148658 0.156481

0 0 0

0 0 0

0 0 0

4 (45)

The T matrix for 6-7-8th poles failed magnetic bearing by th
Lagrange Multiplier method is shown in Eq.~46!.

T53
20.19853 20.14695 0.15198

20.052535 20.06403 0.30332

0.032217 24.1 1025 0.34364

20.052425 0.063943 0.30334

20.19852 0.14691 0.15206

0 0 0

0 0 0

0 0 0

4 (46)

Several local minima were found when various initial guest
and l were tested. Equation~46! is the best solution among th
solutions found. The global minimum searching method was
used in this analysis. One more Maslen and Meeker’sT matrix for
selected combination of 4-6-7-8th poles failed case is shown
Eq. ~47!.

T53
1.826025 0.012223 20.059953

0.108760 20.013794 20.038409

20.063425 0.006560 20.058641

0 0 0

1.802976 20.015078 20.051954

0 0 0

0 0 0

0 0 0

4 (47)

The T matrix for the 4-6-7-8th poles failed case calculated
the Lagrange Multiplier method is shown in Eq.~48!.

T53
0.52228 0.05715 20.16355

0.22325 0.0371 20.09705

20.037124 0.0061 20.19255

0 0 0

0.50482 20.0524 20.1482

0 0 0

0 0 0

0 0 0

4 (48)
JULY 2000, Vol. 122 Õ 211
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Fig. 2 Load capacity of the fault tolerant magnetic bearing for 6-7-8 th coil
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TheT matrix for any combination of failed poles up to 4 out
8 poles can be calculated by the Lagrange Multiplier method.
instanceT for 4 adjacent poles failed~5-6-7-8th! is shown in Eq.
~49!.

T53
20.70668 0.061757 0.3218

20.29382 0.17041 0.29392

20.29166 0.082044

0.34761

20.70677 0.154 0.28328

0 0 0

0 0 0

0 0 0

0 0 0

4 (49)

Though 5 poles fail,T can be calculated by the Lagrange Mul
plier method except for two cases.T cannot be found if 5 adjacen
poles are failed, or 4 adjacent poles and one more pole are fa
T for 2-4-6-7-8th poles failed case is shown in Eq.~50!.

T53
0.85207 0.03172 20.23458

0 0 0

0 0 20.1902

0 0 0

0.85207 20.031681 20.23458

0 0 0

0 0 0

0 0 0

4 (50)
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If less than three currents are controlled,T cannot be found. These
conclusions are based on the authors’ experience with con
gence of the solver. CalculatedT matrices should satisfy Eqs.~7!
and ~8!. Least square iterative algorithm converges toT that
nearly satisfy Eqs.~7! and ~8!, before the Jacobian matrix o
F(t,l) becomes singular. Therefore, there exist some o
diagonal error terms inM matrices. Load capacity of the magnet
bearing with distribution matrices is calculated for 8 force dire
tions. The load capacity of the fault-tolerant magnetic bearing
be calculated in a manner that the maximum component ofBb
should be set tobsat/2 by manipulatingvb and thenBx or By is
increased or decreased untilB reachesbsat of 1.2 Tesla. Load
capacity plots of the 4 failure cases are shown in Fig. 2.
6-7-8th coil failed case minimum load capacity occurs atx direc-
tions for both Meeker’s solution and the Lagrange Multiplier s
lution. However, load capacity of the Lagrange Multiplier solutio
along positivey direction ~opposite to gravity direction! is 12
percent larger than that of Meeker’s. For 4-6-7-8th coil failed ca
minimum load capacity of 143 N occurs at negativey direction.
Load capacities of 5-6-7-8th coil failed case and 2-4-6-7-8th c
failed case are also determined for the distribution matrices
Eqs. ~49! and ~50!. Load capacity of the 2-4-6-7-8th coil failed
magnetic bearing is reduced to 44 N along the negativey direc-
tion. However, it shows that even the 5 coils failed bearing s
can support considerable amount of gravity load~up to 200 N of
magnetic force along the positivey direction!.

4 Determination of Linearized Forces for Fault-
Tolerant Magnetic Bearings

Valid T matrix can both linearize and decouple the multip
poles failed magnetic bearing forces. The distribution matrix
voltages, which consists of a redefined biasing voltage vector
two control voltage vectors, can be implemented in the control
Transactions of the ASME
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The redistribution matrices for all failure cases can be imp
mented in a physical controller, so if some combinations of fa
ures of the power amplifiers or coils are detected, the corresp
ing redistribution matrices can be switched at the same ti
Linearized forces are defined in terms of a bias voltage and
control voltages. Nonlinear magnetic forces are defined as;

Fx~x,y!5I T
]U~x,y!

]x
I (51)

Fy~x,y!5I T
]U~x,y!

]y
I (52)

where

U~x,y!5V~x,y!TD~x,y!V~x,y! (53)

Partial derivative ofU(x,y) with respect tox derived as;

]U~x,y!

]x
5V~x,y!T

]D~x,y!

]x
V~x,y!12V~x,y!D~x,y!

]V~x,y!

]x
(54)

An identity relation holds for the givenV(x,y) andD(x,y):

V~x,y!T
]D~x,y!

]x
V~x,y!52V~x,y!TD~x,y!

]V~x,y!

]x
(55)

Equation~54! then becomes;

]U~x,y!

]x
52V~x,y!T

]D~x,y!

]x
V~x,y! (56)

Similarly, partial derivative ofU(x,y) with respect toy is derived
as;

]U~x,y!

]y
52V~x,y!T

]D~x,y!

]y
V~x,y! (57)

Second partial derivatives ofU(x,y) with respect tox andy are
described as;

]2U~x,y!

]x2 522V~x,y!
]D~x,y!

]x S ]V~x,y!

]x D T

(58)

]2U~x,y!

]y]x
522V~x,y!

]D~x,y!

]x S ]V~x,y!

]y D T

(59)

]2U~x,y!

]x]y
522V~x,y!

]D~x,y!

]y S ]V~x,y!

]x D T

(60)

]2U~x,y!

]y2 522V~x,y!
]D~x,y!

]y S ]V~x,y!

]y D T

(61)

The nonlinear magnetic forces in Eqs.~51! and~52! can also be
linearized about the bearing center position and the zero con
voltages by using Taylor series expansion.

Fx~x,y,vcx ,vcy!'
]Fx

]x Ux50
y50
vcx50
vcy50

x1
]Fx

]y Ux50
y50
vcx50
vcy50

y1
]Fx

]vcx
Ux50

y50
vcx50
vcy50

vcx

1
]Fx

]vcy
Ux50

y50
vcx50
vcy50

vcy (62)

Fy~x,y,vcx ,vcy!'
]Fy

]x Ux50
y50
vcx50
vcy50

x1
]Fy

]y Ux50
y50
vcx50
vcy50

y1
]Fy

]vcx
Ux50

y50
vcx50
vcy50

vcx

1
]Fy

]vcy
Ux50

y50
vcx50
vcy50

vcy (63)
Journal of Vibration and Acoustics
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The linearized force components in the right hand side of E
~62! and ~63! can be described as position stiffness and volta
stiffness. Position stiffness is described as;

]Fx

]x Ux50
y50
vcx50
vcy50

52Kpxx5Tb
T

]2U~x,y!

]x2 Tbvb
2U

x50
y50

5Tb
TUxx0Tbvb

2

(64)

]Fx

]y Ux50
y50
vcx50
vcy50

52Kpxy5Tb
T

]2U~x,y!

]y]x
Tbvb

2U
x50
y50

5Tb
TUxy0Tbvb

2

(65)

]Fy

]x Ux50
y50
vcx50
vcy50

52Kpyx5Tb
T

]2U~x,y!

]x]y
Tbvb

2U
x50
y50

5Tb
TUyx0Tbvb

2

(66)

]Fy

]y Ux50
y50
vcx50
vcy50

52Kpyy5Tb
T

]2U~x,y!

]y2 Tbvb
2U

x50
y50

5Tb
TUyy0Tbvb

2

(67)

The amplitudes of the current inputs for the fault-tolerant be
ing are usually not uniform, so it is difficult to define curre
stiffness for the multiple poles failed bearing. Instead volta
stiffness is defined as:

]Fx

]vcx
Ux50

y50
vcx50
vcy50

5Kvxx5
]Fx

]Vc

]Vc

]vcx
Ux50

y50
vcx50
vcy50

52Tb
T

]U~x,y!

]x
TxvbU

x50
y50

52Tb
TUx0Txvb (68)

]Fx

]vcy
Ux50

y50
vcx50
vcy50

5Kvxy5
]Fx

]Vc

]Vc

]vcy
Ux50

y50
vcx50
vcy50

52Tb
T

]U~x,y!

]x
TyvbU

x50
y50

52Tb
TUx0Tyvb (69)

]Fy

]vcx
Ux50

y50
vcx50
vcy50

5Kvyx5
]Fy

]Vc

]Vc

]vcx
Ux50

y50
vcx50
vcy50

52Tb
T

]U~x,y!

]y
TxvbU

x50
y50

52Tb
TUy0Txvb (70)

]Fy

]vcy
Ux50

y50
vcx50
vcy50

5Kvyy5
]Fy

]Vc

]Vc

]vcy
Ux50

y50
vcx50
vcy50

52Tb
T

]U~x,y!

]y
TyvbU

x50
y50

52Tb
TUy0Tyvb (71)

The position stiffness and voltage stiffness are calculated
the distribution matrices of Eqs.~46!, ~48!, ~49!, and ~50! at the
center position of the bearing. The bias voltage gains are adju
for the distribution matrices so that the maximum component
the bias flux density vector should be equal tobsat/2. The calcu-
lated position stiffness and voltage stiffness and bias voltage
are shown in Table 1.

SinceT is calculated for decoupled linearized forces, the cro
coupled voltage stiffness terms should be negligibly small fo
valid T. However, there exist some cross-coupled position st
nesses because the flux densities are unevenly distributed in
of the calculated distribution matrix for the multiple coils faile
magnetic bearing. Figure 3 shows that the rotor is pulled to
right while levitating when the static load of 123 N is applied o
the fault-tolerant magnetic bearing. Decoupled linearized m
netic forces are then described as;
JULY 2000, Vol. 122 Õ 213
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Table 1 The calculated stiffness for the fault-tolerant magnetic bearing
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Fx52Kpxxx2Kpxyy1Kvxxvcx (72)

Fy52Kpyxx2Kpyyy1Kvyyvcy (73)

The linearized forces are used to design a control law so
the closed loop should be stabilized.

5 Control System Design
A fault-tolerant magnetic bearing test rig with a horizontal fle

ible rotor was built at NASA Glenn. The flexible rotor has mass
10.7 kg length of 0.69 m, and bearing location of 0.1235 m fr
the ends. A finite element model of the flexible rotor with 3
elements is shown in Fig. 4.

The flexible rotor is discritized into a reasonable number
elements which consist of a series of massless beam element
lumped mass and inertias. Palazzolo@9# shows a generaln disc
rotor model with cylindrical beam elements based on Euler’s
sumptions. The mass, polar moment of inertia, and transverse
2000

ction.asme.org/ on 04/08/2015 Terms of Use: 
hat

x-
of
m
8

of
and

as-
mo-

ment of inertia are halved and placed at each node. The equa
of motion for the flexible rotor is then described as;

MI Ẍ~ t !1GI Ẋ~ t !1KI X~ t !5Fs~ t !, (74)

where MI , GI , and KI represent mass, gyroscopic moment, a
stiffness matrices respectively. External forces exerted on the
tem of equations are described as;

Fs~ t !5Fmag~ t !1Fgrav1Fu~ t !, (75)

where Fmag, Fgrav , and Fu represent magnetic force, gravit
force, and unbalance force vectors respectively. The first o
form of the system of equations is:

F Ẍ~ t !

Ẋ~ t !
G5F2MI 21GI 2MI 21KI

II 0I G F Ẋ~ t !
X~ t !G1FMI 21

0I GFs~ t ! (76)

or
Fig. 3 Static deflection of the rotor for the 5-6-7-8th coils failed
magnetic bearing
Transactions of the ASME
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Fig. 4 Finite element model of the flexible rotor
t
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can
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es
m.
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d in
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5.
has
Ż~ t !5AI PZ~ t !1BI PFs~ t ! (77)

A vector form of the magnetic bearing forces applied on the ro
system is described as;

Fmag~ t !5HF̄~ t !, (78)

where

F̄~ t !5F Fx
A~ t !

Fy
A~ t !

Fx
B~ t !

Fy
B~ t !

G (79)

whereH is the 15634 matrix which assigns magnetic forces
the corresponding states.Fx

A , Fy
A , Fx

B , andFy
B are the nonlinear

magnetic forces for BearingA andB. Substituting Eqs.~72! and
~73! into ~79! leads to;

F̄~ t !5KposXB1KvolVB , (80)

where

XB5@xA,yA,xB,yB#T (81)

VB5@vcx
A ,vcy

A ,vcx
B ,vcy

B #T (82)

The control voltages are described as;

vcx~ t !52kpxvsx~ t !2kdxv̇sx~ t ! (83)

vcy~ t !52kpyvsy~ t !2kdyv̇sy~ t !, (84)

where vsx(t), vsy(t) represent the sensor voltages. The sen
voltage vector is given as;

F vsx
A ~ t !

vsy
A ~ t !

vsx
B ~ t !

vsy
B ~ t !

G5ksF xs
A~ t !

ys
A~ t !

xs
B~ t !

ys
B~ t !

G5ksS X~ t ! (85)

ks is the sensor sensitivity.S is the 43156 matrix which assigns
sensor target locations to the corresponding states. If sensor
collocated with magnetic actuators,S becomesHT. Substituting
Eqs.~83!–~84! into ~82! leads to;

VB5KPHTX1KDHTẊ (86)

Equation~78! then becomes;

Fmag5H~Kpos1KP!HTX1HKDHTẊ (87)

The closed loop equation is:

Ż~ t !5AclZ1Bp~Fgrav1Fu! (88)

where

Acl5F2MI 21GI 1HKDHT 2MI 21KI 1H~Kpos1KP!HT

II 0I G
(89)

The closed loop dynamics may be stabilized by increasingkp
and kd until the control force overcomes the negative positi
stiffness. Furthermore, the closed loop bearing stiffness
Acoustics

ction.asme.org/ on 04/08/2015 Terms of Use: 
tor

o

sor

are

n
nd

damping can be adjusted by tuning PD controller gains,kp andkd
@10#. Rotor critical speeds and their corresponding dampings
be designed by tuning active bearing properties@11#.

The first order form of the rotor system equation has 312 sta
This will make the plant too large for simulation. Higher mod
than 2000 Hz are rarely excited in the real world rotor syste
Number of states in Eq.~74! is considerably reduced by usin
modal condensation. The firstr modes of the system below 200
Hz are selected and normalized as shown in Eq.~90!.

C1563r5@C1 C2 . . C r # (90)

r 31 modal state vector v defined as:

X~ t !5Cv~ t ! (91)

Modal equation of motion for the flexible rotor is then describ
as:

MĨ v̈~ t !1GĨ v̇~ t !1KĨ v~ t !5F̃~ t !, (92)

where

MĨ 5CTMI C (93)

KĨ 5CTKI C (94)

GĨ 5CTGI C (95)

F̃~ t !5CTFs~ t ! (96)

6 Simulations
Sensor dynamics and power amplifier dynamics are include

the closed loop path. Sensors have a sensitivity of 7874 V/m
detailed outline of the fault-tolerant controller is shown in Fig.
The 8-pole heteropolar magnetic bearing used in the test rig
uniform pole face area of 6.0231024 m2, a nominal gap of 5.08
31024 m, and 50 turn coils. Equation~40! was solved for the
5-6-7-8th and the 2-4-6-7-8th poles failed cases. TheT matrix for
the un-failed bearing is excerpted from the previous work@3# as
shown in Eq.~97!.

T5
g0

4nAm0a

l

2 2 cos~0! 2 sin~0!

22 22 cosS p

4 D 22 sinS p

4 D
2 2 cosS 2p

4 D 2 sinS 2p

4 D
22 22 cosS 3p

4 D 22 sinS 3p

4 D
2 2 cos~p! 2 sin~p!

22 22 cosS 5p

4 D 22 sinS 5p

4 D
2 2 cosS 6p

4 D 2 sinS 6p

4 D
22 22 cosS 7p

4 D 22 sinS 7p

4 D

m
(97)
JULY 2000, Vol. 122 Õ 215
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Fig. 5 Fault-tolerant control scheme

Fig. 6 Orbit plot for normal operation to the 5-6-7-8th poles failed op-
eration
216 Õ Vol. 122, JULY 2000 Transactions of the ASME
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Fig. 7 Current inputs for normal operation to the 5-6-7-8th poles failed op-
eration
The calculatedT matrix for the 5-6-7-8th poles failed case is:

T53
210.398 0.01717 0.06897

24.9209 0.045068 0.057789

29.0257 0.031786 0.019684

29.5903 0.038636 0.0690.58

0 0 0

0 0 0

0 0 0

0 0 0

4 (98)
Acoustics

ction.asme.org/ on 04/08/2015 Terms of Use: 
Equations~7! and~8! are satisfied with the calculatedT as shown
in Eqs.~99! and ~100!.

T̂TGxT̂5F 24.10751025 0.49999 2.51026

0.49999 20.000164 20.001676

2.51026 20.0001676 0.0016843
G

(99)

T̂TGyT̂5F 2.261025 1.38791027 0.49999

1.38791027 0.0017771 0.00032816

0.49999 0.00032816 0.0008366
G

(100)
Fig. 8 Flux densities for normal operation to the 5-6-7-8th poles failed opera-
tion
JULY 2000, Vol. 122 Õ 217
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Fig. 9 Orbit plot for normal operation to the 2-4-6-7-8th poles failed op-
eration

Fig. 10 Current inputs for normal operation to the 2-4-6-7-8th poles failed
operation
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Fig. 11 Flux densities for normal operation to the 2-4-6-7-8th poles failed
operation
:
The calculatedT matrix for the 2-4-6-7-8th poles failed case is

T53
211.49 20.0079149 0.058593

0 0 0

22.7316 10210 5.5249 10212 0.047502

0 0 0

211.49 0.0079169 0.058593

0 0 0

0 0 0

0 0 0

4 (101)
Acoustics

tion.asme.org/ on 04/08/2015 Terms of Use: 
T̂TGxT̂5F 1.239 1027 0.49999 23.673 1029

0.49999 24.334 10211 20.002205

23.673 1029 20.002205 2.999 10211
G
(102)

T̂TGyT̂5F 25.750 1029 5.815 10211 0.49999

5.815 10211 2.286 10220 22.128 10211

0.49999 22.128 10211 0.001101
G
(103)

The linearized forces of Eqs.~72! and ~73! are obtained for the
Fig. 12 Steady state rotor whirling for the 2-4-6-7-8th coil failed operation
JULY 2000, Vol. 122 Õ 219
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Downloaded F
5-6-7-8th poles failed at both bearings. Position and voltage s
ness, Kpxx , Kpxy , Kpyy , and Kvxx were 2959640, 364350,
2314430, and 0.9, respectively forvb of 0.9. This shows that
position stiffness along they direction is much smaller than pos
tion stiffness along thex direction. Control gains ofkp andkd for
unfailed operation are selected as 100 and 0.2 respectively.
trol gains ofkp andkd for 4 poles failed operation are 450 and 1
respectively.

The transient response from normal operation with no failure
fault-tolerant control with 5-6-7-8th poles failed for both bearin
was simulated for nonlinear bearings at 10,000 RPM. Unbala
eccentricity of 5.5 1026 m is applied at both rotor ends. A tran
sient response orbit at bearingA is shown in Fig. 6. The orbit plot
shows that the rotor sags slightly because of gravity. The ro
drops further while maintaining stable orbits when the 4 po
suddenly fail.
Transient response of the current inputs to bearingA for 5-6-7-8th
poles failed case is shown in Fig. 7. Transient response of the
densities in BearingA is shown in Fig. 8.

The linearized forces are also obtained for the 2-4-6-7-8th p
failed at both bearings, and control gains ofkp andkd are selected
as 180 and 0.4 respectively. The position and voltage stiffn
Kpxx , Kpxy , Kpyy , andKvxx were 21928400, 0,2385670, and
0.9, respectively forvb of 0.9. The transient response from norm
operation to fault-tolerant control with 2-4-6-7-8th poles failed f
both bearings was also simulated for nonlinear bearings at 10
RMP. Transient response of the orbit at bearingA is shown in Fig.
9. Transient response of the current inputs to bearingA for the
2-4-6-7-8th poles failed case is shown in Fig. 10.

Spikes occur when the 5 poles are suddenly failed. Howe
currents can be stabilized with time. It is interesting to note t
control current level is considerably increased after the fail
while the rotor drops further down. Therefore, the load capacit
clearly reduced after the failure. Ifkp is increased, the rotor will
be lifted; however, this may saturate the power amplifier or m
netic bearing~whatever comes first! and limit the benefit of in-
creasing the proportional gain. Transient response of the flux d
sities in BearingA is shown in Fig. 11. This shows that the effec
of increasing off-diagonal error terms inMx andM y barely affect
the response, though maximum load capacity is reached. St
state rotor whirling response after 5 coils are failed for both be
ings are shown in Fig. 12.

7 Conclusions
General linearized magnetic forces for the heteropolar magn

bearing are calculated with a fault-tolerant control scheme usin
bias linearization method. Any one of the coil currents affects
flux in all of the air gaps. If one or more coils fail, a new co
current control scheme can be constructed which preserves
linear relationship between the required forces and coil curre
The calculation of a redistribution matrix of voltages which co
sists of a redefined biasing voltage vector and two control volt
vectors can be optimized in a manner that minimizes the
density vector Euclidean norm. An elegant optimization meth
using a Lagrange Multiplier approach is presented in this pa
The redistribution matrixT̂ is calculated with the Lagrange Mul
tiplier method and compared with Maslen and Meeker’s solutio
It is shown thatT̂ by the Lagrange Multiplier method has bett
performance in terms of reducing peak flux density. The des
control forces can be realized up to certain combination of 5 po
failed for the 8 pole magnetic bearing. Previous treatments of
problem in the literature yielded successful control only up
selected 4 failed poles for an 8-pole bearing. The position
voltage stiffness are derived from the fault-tolerant bearing
used for designing the closed loop control system.
220 Õ Vol. 122, JULY 2000
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Nomenclature

A 5 pole face area matrix
a 5 pole face area
B 5 flux density vector

bsat 5 saturation flux density
D 5 air gap energy matrix
F 5 magnetic force
g 5 air gap distance

Gx ,Gy 5 reduced current to force matrices
h 5 equality constraint
I 5 current vector

vb ,vcx ,vcy 5 bias,x control, andy control volt-
ages

Vc 5 input voltage vector
Kpxx ,Kpxy ,Kpyx ,Kpyy 5 position stiffness
Kvxx ,Kvxy ,Kvyx ,Kvyy 5 voltage stiffness

K 5 current map matrix
Kpos,Kvol 5 position stiffness and voltage

stiffness matrices respectively
KP ,KD 5 proportional and derivative con-

trol gain matrices respectively
kp ,kd 5 control gains

L 5 inductance matrix
m 5 number of active poles

Mx ,M y 5 separation matrices
N 5 coil turn matrix
n 5 number of coil turns
R 5 reluctance matrix

Tb ,Tx ,Ty 5 bias,x control, andy control coef-
ficient vectors

T 5 distribution matrix
T̂ 5 reduced distribution matrix

Td 5 dummy distribution matrix vari-
able

U 5 current to force matrix
Ux0 ,Uy0 5 first derivatives ofU at the center

position
Uxx0 ,Uxy0 ,Uyx0 ,Uyy0 5 second derivatives ofU at the

center position
V 5 current to flux density matrix

x, y 5 rotor displacements
f 5 magnetic flux vector
l 5 Lagrange multiplier

m0 5 permeability of air
u 5 pole face angle

( )A,( )B 5 bearing locations
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