
Optimised Schoolbook Polynomial Multiplication for Compact Lattice-
based Cryptography on FPGA

Liu, W., Fan, S., Khalid, A., Rafferty, C., & O'Neill, M. (2019). Optimised Schoolbook Polynomial Multiplication for
Compact Lattice-based Cryptography on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 1-5. https://doi.org/10.1109/TVLSI.2019.2922999

Published in:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2019 IEEE. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of
use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:28. Aug. 2022

https://doi.org/10.1109/TVLSI.2019.2922999
https://pure.qub.ac.uk/en/publications/a64bd26a-d363-4101-b93a-069b0d77439e


IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Optimised Schoolbook Polynomial Multiplication
for Compact Lattice-based Cryptography on FPGA

Weiqiang Liu, Senior Member, IEEE, Sailong Fan, Ayesha Khalid, Member, IEEE, Ciara Rafferty, Member, IEEE,
Máire O’Neill, Senior Member, IEEE

Abstract—Lattice-based cryptography (LBC) is one of the most
promising classes of post-quantum cryptography (PQC) that
is being considered for standardisation. This paper proposes
an optimised schoolbook polynomial multiplication for compact
LBC. We exploit the symmetric nature of Gaussian noise for
bit reduction. Additionally, a single FPGA DSP block is used
for two parallel multiplication operations per clock cycle. These
optimisations enable a significant 2.2× speedup along with
reduced resources for dimension n = 256. The overall efficiency
(throughput per slice) is 1.28× higher than the conventional
schoolbook polynomial multiplication, as well as contributing to
a more compact LBC system as compared to previously reported
designs. The results targeting the FPGA platform show that the
proposed design can achieve both high hardware efficiency with
reduced hardware area costs.

Index Terms—Lattice-based cryptography (LBC); polynomial
multiplication; FPGA

I. INTRODUCTION

TRADITIONAL public key cryptography algorithms in-
cluding RSA and elliptic-curve cryptography (ECC) will

no longer be secure in the near future, due to advancements in
quantum computing. The National Institute of Standards and
Technology (NIST) called for the proposal of post-quantum
cryptographic (PQC) algorithms [1] and received 70 PQC
algorithm submissions. Amongst the potential PQC algorithms
to be standardised, lattice-based cryptography (LBC) is one of
the most promising types. Almost half of the PQC candidates
in Round 2 of the PQC standardisation process are lattice
based [2]. LBC algorithms are based on the hard problem
of finding the shortest (or closest) vector (SVP or CVP) in
a lattice. These problems are believed to be hard for both
classical and quantum computers.

Polynomial multiplication plays a critical role in LBC, and
is typically carried out by schoolbook or number theoretic
transform (NTT) multiplication. Schoolbook polynomial mul-
tiplication (SPM) is a naive method, requiring direct multi-
plication and subsequent accumulation of results. Although
it is slow, it offers simple implementation and low hardware
resource cost. NTT is a much faster alternative that comes
with additional hardware resource costs and complexity in

This work is supported by grants from the NSFC (61871216), the Funda-
mental Research Funds for the Central Universities China (No. NE2019102)
and the Six Talent Peaks Project in Jiangsu Province (2018-XYDXX-009).

W. Liu, and S. Fan are with College of Electronic and Information
Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing,
China. E-mail: {liuweiqiang, fansl4g}@nuaa.edu.cn.

A. Khalid, C. Rafferty, and M. O’Neill are with the Centre for Secure
Information Technologies (CSIT), Queen’s University Belfast, UK. E-mail:
{a.khalid, c.m.rafferty}@qub.ac.uk, m.oneill@ecit.qub.ac.uk.

terms of operations (pre-computation, array reordering, post-
computation) apart from the NTT/inverse-NTT butterflies.
Both methods have been widely used for different scenarios;
a relevant survey discusses various butterfly architectures and
techniques [3]. [4] proposes adaptable and extensible hardware
implementations of both NTT and SPM methods supporting
various operand sizes. Working towards efficient design, Du
and Bai [5] reduced the required clock cycles and saved
storage by exploring the characteristics of twiddle factors.
In the case of SPM, limited research exists: [6] suggested
area optimisation techniques for SPM hardware. Moreover, [7]
employed SPM in LBC for digital signatures on FPGAs. Until
now, little research has been conducted in terms of a thorough
trade-off between performance and hardware consumption for
SPM. Furthermore, in round 2 of the NIST PQC initiative, half
of the 12 LBC contestants including FRODO-KEM, Round5,
Saber, Threebears and NTRUPrime do not use NTT [2]. NTT
is suitable for the parameters on the specific modulo ring while
schoolbook multiplication is a more generic approach. There-
fore, it is important to explore how to efficiently implement
schoolbook multiplication.

Ring-Learning With Errors (R-LWE) is a widely investigat-
ed algorithm that is based on a hard lattice problem. The most
critical operation in R-LWE schemes is polynomial multipli-
cation on the ring. It operates on the ring Zq[x]/(xn + 1),
where q is the modular prime.

This research proposes a compact and efficient hardware
design for R-LWE encryption/decryption based on schoolbook
polynomial multiplication. We exploit the distribution sym-
metry of Gaussian noise to achieve a reduced bit-width and
full utilisation of DSP blocks. A compact SPM is designed
with approximately 2× speedup without additional hardware
resource consumption. A comparison with existing R-LWE
designs is provided, which highlights the efficiency of our pro-
posed design. The proposed design optimisations can also be
undertaken for other LBC schemes and other FPGA families.

II. PRELIMINARY BACKGROUND

Table I details the R-LWE based public key encryption
(PKE) scheme. We focus on encryption and decryption, as-
suming that key generation can be carried out infrequently and
offline. The hardware resource requirements for R-LWE en-
cryption and decryption are mainly due to the SPM. Dσ is the
Gaussian distribution with standard deviation σ, and U is the
uniform distribution. Polynomials c1 and c2 are the ciphertext
results. The decryption procedure also performs polynomial



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2

multiplication and addition, and DECODEs the polynomial to
plaintext. Please refer to [8] for more details on the R-LWE
scheme. It is evident that polynomial multiplication is the most
computationally intensive part of the cryptographic scheme.

TABLE I
THE R-LWE ENCRYPTION SCHEME

Polynomial a ← U and p are the public key,
r2 ← Dσ is the secret key.

Enc(a,p,m) Generate e1, e2, e3 ← Dσ . Let m̄ =
ENCODE(m). Then the cipher text is c1 =
ae1 + e2, c2 = pe1 + e3 + m̄.

Dec(c1, c2) m′ = DECODE(c = c1r2 + c2).

The typical SPM algorithm used in R-LWE can be ex-
pressed as Eq. (1) [4]. Considering the property of polynomial
multiplication that xn ≡ −1, note that the product c(x) =
a(x) × b(x) is not a normal circumferential convolution. It
has a sign bit in the accumulation, namely (−1)b(i+j)/nc. This
sign bit is 1 if i+ j < n and -1 otherwise. The dimension is
denoted as n, which means this method has O(n2) complexity.

c = ab =

n−1∑
i=0

n−1∑
j=0

aibjx
i+j

 mod (xn + 1)

=

n−1∑
i=0

n−1∑
j=0

(−1)b(i+j)/ncaibjx(i+j)mod n
(1)

Polynomial addition is an ordered sequential addition, well
suited for a low cost hardware implementation. To evaluate the
encryption/ decryption performance of R-LWE, we implement
both polynomial multiplication and addition (denoted as PMA)
on FPGA as shown in Alg. 1. This algorithm calculates d =
a ∗ b + c. First, the elements a multiplied b are calculated,
then the Barrett reduction algorithm is used to perform the
modular operation with the prime (q) and finally, the result is
assigned to d. The modular reduction in line 11 only requires
a multiplexer due to the small bit-width.

In most of the reported hardware designs [8]–[10] with
a medium security level, the R-LWE parameter set (n =
256, q = 7681, s = 11.31) is used. For modular q reduction,
[11] introduces an algorithm that uses shift, add and subtract
operations to accomplish the modular reduction. For the noise,
a zero centred discrete Gaussian distribution (like r2) with a
standard deviation of s/

√
2π = 4.51 is considered. On the

modular ring, Gaussian distribution is shown in Fig. 1. As
most of the lattice-based cryptosystem in NIST PQC Round
2 candidates require Gaussian or binomial distribution, the
proposed methods in Section III can be extended to such
distributions that have a bounded interval around 0.

III. THE PROPOSED OPTIMISED POLYNOMIAL
MULTIPLICATION

This section proposes two novel techniques for efficient
hardware implementation of R-LWE encryption/decryption
modules.

Algorithm 1 Schoolbook PMA for Encryption or Decryption
Input:

a, b, c, (polynomial in Zq[x]/(xn + 1));
q, prime modular;

Output:
d, (polynomial in Zq[x]/(xn + 1));

1: for i = 0 : n− 1 do
2: sum← c[i];
3: for j = 0 : n− 1 do
4: ab← a[j]× b[(i− j) mod n];
5: ab m← ab mod q;
6: sig ← (i < j) ? 1 : 0;
7: if sig == 1 then
8: ab m← q − ab m;
9: end if

10: tmp← sum+ ab m;
11: sum← tmp mod q;
12: end for
13: d[i]← sum;
14: end for
15: return d

Fig. 1. Discrete Gaussian function distribution (q = 7681 and σ = 4.51).

A. Reduced Bit-Width Due to the Noise Distribution Symmetry

The discrete Gaussian noise distribution as shown in Fig. 1
is naturally symmetrical between [0, q − 1]. Without loss of
generality, for σ = 4.51, the number range is limited to [0, 31]
and [−31,−1] (i.e., [7650, 7680] on the modular integer ring if
presented as an unsigned number). Opting for signed number
representation instead of naı̈ve 13-bit representation can save
hardware resources. For the required number range, 1 sign
bit and 5 data bits (6 bits in total) are enough to represent
the input data instead of a 13-bit unsigned representation, as
shown in Fig. 2. This proposed reduced bit-width technique
can be applied to all polynomial multiplications in various
R-LWE based PKE schemes.

Fig. 2. The sign bit and data bits for reduced bit width representation.

The reduced signed representation reduces the data for
multiplication as well as memory accesses, and the mod-



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3

ular operation described in Alg. 2 is also simplified. The
multiplication product width is reduced from 26 bits (13-
bit × 13-bit) to 17 bits (13-bit × 5-bit), as the sign bit is
not used during the modular multiplication. The sign bit is
used for number inversion, as shown in line 7 of Alg. 1.
Compared to the original modular reduction in [11], it saves
one addition, one multiplexer and one subtraction. In line
2 of Alg. 2, tq is the product of t multiplied q. In line
3, y is an approximate modular result, which requires extra
subtractions. Furthermore, the reduced bit-width multiplication
makes it possible to perform two multiplications on a single
DSP block in FPGA, which will be further discussed in the
next subsection.

Algorithm 2 Novel Modular Reduction for q = 7681

Input:
x, 17-bit unsigned integer;
q, prime modular;

Output:
y, 13-bit unsigned integer;

1: t← x[17] + x[17 : 13];
2: tq ← (t << 13) + t− (t << 9);
3: y ← x− tq;
4: if y ≥ q then
5: y ← y − q;
6: end if
7: if y ≥ q then
8: y ← y − q;
9: end if

10: return y

B. Full Utilisation of FPGA DSP Blocks

In Xilinx 7 series FPGAs, a single DSP block can support
a 25× 18 bit multiplication. For R-LWE, due to the reduced
size of the multiplication required (13× 5) we can efficiently
pack two multiplicands to perform two multiplications using
one DSP block on the FPGA. This bit packing is elaborated
in Alg. 3, where two multiplications m = a× c and n = b× c
are depicted. First, in line 1, a and b are concatenated with
13 inserted zeros in the middle, to form a new multiplicand
tmp ab. The tmp ab is 23 bits in size, where the first 5
bits are b, the last 5 bits are a, and with 13 zeros in the
middle. Then in line 2, a 23 × 13 multiplication is carried
out. In lines 3-4, the results m and n are separated out for
two parallel multiplications. The whole process is presented
in detail in Fig. 3. The product of a × c is an 18-bit result,
unrelated to the product of b × c. This packing enables two
simultaneous multiplications via one DSP slice per cycle.
This trick can be extended to newer Xilinx FPGA families
(including Ultrascale and Ultrascale+), that come with DSP
multiplier slices of similar or wider dimensions, e.g., 27× 18
multiplier in Ultrascale+.

The optimised schoolbook PMA, presented in Alg. 4, uses
both optimisation techniques. Firstly it offers reduced bit-width
representation to save hardware resources which simplifies
the modular reduction and reduces the critical path delay. In

Algorithm 3 Two Multiplications within One DSP Block
Input:

a, 5-bit unsigned integer;
b, 5-bit unsigned integer;
c, 13-bit unsigned integer;

Output:
m, 18-bit unsigned integer;
n, 18-bit unsigned integer;

1: tmp ab← {b, 13′d0, a};
2: tmp← tmp ab× c;
3: m← tmp[17 : 0];
4: n← tmp[35 : 18];
5: return m,n

Alg. 4, the polynomial b elements are the discrete Gaussian
distribution samples, each of length 5-bits. Secondly, by em-
ploying full utilisation of DSP blocks, the system carries out
two multiplications, boosting performance without extra DSP
resources. In line 14 and line 17, sign() denotes the MSB of
the signed number (sig1/sig2 = 1 for negative number). For
negative numbers, result ab m should be subtracted from the
modulus q.

IV. HARDWARE IMPLEMENTATION RESULTS

A. Hardware Design Structure

The high-level hardware block diagram of the optimised
SPMA is shown in Fig. 4. There are four input data from the
BRAMs for storing the three polynomials a, b and c, in which
polynomial b allows two parallel accesses per clock cycle.
Right after the multiplication, the data splits into two parallel
pipelined parts. Then modular reduction operations follow
next. The control signals ’sig1’ xor ’b1.sign()’ and ’sig2’
xor ’b2.sign()’ are used to determine the sign of accumulated
data. Finally the results d1 and d2 are written to the BRAMs.
BRAMs are controlled by the Control Address Unit.

a

b1

b2

Mod q

Mod q

q-m1

Control Address Unit

q-m2

m1

m2

13

6

6

0
13 23

36

Reg

Reg

c
d1

d2

13

13

14

14

13

SPMA

sum1

sum2
1

1

sig1 sig2

Fig. 4. Hardware structure of the optimised SPMA.

B. SPMA Performance Results

The designs are synthesized and implemented using Xilinx
Vivado 2016.4 targeting a Kintex-7 FPGA (KC705) and post-
place and route results are presented in Table II. SPMA-
1 refers to the a naı̈ve design with no optimisations as



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 4

b0b4 b3 b2 b1 a0a4 a3 a2 a1

c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0

m5 m4 m3 m2 m1 m0m11 m10 m9 m8 m7 m6m17 m16 m15 m14 m13 m12

n5 n4 n3 n2 n1 n0n11 n10 n9 n8 n7 n6n17 n16 n15 n14 n13 n12

Fig. 3. The block diagram of two multiplications in DSP block.

Algorithm 4 The Optimised Schoolbook PMA for Encryption
or Decryption
Input:

a, b, c, (polynomial in Zq[x]/(xn + 1));
q, prime modular;

Output:
d, (polynomial in Zq[x]/(xn + 1));

1: for i = 0 : 2 : n− 2 do
2: sum1← c[i];
3: sum2← c[i+ 1];
4: for j = 0 : n− 1 do
5: tmp a← a[j];
6: tmp b1← b[(i− j) mod n];
7: tmp b2← b[(i− j + 1) mod n];
8: tmp b← (tmp b1 << 18) + tmp b2;
9: ab← tmp a× tmp b;

10: ab m1← ab[17 : 0] mod q;
11: ab m2← ab[35 : 18] mod q;
12: sig1← (i < j) ? 1 : 0;
13: sig2← (i+ 1 < j) ? 1 : 0;
14: if sig1⊕ tmp b1.sign() then
15: ab m1← q − ab m1;
16: end if
17: if sig2⊕ tmp b2.sign() then
18: ab m2← q − ab m2;
19: end if
20: tmp1← sum1 + ab m1;
21: tmp2← sum2 + ab m2;
22: sum1← tmp1 mod q;
23: sum2← tmp2 mod q;
24: end for
25: d[i]← sum1;
26: d[i+ 1]← sum2;
27: end for
28: return d

described in Alg. 1. SPMA-2 exploits the reduced bit-width
technique, while SPMA-3 additionally uses the DSP bit pack-
ing technique. The SPMA-2 design requires around 15.2% less
FPGA resources and achieves a higher operating frequency.
The SPMA-3 design achieves the highest throughput due
to two reasons: firstly, due to a reduction in the critical
path, enabling the highest operating frequency, and secondly,
SPMA-3 almost halves the computation cycles required and
consequently achieves twice the speedup compared to SPMA-
1. The efficiency (denoted as throughput per slice) of SPMA-3
is 2.28× compared with SPMA-1.

TABLE II
HARDWARE IMPLEMENTATION RESULTS OF DIFFERENT SPMA DESIGNS

Type LUT/FF/Slice
/BRAM/DSP

Freq
(MHz) Cycle Throughput

(Kbps)
Throughput

/Slice

SPMA-1 277/266/112/0/1 290.61 65548 1135.0 10.13

SPMA-2 244/245/95/0/1 305.44 65548 1192.9 12.56

SPMA-3 317/198/108/0/1 333.00 34177 2494.3 23.10

C. R-LWE Cryptography Implementation Results

TABLE III
EQUIVALENT NUMBER OF SLICES (ENS) ON FPGA

Type Slice DSP BRAM(8K) BRAM(18K) BRAM(36K)

#Slice 1 128 70 166 327

Weight 1.0 0.8 0.8 0.7 0.6

ENS. 1 102.4 56 116.2 196.2

In the context of R-LWE based PKE, SPMA-3 can be used
in all three modules: key generation, encryption and decryp-
tion. The encryption module consists of 3 Gaussian samplers,
2 SPMA-3 and one polynomial addition. The implementation
of the Gaussian sampler is based on cumulative distribution
table (CDT) sampling design, which resists the threat of timing
attacks by inherently running in constant time [12]. The overall
R-LWE cryptosystem hardware block diagram is presented in
Fig. 5.

RAM1

e1

RAM2

e2/e3

CDT

SPMA

rng

a / p
RAM3

c1/c2

Control 

Address Unit

m
ENCODE

SPMA

RAM4

c

DECODE

r2

Encryption Decryption

m 

e1

e2/e3

Fig. 5. Overall hardware structure of R-LWE scheme (The details of SPMA
is provided in Fig. 4).

To ensure a fair comparison of our optimised SPMA-3 based
R-LWE design with earlier reported FPGA implementations
(on Spartan and Virtex families), the following method of
equivalence conversion is proposed for design evaluation. We



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

TABLE IV
COMPARISONS WITH OTHER R-LWE DESIGNS

Implementation Device Type LUT/FF/Slice DSP BRAM(18K)/(8K) MHz Cycle Time(µs) Throughput(Kbps) ENS Efficiency

This Work
(Schoolbook) Kintex-7 Enc 898/815/303 1 0/3 304.69 69654 229 1119.84 573.4 1.95

Dec 635/190/194 1 0/1 303.40 34436 114 2255.49 352.4 6.40

[6]
(Schoolbook) Spartan-6 Enc 360/290/114 1 0/2 128 136986 1070 239.21 328.4 0.73

Dec 162/136/51 1 0/1 179 66304 370 691.12 209.4 3.30

[8]
(NTT) Virtex-6 Enc 4549/3624/1506 1 12/0 262 6861 26 9775.83 3002.8 3.26

Dec 4549/3624/1506 1 12/0 262 4404 17 15229.79 3002.8 5.07

[9]
(NTT) Virtex-6 Enc 1349/860/410 1 2/0 313 6300 20 12718.73 744.8 17.08

Dec 1349/860/410 1 2/0 313 2800 9 28617.14 744.8 38.42

[10]
(NTT) Spartan-6 Enc 1307/889/406 0 1/3 80 360.5k 4500 56.81 690.2 0.08

Dec 1307/889/406 0 0/1 80 72.0k 900 284.44 462.0 0.62

first convert the DSP blocks and BRAMs used in a given
design into an equivalent number of slices. For Xilinx 7 series,
a single DSP block can be replaced by 128 slices for a 25×18
multiplier using the built-in IP core. But not every design fully
uses the DSP block, so weight of 0.8 is assigned to the DSP
block (1 DSP block = 128 × 0.8 = 102.4) slices. Similarly,
each BRAM(18K) can be substituted for 116.2 (166 × 0.7)
slices and BRAM(8K) can be replaced by 56 (70 × 0.8)
slices. The BRAMs are reconstituted by the slice memory
using two dual-ported RAM mode. Table III shows the detailed
equivalent number of slices (defined as ENS) on FPGA.

Table IV compares the proposed design with previous R-
LWE implementations, using the same parameter set (n =
256, q = 7681, s = 11.31) except [6]. The design in [6]
also uses SPMAs, but it has lower frequency and throughput,
and its efficiency is much lower than the proposed design.
Furthermore, it uses a parameter set of (256, 4093, 8.35) which
is considered to be less secure compared with other designs
in the table. The latest design [10] claims resistance against
timing attack due to the usage of CDT based noise sampling.
However, it is much slower than other hardware designs. [8]
proposes a fast R-LWE cryptographic processor at the cost
of substantially more resource. The most efficient design [9]
only use NTT (without inverse NTT) for encryption and only
inverse NTT for decryption. Meanwhile, NTT computation
requires computation of twiddle factors, which requires the
RAM storage when precomputed. However, these RAMs have
not been included for comparison. As mentioned in the intro-
duction section, half of the 12 LBC contestants in round 2 of
the NIST PQC initiative do not use NTT.

Due to the two proposed novel techniques for optimised
SPMA, we achieve efficient design for R-LWE encryption
and decryption. Our design only requires 69, 654 clock cycles
(0.229ms) for encryption and 34, 436 clock cycles (0.114ms)
for decryption, which makes our proposed design the optimal
choice for resource constrained devices, achieving both high
hardware efficiency and performance.

V. CONCLUSIONS

This research proposes novel optimisations for the most
computationally intensive part of lattice-based cryptography

constructions, i.e., the polynomial multiplier, targeting the
high speed FPGA platform. We exploit the noise distribution
symmetry to reduce the dynamic range and reduced bit-width
of the discrete Gaussian data samples. This simplification also
leads to smart packing of data and the full utilisation of the
DSP block to gain a 2× speedup.

REFERENCES

[1] NIST, Report on post-quantum cryptography. US Department of
Commerce, National Institute of Standards and Technology, 2016.

[2] NIST, “PQC round 2.” https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions. Last accessed
Feb. 2019.

[3] F. Valencia, A. Khalid, E. O’Sullivan, and F. Regazzoni, “The design
space of the number theoretic transform: A survey,” in Proc. Int. Conf.
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), pp. 273–277, 2017.

[4] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware,” in Proc. Int. Conf.
Cryptology and Information Security in Latin America, pp. 139–158,
2012.

[5] C. Du and G. Bai, “Towards efficient polynomial multiplication for
lattice-based cryptography,” in Prof. IEEE Int. Symp. Circuits and
Systems (ISCAS), pp. 1178–1181, 2016.

[6] T. Poppelmann and T. Guneysu, “Area optimization of lightweight
lattice-based encryption on reconfigurable hardware,” in Proc. IEEE Int.
Symp. Circuits and Systems (ISCAS), pp. 2796–2799, 2014.

[7] J. Howe, C. Rafferty, A. Khalid, and M. O’Neill, “Compact and provably
secure lattice-based signatures in hardware,” in Proc. IEEE Int. Symp.
Circuits and Systems (ISCAS), pp. 1–4, 2017.

[8] T. Pöppelmann and T. Güneysu, “Towards practical lattice-based public-
key encryption on reconfigurable hardware,” in Proc. Int. Conf. Selected
Areas in Cryptography, pp. 68–85, 2013.

[9] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-lwe cryptoprocessor,” in International Workshop on
Cryptographic Hardware and Embedded Systems, pp. 371–391, 2014.

[10] D. Liu, C. Zhang, H. Lin, Y. Chen, and M. Zhang, “A resource-
efficient and side-channel secure hardware implementation of Ring-LWE
cryptographic processor,” IEEE Trans. Circuits and Systems I: Regular
Papers, pp. 1–10, 2018.

[11] Z. Liu, H. Seo, S. S. Roy, J. Großschädl, H. Kim, and I. Verbauwhede,
“Efficient Ring-LWE encryption on 8-bit AVR processors,” in Proc.
Cryptographic Hardware and Embedded Systems (CHES), pp. 663–682,
2015.

[12] A. Khalid, J. Howe, C. Rafferty, and M. O’Neill, “Time-independent
discrete Gaussian sampling for post-quantum cryptography,” in Proc.
Int. Conf. Field-Programmable Technology (FPT), pp. 241–244, 2016.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

	Introduction
	Preliminary Background
	The Proposed Optimised Polynomial Multiplication
	Reduced Bit-Width Due to the Noise Distribution Symmetry
	Full Utilisation of FPGA DSP Blocks

	Hardware Implementation Results
	Hardware Design Structure
	SPMA Performance Results
	R-LWE Cryptography Implementation Results

	Conclusions
	References

