Optimized Realization of
Fault-Tolerant Heteropolar
umJooha ¥ Magnetic Bearings

e-mail: ujn2738@acs.tamu.edu
Flux coupling in heteropolar magnetic bearings permits remaining active coils to assume

Alan Palazzolo actions of failed coils to produce force resultants identical to the un-failed actuator. This
Professor fault-tolerant control usually reduces load capacity because the redistribution of the

o magnetic flux which compensates for the failed coils leads to premature saturation in the
Texas A&GM University, stator or journal. A distribution matrix of voltages which consists of a redefined biasing

M_echamcal Engineering, voltage vector and two control voltage vectors can be optimized in a manner that reduces

College Station, Texas 77843-3123 the peak flux density. An elegant optimization method using the Lagrange multiplier is

presented in this paper. The linearized control forces can be realized up to certain
combination of 5 poles failed for the 8 pole magnetic bearing. Position stiffness and
voltage stiffness are calculated for the fault-tolerant magnetic bearings. Simulations show
that fault-tolerant control of the multiple poles failed magnetic bearings with a horizontal
flexible rotor can be achieved with reduced load capadiB0739-371{00)01103-X]

1 Introduction bearing. Maslen et a5] presented an expression that describes a
. . . maximum bearing load. Bornstei®] derived equations to ex-
Magnetic suspension offers a number of prgctlca_l advanta3§r%ss the dynamic load capacity. Rao et[@]. showed that the
over conventional bearings such as lower rotating friction loss Stiffness capacity of a magnetic bearing can be described as a
high speeds, elimination of the lubrication, operation at temperi%-nction of the ratio of dynamic and static loads
ture extremes and in vacuum, long I'fe.' and quiet operation. Mag'The present paper extends the preceding Wdrk of Maslen and
\r/lvitilch bea:rr]lngff r?]ﬁ;r ade;]pt);[alble tibiargg td?nmplr;gmar:dr Smf?} eker by minimizing the flux density vector norm to reduce the
ch come 1ro € control action. System parameters ca 8_ssibility of pole material saturation and yields current distribu-

designed to avoid resonance in the operating speed_o_r for o ﬁSn matrices that are effective even for the case of 5 poles failed.
mum damping through resonances. An electromagnet is inherently

attractive because of the pole arrangement. The closed loop con-

trol algorithm acts to reduce the centering current and force, as e Determination of Redistribution Matrices for Mini-
shaft approaches the bearing center. Similarly, the current is |

creased as the shaft moves away from the bearing center. 'I}ﬁlszatlon of the Flux Density Vector Euclidean Norm
creates an effective stiffness of the bearing, tending to hold theThe equivalent magnetic circuit of an 8-pole heteropolar radial
shaft in a centered position. The force in the magnets acting on th@gnetic bearing with 8 independent control currents is shown in
shaft is produced by signals proportional to a combination of tHdg. 1.

shaft displacement and velocity, producing the desired values ofMaslen and Meekel3] developed equations frofl) to (4).

stiffness and damping. R =NI 1
A fault-tolerant control seeks to provide continued operation of (xy)$(x.y) @
the bearing when its power amplifiers or coils suddenly fail. The B(x,y)=A"IR(x,y) INI=V(x,y)I 2

fluxes in a heteropolar magnetic bearing are strongly coupled. Th

coil currents are selected to produce desired force resultants in th agnetic forces can be then described as;

x andy directions. The control currents must be redefined in the ID(X,y)

case of single or multiple control coil failures in order to produce Fx(X,y)= *B(X,V)TT B(x,y) (3)

the same force resultants. The determination of this redistribution

matrix of currents is the central objective in the following fault- dD(X,y)

tolerant magnetic bearing analysis. Fy(x,y)==B(x,y)" v BxYy), (4)
Lyons et al.[1] used a three control axis radial bearing struc-

ture with control algorithms for redundant force control and rotowhere

position measurement. Therefore, if one of the coils fails, the D(x,y)=diag(gj(x.y)aj/(Z,uo)) )

control axis can be shut down while maintaining control. Fedigan
et al. [2] reported a fault-tolerant digital controller designed to gj(X,y)=go— X cosé;—y sind, (6)

meet the demanding performance and reliability requirements of .
high-speed magnetic bearing applications. Maslen and Méaker Maslen and Meekel3] presented the necessary conditions for

developed the bias current linearization method to accommodgi'@ bias current Iinearization for the fault-tolerant magnetic bear-
the fault tolerance of magnetic bearings and showed that the &S, Which are described as;

distribution matrix which linearizes control forces can be obtained TG (x,y)T=M @)
even if one or more coils fail. The fault tolerant magnetic bearing s x
system was demonstrated on a large flexible-rotor tediiiig G, (x y)'T': M ®)
Many researchers investigated load capacity of the magneti% [ v
where
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Fig. 1 Eight pole heteropolar equivalent magnetic circuit
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Therefore, magnetic forces are completely decoupled and linear-
ized even in case of failed control coils if the necessary conditions
(7) and (8) are met with appropriaté. The basic problem is to
obtain theT that satisfies

minJ(T) (18)

subject to the constraints;
TG (x,y)T—M,=0 (19)
TTG,(x,y)T-M,=0, (20)
where  T=[T,T,T,] (21)
To=[t,to, . tmet,tm]” (22)
To=[tmr 1 tmez, o dom1,toml " (23)
Ty=[tams1.tome2:- - tam—1,tam]" (24)

Equations(19) and (20) can be rewritten in 18 scalar forms.
Since G, and G, are symmetric, those 18 equations can be re-
duced to 12 equality constraint equations.

Maslen and Meekef3] suggested a method to obtain useful

solutions to Eqs(7) and (8). One of theAcriteria to decide which
solution to use is to find the solution @f which minimizes the

peak flux density, so the maximum load capacity should be ob-

tained before the magnetic bearing saturates. Meg&kisug-

gested that the Reduced Gradient method could give good solu-
tions. Maslen et all4] reported that the greatest failures that this

stator can tolerate are certain configurations involving four failed
coils, and that it is not possible to realize the redistribution matri¥’

with four adjacent coils failed.
An alternative optimization method to minimize the normBof

is presented in this paper. It is assumed that the orientation of the
desired forces is fixed t6 and the rotor is at an arbitrary position,

then theB is only a function ofT. The cost function is;

J(M)=B(T)B(T)=1TV"VI, (13)
where  1=TV,=KTV, (14)
Vc:[Uvacvacy]T (15)

Magnetic forces of Eq9.3) and (4) are in the form of weighted

Euclidean norm of the flux density vectors. The peak flux density - e
may be reduced by minimizing the Euclidean norm of flux density

vector. In this manner, the best solutidnis what minimizes
J(T). Substituting Egs(2), (7), (8), (11), (12), (14), and(15) into
Egs.(3) and(4) leads to

(16)
7

Fyx=vpvcx

Fy=vpvey
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hy(T)=TIG,T,=0 (25)
hy(T)=T)G,T,—0.5=0 (26)
ha(T)=T;G,Ty=0 (27)
hy(T)=T1G,T,=0 (28)
hs(T)=T3G,T,=0 (29)
he(T)=T;G,T,=0 (30)
hy(T)=T§G,T,=0 (31)
he(T)=T1G,T,=0 (32)
he(T)=T§G,T,—0.5=0 (33)
hyo(T)=T,G,T,=0 (34)
hyy(T)=T3G,T,=0 (35)
hiA T)=T;G,T,=0 (36)

The Lagrange Multiplier method can be applied on the basic

oblem to solve fofl that satisfies Eqg19) and (20). Define:
12

L(H=BH B+ 2, Mhy(T) (37)
i=1

Partial differentiation of Eq(37) with respect td; and\; leads
to 3m+ 12 nonlinear algebraic equations to solve foand;.

f—aL—O i=1,2,..,3n 38
= =% i=12,., (38)
firam=h;(T)=0, j=1.2,..,12 (39)

A vector form of 3n+ 12 nonlinear algebraic equations is;

fL(tN) 0
fo(t\) 0

F(t,N)= = (40)
f3m+ll(t1)\) 0
| famesdtN)] | O]
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Equation(40) can be solved fot; and \; numerically by any excerpted from the previous work8], and were compared with
nonlinear algebraic equation solver. A nonlinear algebraic equdistribution matrices calculated by the Lagrange Multiplier
tion solver using a least square iterative metlIATLAB ) was method. 3n+ 12 nonlinear algebraic equations are solved for the
used to solve Eq40) numerically. Since the cost function is notT that minimizes flux density vector Euclidean norm. The flux
convex and equality constraints are not affine, there may exigénsity vector is described as;

multiple local optima. Various initial guess ¢fand A may be
tested in order to find a better solution ©f Local minima are
guaranteed and also global minimum can be obtained if an effec-
tive global minimum searching algorithm is used. The Jacobian
matrix of F(t,\) becomes increasingly poorly conditioned, as th8
algorithm converges on a solution. However, the algorithm can
converge quite close to a validthat satisfies Eq40) without the
Jacobian becoming singular. Another feature of the Lagrange
Multiplier method is that it introduces Lagrange Multiplier un-
knowns,\, and makes the system of equations squsaene num-

ber of equations and unknowrfer any failure case. In case of the

5 poles failed bearing, equality constraint equations have only 9
unknowns with 12 equations. It is then difficult to solve those
equations directly. However, 21 nonlinear algebraic equations
with 12 Lagrange Multiplier unknowns and 9 distribution matrix
unknowns can be solved foy and\; .

NonsingularT for the 5 poles failed bearing is nonexistent. For
example,G, for 2-4-6-7-8th poles failed bearing is of full rank,
and Gy is a matrix of rank 2.G, is not congruent withM, .
However, singularT that satisfies Eqs(7) and (8) may exist.
Maslen and Meekef3] and Meeker[8] showed that the condi-
tions for generating the two orthogonal arbitrary forces from the
failed bearing are:

(1) Gx andG, should be indefinite.

2 There exists anfr which satisfy Eqs(7) and(8).

HenceT being nonsingular is not a requirement for realizing
the desired forces. It is notable that the congruence relation is also
not satisfied for failure cases other than the 5 poles failed case.
For example, for the 4 poles failed ca@6-7-8th poles faileda
pseudo-distribution matrix may be formulated as;

T Ty
T Ty
Tvs Ty
Tee Tye

(41)

Then Eq. (47).

0.5

0.5

TIG,T1= (42)

S © o g

o © g

TG, T1= (43)

5 0

0

should hold.T4's do not affect the Eqg7) and(8). SinceG, is a
matrix of rank 4 andG, is a matrix of rank 3, a nonsingular,
does not existT; should be a matrix of rank 2 to satisfy E¢42)
and (43). Dummy variablesT4's can be truncated fronT; to
obtain the solutiori .

0
0 0
L0 o0
0 0
0 0
05 0
L0 © 0

3 Optimal Solutions of 8 Pole Heteropolar Magnetic
Bearing

The 8-pole heteropolar magnetic bearing used in this analysis
has uniform pole face area of 4810 *m?, a nominal gap of
0.001 m, and 200 turn coils. Equatidd0) was solved numeri-

cally for some selected combinations of failure cases from 3 poles
to 5 poles failure. Some of the example distribution matrices were

Journal of Vibration and Acoustics

T=

[ —0.19853
—0.052535
0.032217
—0.052425
—0.19852
0
0
0

1.826025
0.108760
—0.063425

0
1.802976

0

0

0

[ 0.52228
0.22325
—0.037124
0
0.50482
0
0
0
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—0.013794 —0.038409

B(T)=By+By+B,=VKTyvp+ VKT0 e+ VKT vy (44)

Maslen and Meeker'§ matrix for 6-7-8th poles failed mag-
etic bearing is shown in Ed45).

" —~0.198531 —0.146643 0.17269P
~0.052334  0.022060  0.267589
0.034700 —0.000865 0.33801B
~0.078408 —0.012076 0.26961P
0198333 0148658 0156461 O
0 0 0
0 0 0
.o 0 o |

The T matrix for 6-7-8th poles failed magnetic bearing by the
Lagrange Multiplier method is shown in EG6).

—0.14695 0.15193

—0.06403 0.30332
—4.110° 0.34364
0.063943  0.30334
(46)
0.14691  0.15206
0 0
0 0
0 0 |

Several local minima were found when various initial guess
and \ were tested. Equatiof6) is the best solution among the
solutions found. The global minimum searching method was not
used in this analysis. One more Maslen and MeeKerigatrix for
selected combination of 4-6-7-8th poles failed case is shown in

0.012223 —0.059953

0.006560 —0.058641

0 0
—0.015078 —0.051954 (“7)
0 0
0 0
0 0

The T matrix for the 4-6-7-8th poles failed case calculated by
the Lagrange Multiplier method is shown in E@8).

0.05715 —0.16355
0.0371 —0.09705
0.0061 —0.19255
0 0
~0.0524 —0.1482 (48)
0 0
0 0
0 o
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Fig. 2 Load capacity of the fault tolerant magnetic bearing for 6-7-8
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The T matrix for any combination of failed poles up to 4 out ofif less than three currents are controll&d;annot be found. These
8 poles can be calculated by the Lagrange Multiplier method. Foonclusions are based on the authors’ experience with conver-
instanceT for 4 adjacent poles faile(b-6-7-8th is shown in Eq. gence of the solver. Calculatddmatrices should satisfy Eq€7)

(49). and (8). Least square iterative algorithm converges Ttathat
- nearly satisfy Eqs(7) and (8), before the Jacobian matrix of
—0.70668 0.061757 0.32Tp F(t,\) becomes singular. Therefore, there exist some off-
—0.29382 0.17041 0.29392 diagonal error terms iVl matrices. Load capacity of the magnetic
B bearing with distribution matrices is calculated for 8 force direc-
0.29166  0.082044 tions. The load capacity of the fault-tolerant magnetic bearing can
0.34761 be calculated in a manner that the maximum componer,of
| should be set tdg,/2 by manipulatingy,, and thenB, or B, is
T= 0.70677 0.154 028328 (49) increased or decreased unfl reachesbg, of 1.2 Tesla. Load
0 0 0 capacity plots of the 4 failure cases are shown in Fig. 2. For
0 0 0 6-7-8th coil failed case minimum load capacity occurs direc-
tions for both Meeker’s solution and the Lagrange Multiplier so-
0 0 0 lution. However, load capacity of the Lagrange Multiplier solution
0 0 0 along positivey direction (opposite to gravity directionis 12

percent larger than that of Meeker's. For 4-6-7-8th coil failed case

Though 5 poles failT can be calculated by the Lagrange Multi-minimum load capacity of 143 N occurs at negativelirection.
plier method except for two casescannot be found if 5 adjacent | oad capacities of 5-6-7-8th coil failed case and 2-4-6-7-8th coil
poles are failed, or 4 adjacent poles and one more pole are failgglied case are also determined for the distribution matrices of
T for 2-4-6-7-8th poles failed case is shown in E50). Egs. (49) and (50). Load capacity of the 2-4-6-7-8th coil failed

magnetic bearing is reduced to 44 N along the negatidiec-

0.85207 0.03172 —0.23458 tion. However, it shows that even the 5 coils failed bearing still
0 0 0 can support considerable amount of gravity Idagd to 200 N of
0 0 ~0.1902 magnetic force along the positiwedirection.
T 0 0 0 (50) 4 Determination of Linearized Forces for Fault-
0.85207 —0.031681 —0.23458 Tolerant Magnetic Bearings
0 0 0 Valid T matrix can both linearize and decouple the multiple
0 0 0 poles failed magnetic bearing forces. The distribution matrix of
voltages, which consists of a redefined biasing voltage vector and
L O 0 0o two control voltage vectors, can be implemented in the controller.

212 / Vol. 122, JULY 2000
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The redistribution matrices for all failure cases can be imple- The linearized force components in the right hand side of Egs.
mented in a physical controller, so if some combinations of fail62) and (63) can be described as position stiffness and voltage
ures of the power amplifiers or coils are detected, the correspostiffness. Position stiffness is described as;

ing redistribution matrices can be switched at the same time.

Linearized forces are defined in terms of a bias voltage and two 7Fx X0~k =TT PU(X,y) T2 =TTU.. T2
control voltages. Nonlinear magnetic forces are defined as; X SU’ %4 pxx ax2 PUb[y—g T BTXX0TDTD
- ot
AU(X,Y) oy 0
Fx(x,y)leTl (51) (64)
JF PU(X,y)
JU(X, XIx=0 — _ I o 2 _TT 2
Fy(XJfF”%' (52) ayly=0, = TPV ayax P Plko TotooTevs
Vex™ y=
vey=0
where g (65)
U(x,Y)=V(xy) D(X,y)V(X,y) (53) Ryl o Uy, T Ty
Partial derivative ofU(x,y) with respect tax derived as; X |y=0 0_ PYXT D Xy Vbl o b yx01bUb
Vex™ y=0
U (X,y) D(x,y) aV(x y) vey=0
o V) —V(x y)+2V(x,y)D(x,y) (66)
(54) aF, U (X,Y)
__Jix=0 — _ 7T ! 2 _TT 2
An identity relation holds for the giveR/(x,y) andD(x,y): ay|y=o Koyy=To ay? Tovb x=0 ToUyyoTovi
Vex™ y=
dD(X,Y) (X y) vey=0
VOOY) === V(x,y) = = V(x,y) 'D(xy) (55) (67)

The amplitudes of the current inputs for the fault-tolerant bear-

Equation(54) then becomes; ing are usually not uniform, so it is difficult to define current

AU(X,Y) D(X,y) stiffness for the multiple poles failed bearing. Instead voltage
Fra —=V(X,y) O,’—V( YY) (56) stiffness is defined as:
Similarly, partial derivative ofJ(x,y) with respect toy is derived ~ 9Fx[,_o _ K IFy Vel o _o7T JU(X.y) T
as; e V=2, TGN B0y y=0 b D =0
Ve Vex™ y=
JU(X,Y) dD(X,Y) Vey=0 Vey=0
==V(xy) ———V(xy) (57) T
ﬂy (9y = 2TbU XOTXU b (68)
Second partial derivatives @f(x,y) with respect tox andy are IF 9F, Vv, JU(x.y)
described as; = _X §=8 =Kypxy= .7 8 —ZTT—Tyvb
v v v e X x=0
PUY) D) (VO T Vet v oo y=o
(9)(2 - (va) IX IX ( ) Y 2TTU . (69)
=<1pYUxolyUp
PUY) DOy (V)T o
yax OV TR Ty O Rylg TPy Nely _ppr VXY
vyx = X _
PU(X,y) aD(x,y) [ V(XY T Porly, o0 Ne dvex xcxgo N y=0
- = 2V(X’y) - (60) vcyzo vcyZO
Xy ay X .
=2T,U,oT,w (70)
PU(x,y) aD(xy) (VY| T Pvonen
— == 2V(X,y) ——— (61) JF IFy Ve dU(x,y)
» » » = X_o =Koyy= 0 2T} —Tyvp
The nonlinear magnetic forces in E¢S1) and(52) can also be ‘?UCY Vo0 Ne ‘?UCY %o %y ot
linearized about the bearing center position and the zero control *0 *0
voltages by using Taylor series expansion. —2TTUTow (71)
=< lpUYyolyvp
F F F - . .
F. (XY, UCX,UCy)N& X x=0 oFx X0y oFx 20 ey The position stiffness and voltage stiffness are calculated for
IxX ZCX:O ay g =0 ey Y 0 the distribution matrices of Eq$46), (48), (49), and(50) at the
vey=0 vcy:0 vey=0 center position of the bearing. The bias voltage gains are adjusted
for the distribution matrices so that the maximum component of
IF x=0 4 (62) the bias flux density vector should be equabtg/2. The calcu-
vy gzgo <y lated position stiffness and voltage stiffness and bias voltage gain
oo are shown in Table 1.
i SinceT is calculated for decoupled linearized forces, the cross-
Fyl B aF,| coupled voltage stiffness terms should be negligibly small for a
E ~ YIx=0 YIx=0 Y|x=0 . . o .
y(X, Y30 exsUey) =~ ax |y=0 % ay |¥=0 YT Jy=0 Vex valid T. However, there exist some cross-coupled position stiff-
v fg ”cxfg ¢ ”cxfg nesses because the flux densities are unevenly distributed in case
Vey™ Vey” e of the calculated distribution matrix for the multiple coils failed
JE magnetic bearing. Figure 3 shows that the rotor is pulled to the
a_y ;jg Uey (63) right while levitating when the static load of 123 N is applied on
Veyly =0 the fault-tolerant magnetic bearing. Decoupled linearized mag-
Uey=0 netic forces are then described as;
Journal of Vibration and Acoustics JULY 2000, Vol. 122 / 213
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Table 1 The calculated stiffness for the fault-tolerant magnetic bearing

Eq. (46) Eq. (48) Eq. (49) Eq. (50)

v 173 65 74 38

K, (N/m) -314490 -307930 564110 2323430
K,, (N/m) 8477 12077 209760 0

K, (N/m) 8.477 12077 209760 0

K, (N/m) ~110690 97887 ~144830 64686
K, (N/Voly |173 65 74 38

K, (N/Volt) |-0.0001 20.0018 0.000438 0

K, (N/Volt) |-0.00001 0.00048 ~0.00017 0

K, (NVoly |173 6.5 74 38

Fyx= = KpoX = Ky T Kyxxvex (72) ment of inertia are halved and placed at each node. The equation
of motion for the flexible rotor is then described as;
Fy=—KyyX—=Kpyy+ K,y ey (73)

The linearized forces are used to design a control law so that MX(1) +GX(1) +KX(t) =F(1), (74)

the closed loop should be stabilized. where M, G, and K represent mass, gyroscopic moment, and

) stiffness matrices respectively. External forces exerted on the sys-
5 Control System Design tem of equations are described as;

A fault-tolerant magnetic bearing test rig with a horizontal flex-
ible rotor was built at NASA Glenn. The flexible rotor has mass of
10.7 kg length of 0.69 m, and bearing location of 0.1235 m frowhere F,.q, Fgray, and F, represent magnetic force, gravity
the ends. A finite element model of the flexible rotor with 38orce, and unbalance force vectors respectively. The first order
elements is shown in Fig. 4. form of the system of equations is:

The flexible rotor is discritized into a reasonable number of
elements which consist of a series of massless beam elements and -M7'G -M 1*_1 [ X(t)

| 0 X(t)

Fs(t) =Fmagt) + Fgrap + Fu(t), (75)

X(t)
X(t)

lumped mass and inertias. Palazzp®d shows a generah disc
rotor model with cylindrical beam elements based on Euler's as-
sumptions. The mass, polar moment of inertia, and transverse ro-

M—l
M o as)

displacement(m)
D
T

’
()
T

i .
2 -1 1] 1 2
dispiacement(m) x10°

Fig. 3 Static deflection of the rotor for the 5-6-7-8th coils failed
magnetic bearing
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T O e |
o T T [ A O O 1 !
(] | | ] LY L
4) Bearing A J> Bearing B
Fig. 4 Finite element model of the flexible rotor
Z(t)=ApZ(t) + BpF(t) 7 damping can be adjusted by tuning PD controller gaisandkg

[10]. Rotor critical speeds and their corresponding dampings can
A vector form of the magnetic bearing forces applied on the rotge designed by tuning active bearing properfies.
system is described as; The first order form of the rotor system equation has 312 states.
This will make the plant too large for simulation. Higher modes

Fmadt) =HF(1), (78)  than 2000 Hz are rarely excited in the real world rotor system.
where Number of states in Eq.74) is considerably reduced by using
A modal condensation. The firstmodes of the system below 2000
F/x_\(t) Hz are selected and normalized as shown in (B6).
— F(t
Fo=| rh 79) Visor =¥y ¥, .. W] (90)
Fé(t) r X1 modal state vector v defined as:
y
whereH is the 156<4 matrix which assigns magnetic forces to X()=Yo(1) (91)

the corresponding state), FJ', F¢, andF; are the nonlinear Modal equation of motion for the flexible rotor is then described
magnetic forces for Bearing and B. Substituting Eqs(72) and as:
(73) into (79) leads to;

Mi () +Go(t)+Ko(t)=F(1), (92)
F(t):KpOQ(B'H(voIVBf (80) where
where M=¥TMW¥ (93)
XB:[XAﬂyA7XB1yB]T (81) . )
K=vTKW¥ (94)
Ve=[vex:0ey Uex:Veyl" (82) B
The control voltages are described as; G=v'Gw (95)
vex(t)= _kvasx(t)_kdxi}sx(t) (83) ﬁ(t):\PTFs(t) (96)
Vey(1) = —Kpywsy() —Kaybsy(1), (84) 6 simulations
where v, (1), vs(t) represent the sensor voltages. The sensorsensor dynamics and power amplifier dynamics are included in
voltage vector is given as; the closed loop path. Sensors have a sensitivity of 7874 V/im. A
VA1) *A(t) detailed outline of the fault-tolerant controller is shown in Fig. 5.
~ ¢ a ‘ The 8-pole heteropolar magnetic bearing used in the test rig has
v | _ | Vs | _ uniform pole face area of 6.0210 % m?, a nominal gap of 5.08
B Ks| B KsS X(t) (85) . .
Ue(t) Xs () %x10*m, and 50 turn coils. Equatiod0) was solved for the
vSBy(t) ySB(t) 5-6-7-8th and the 2-4-6-7-8th poles failed cases. Theatrix for

K is the sensor sensitivitys is the 4xX 156 matrix which assigns the un-failed bearing is excerpted from the previous wdkas

sensor target locations to the corresponding states. If sensorsszn%wn in Eq.(97). -

collocated with magnetic actuatorS,becomesHT. Substituting 2 2 co%0) 2 sin0)
Egs.(83)—(84) into (82) leads to; - .
. -2 - —2sif —
Vg=KpHTX+KpHTX (86) 2003{4) 25"(4)
Equation(78) then becomes; 2 27
) 2 2 co T 2 Si T
Fmag=H(Kpost+ Kp)H™X+HKpHTX (87)
The closed loop equation is: 2 _>o Cog( 3_77) 5 sir(g—ﬂ)
: Yo 4 4
= T= . 97
Z(t) AC|Z+ BP(Fgrau+ Fu) (88) 4n\/ﬁ 2 2 CO$ 77) 2 S|r(’7T) ( )
where
57 [ 5
~M TG +HKpHT  —M K+ H(Kpost Kp)HT T2 m2coggr) m2sif g
A 1=
¢ I 0 6 [ 6m
(89) 2 2 co T 2si T
The closed loop dynamics may be stabilized by increaking
and kg until the control force overcomes the negative position —2 —2¢o 7_7" —2si 7_77
stiffness. Furthermore, the closed loop bearing stiffness and b 4 4 )
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Fig. 5 Fault-tolerant control scheme
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Fig. 6 Orbit plot for normal operation to the 5-6-7-8th poles failed op-
eration
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Fig. 7 Current inputs for normal operation to the 5-6-7-8th poles failed op-

eration

The calculated matrix for the 5-6-7-8th poles failed case is:

Equations(7) and(8) are satisfied with the calculatddas shown
in Egs.(99) and(100).

© 10398 0.01717  0.06897 . .
~4.9209 0.045068 0.057789 —4.107510" 049999 2510
=T, T _ _
~9.0257 0.031786 0.019684 TG T= 0'499969 0.000164 ~—0.00167
95003 0.038636 0.0690.48 - 2,510 ~0.0001676 0.001684 o)
T=
0 0 0 22610° 1.3879107  0.49999
0 0 0 76,7~ 1.3879107 00017771  0.00032816
0 0 0 049999  0.00032816 0.0008366
) 0 0 | (100)
flux density 4 flux density 3 flux density 2
- A PAMAAY ! ﬂ [
" %*A*VM*WW"WM% il T I
b . 3 -1 [T S R . i .
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Ml { i by
o ot
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1 T
0 01 0.2 v} 01 0.2
flux density 6 flux density 7 flux density 8
gol _[’_\WWW’\WWB‘ B a1\ T W.ﬂr\WﬁfMWﬁNk
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0 0?1 02 0 0:1 0.2 0 0.1 0.2
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Fig. 8 Flux densities for normal operation to the 5-6-7-8th poles failed opera-

tion
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Fig. 9 Orbit plot for normal operation to the 2-4-6-7-8th poles failed op-
eration
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Fig. 10 Current inputs for normal operation to the 2-4-6-7-8th poles failed
operation
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Fig. 11 Flux densities for normal operation to the 2-4-6-7-8th poles failed

operation
The calculatedl matrix for the 2-4-6-7-8th poles failed case is: 1.239107 0.49999 —3.67310°
[ —11.49 —0.0079149  0.05859B 177G, T=| 049999 —-4.33410'" -0.002205
0 0 0 —3.67310° —0.002205  2.999 10"
~2.731610%° 55249102 0.047502 (102)
. 0 0 0 (101) —5.75010° 581510 0.49999
—11.49 0.0079169  0.058593 T7G,T=| 581510 2.28610% -—212810"
0 0 0 0.49999 —2.12810%  0.001101
0 0 0 (103)
L 0 0 0 | The linearized forces of Eq$72) and (73) are obtained for the
10 e

-4

displacement (m)

) )
Wz
ST

m

o 0.1 0.2 03 0.4 05 0.6 0.7
rotor length (m)

Fig. 12 Steady state rotor whirling for the 2-4-6-7-8th coil failed operation
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5-6-7-8th poles failed at both bearings. Position and voltage stificknowledgments

ness, K K K and K,,, were —959640, 364350 . .
s Apxxo Rpxys Ppyys XX ’ ,
314430, and 0.9, respectively for, of 0.9. This shows that The authors express their gratitude to Andrew Provenza, Ralph

osition stiffness along the direction is much smaller than c)S._Jensen, Albert Kascak and Gerald Montague of the NASA Lewis-
posit : 9 Irection I1s mu posi Dynamics Branch and Tom Calvert and Lynn Peterson of the

tion stiffness along the direction. Control gains ok, andkq for - \aya| Surface Warfare Center - Carderock Division for spon-

unfailed operation are selected as 100 and 0.2 respectively. Cap:: :
trol gains ofk, andk for 4 poles failed operation are 450 and 1. Brlng this research.
respectively.

The transient response from normal operation with no failure fdomenclature
fault-tolerant control with 5-6-7-8th poles failed for both bearings

was simulated for nonlinear bearings at 10,000 RPM. Unbalance 2
eccentricity of 5.510°m is applied at both rotor ends. A tran- B
sient response orbit at bearidgs shown in Fig. 6. The orbit plot b
shows that the rotor sags slightly because of gravity. The rotor 55“
drops further while maintaining stable orbits when the 4 poles E
suddenly fail. g
Transient response of the current inputs to beatirigr 5-6-7-8th G. G
poles failed case is shown in Fig. 7. Transient response of the flux * ﬁ-',
I

densities in Bearind\ is shown in Fig. 8.
The linearized forces are also obtained for the 2-4-6-7-8th poles

. - . UpsUcx:Ucy
failed at both bearings, and control gainskgfandk, are selected

as 180 and 0.4 respectively. The position and voltage stiffness,

gpéxx, pry,_pry, andK,,, were —19_28400, 0,—385670, and Ko Koy s Ky K pyy
.9, respectively fov,, of 0.9. The transient response from normal ox Koy 1Koy Koy

operation to fault-tolerant control with 2-4-6-7-8th poles failed for K

both bearings was also simulated for nonlinear bearings at 10,000 Kpos:Kyol

RMP. Transient response of the orbit at bearng shown in Fig.

9. Transient response of the current inputs to beafingr the Kp.Kp

2-4-6-7-8th poles failed case is shown in Fig. 10.

Spikes occur when the 5 poles are suddenly failed. However, Kp . Kg
currents can be stabilized with time. It is interesting to note that L
control current level is considerably increased after the failure m
while the rotor drops further down. Therefore, the load capacity is M, M,
clearly reduced after the failure. K, is increased, the rotor will N
be lifted; however, this may saturate the power amplifier or mag- n
netic bearing(whatever comes firstand limit the benefit of in- R
creasing the proportional gain. Transient response of the flux den- Ty, Tu, Ty
sities in BearindA is shown in Fig. 11. This shows that the effects
of increasing off-diagonal error terms M, andM, barely affect T
the response, though maximum load capacity is reached. Steady T
state rotor whirling response after 5 coils are failed for both bear- Tq
ings are shown in Fig. 12.

U
UXO:UyO

UxxO :nyO ’ nyO :UyyO
7 Conclusions

\

General linearized magnetic forces for the heteropolar magnetic X,y
bearing are calculated with a fault-tolerant control scheme using a o
bias linearization method. Any one of the coil currents affects the N
flux in all of the air gaps. If one or more coils fail, a new coil o
current control scheme can be constructed which preserves the 0
linear relationship between the required forces and coil currents. 0”8

The calculation of a redistribution matrix of voltages which con-
sists of a redefined biasing voltage vector and two control voltage
vectors can be optimized in a manner that minimizes the fllReferences
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