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Summary. The strategy of domain decomposition methods is to decompose the computa-

tional domain into smaller subdomains. Each subdomain is assigned to one processor. The

equations are solved on each subdomain. In order to enforce the matching of the local so-

lutions, interface conditions have to be written on the boundary between subdomains. These

conditions are imposed iteratively. The convergence rate is very sensitive to these interface

conditions. The Schwarz method is based on the use of Dirichlet boundary conditions. It can

be slow and requires overlapping decompositions. In order to improve the convergence and

to be able to use non-overlapping decompositions, it has been proposed to use more general

boundary conditions. It is even possible to optimize them with respect to the efficiency of the

method. Theoretical and numerical results are given along with open problems.

1 Introduction: Original Schwarz Method (1870)

The first domain decomposition method was developed at the end of the 19th century

by the mathematician H. A. Schwarz. His goal was to study the Laplace operator. At

that time, the main tool for this purpose was Fourier analysis and more generally

the use of special functions. Geometries of the domain were essentially restricted to

simple configurations: rectangles and disks, see Fig. 1. His idea was to study the case

of a domain that is the union of simple domains. For example, let Ω = Ω1∪Ω2 with

Ω1∩Ω2 6= /0. We want to solve

−∆u = f in Ω

u = 0 on ∂Ω .
(1)

Schwarz proposed the following algorithm (Alternating Schwarz Method):

Let (un
1,u

n
2) be an approximation to (u|Ω1

,u|Ω2
) at step n of the algorithm,

(un+1
1 ,un+1

2 ) is defined by

−∆un+1
1 = f in Ω1

un+1
1 = 0 on ∂Ω1∩∂Ω

un+1
1 = un

2 on ∂Ω1∩Ω2.

−∆un+1
2 = f in Ω2

un+1
2 = 0 on ∂Ω2∩∂Ω

un+1
2 = un+1

1 on ∂Ω2∩Ω1.
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Fig. 1. Overlapping domain decomposition

The problem in domain Ω1 has to be solved before the problem in domain Ω2. This

algorithm is sequential. Schwarz proved linear convergence of (un
1,u

n
2) to (u|Ω1

,u|Ω2
)

as n tends to infinity.

A slight modification of the algorithm is

−∆un+1
1 = f in Ω1

un+1
1 = 0 on ∂Ω1∩∂Ω

un+1
1 = un

2 on ∂Ω1∩Ω2.

−∆un+1
2 = f in Ω2

un+1
2 = 0 on ∂Ω2∩∂Ω

un+1
2 = un

1 on ∂Ω2∩Ω1.

(2)

Problems in domains Ω1 and Ω2 may be solved concurrently. The algorithm is par-

allel and is adapted to parallel computers.

The discrete version of (2) is the RAS algorithm, see [7, 8].

1.1 Towards Faster Methods: Two Families of Methods

The benefit of the above Schwarz algorithms is the saving in memory requirements.

Indeed, if the problems are solved by direct methods, the cost of the storage is non-

linear with respect to the number of unknowns. By dividing the original problem

into smaller pieces the amount of storage can be significantly reduced. As far as

CPU is concerned, the original Schwarz algorithms work fine for some problems but

may be very slow for others. Roughly speaking for time dependent problems with

relatively small time steps, the methods will perform well (e.g. transient compress-

ible flow computations). But for steady state problems (e.g. Helmholtz or harmonic

Maxwell’s equations), it can be very slow. Another weakness is the need of overlap-

ping subdomains. Indeed, only the continuity of the solution is imposed and nothing

is imposed on the matching of the fluxes. When there is no overlap convergence is

thus impossible.

The slowness of the method and the need for overlapping subdomains are linked.

Indeed, it can be proved that the convergence rate of the Schwarz method is a continu-

ous function of the size of the overlap denoted δ . For small overlaps the convergence

rate is close to one. Actually it can be proved that for small overlaps the convergence

rate varies as 1−Ctδ .

In order to remedy the drawbacks of the original Schwarz method, two families

of methods have been developed. They both work in the non-overlapping case and

consist of introducing the normal derivative of the solution, but in two very different

ways:
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• write a substructured formulation of the domain decomposition problem where

the matching of the solution and of its normal derivative along the interface are

imposed explicitly.

• Modify the original Schwarz method by replacing the Dirichlet interface condi-

tions on ∂Ωi \ ∂Ω , i = 1,2, by Robin interface conditions (∂ni
+ α , where n is

the outward normal to subdomain Ωi), see [17].

The first approach corresponds to “Neumann-Neumann or FETI Methods”. The sec-

ond approach is developped in what follows.

More generally, a complete overview of various domain decomposition methods

may be found in a few books [4, 22, 30, 32] or in the proceedings of various confer-

ences on domain decomposition methods, see e.g. [1, 3, 16] and references therein.

2 Modified Schwarz Method

The Restrictive Additive Schwarz Method presents the drawback of needing over-

lapping subdomains in order to converge. In this chapter, we consider several im-

provements:

• replacement of the Dirichlet interface conditions by mixed interface conditions

which yield convergence for non overlapping domain decompositions, see sec-

tion 2.1;

• optimization of the interface conditions for faster convergence, see section 2.2;

• replacement of the fixed point iterative strategy of (2) by Krylov type methods,

see [4].

2.1 Generalized Schwarz Methods

A major improvement of the Schwarz method comes from the use of other interface

conditions. It has first been proposed by P.L. Lions to replace the Dirichlet interface

conditions by Robin interface conditions, see [17]. Let α be a positive number; the

modified algorithm is:

−∆un+1
1 = f in Ω1,

un+1
1 = 0 on ∂Ω1∩∂Ω ,

(
∂

∂n1
+α

)
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1 =

(
− ∂
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)
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2 on ∂Ω1∩Ω2

(n1 and n2 are the outward normals on the boundary of the subdomains),
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The convergence proof given by P. L. Lions in the elliptic case was extended by

B. Desprès [6] to the Helmholtz equation. A general presentation is given in [5]. It

can also be extended to more general interface conditions with second order tangen-

tial derivatives in the interface conditions, see [19].

2.2 Optimal Interface Conditions

In the preceding section, we have seen that a general convergence result holds for in-

terface conditions with Robin or second order tangential derivatives. Actually these

conditions are not the most general. Rather than giving the general conditions in an

a priori form, we shall derive them in this section so as to have the fastest conver-

gence. We establish the existence of interface conditions which are optimal in terms

of iteration counts. The corresponding interface conditions are pseudo-differential

and are not practical. Nevertheless, this result is a guide for the choice of partial

differential interface conditions. Moreover, this result establishes a link between the

optimal interface conditions and artificial boundary conditions. This is also a help

when dealing with the design of interface conditions since it gives the possibility to

use the numerous papers and books published on the subject of artificial boundary

conditions, see e.g. [8, 12].

We consider a general linear second order elliptic partial differential operator L

and the problem:

Find u such that L(u) = f in a domain Ω and u = 0 on ∂Ω .

The domain Ω is decomposed into two subdomains Ω1 and Ω2. We suppose that

the problem is regular so that ui := u|Ωi
, i = 1,2, is continuous and has continuous

normal derivatives across the interface Γi = ∂Ωi ∩ Ω̄ j, i 6= j. A modified Schwarz

type method is considered.

Lun+1
1 = f in Ω1 un+1

1 = 0 on ∂Ω1∩∂Ω

µ1∇un+1
1 .n1 +B1un+1

1 =−µ1∇un
2.n2 +B1un

2 on Γ1

Lun+1
2 = f in Ω2 un+1

2 = 0 on ∂Ω2∩∂Ω

µ2∇un+1
2 .n2 +B2un+1

2 =−µ2∇un
1.n1 +B2un

1 on Γ2

(3)

where µ1 and µ2 are real-valued functions and B1 and B2 are operators acting on the

interfaces Γ1 and Γ2. For instance, µ1 = µ2 = 0 and B1 = B2 = Id correspond to the

algorithm (2); µ1 = µ2 = 1 and Bi = α ∈ R, i = 1,2, has been proposed in [17] by

P.L. Lions.

The question is:

Are there other possibilities in order to have convergence

in a minimal number of steps?

In order to answer this question, we note that by linearity, the error e satisfies (µ1 =
µ2 = 1)
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L(en+1
1 ) = 0 in Ω1 en+1

1 = 0 on ∂Ω1∩∂Ω

∇en+1
1 ·n1 +B1(e

n+1
1 ) =−∇en

2 ·n2 +B1(e
n
2) on Γ1

L(en+1
2 ) = 0 in Ω2 en+1

2 = 0 on ∂Ω2∩∂Ω

∇en+1
2 ·n2 +B2(e

n+1
2 ) =−∇en

1 ·n1 +B2(e
n
1) on Γ2

The initial guess e0
i is arbitrary so that it is impossible to have convergence at

step 1 of the algorithm. Convergence needs at least two iterations. Having e2
1 ≡ 0

requires −∇e1
2.n2 + B1(e

1
2) ≡ 0. The only meaningful information on e1

2 is that

L(e1
2) = 0 in Ω2. In order to use this information, we introduce the DtN (Dirichlet

to Neumann) map (a.k.a. Steklov-Poincaré): Let

u0 : Γ1→ R

DtN2(u0) := ∇v.n2|∂Ω1∩Ω̄2
,

(4)

where n2 is the outward normal to Ω2 \ Ω̄1, and v satisfies the following boundary

value problem:

L(v) = 0 in Ω2 \ Ω̄1

v = 0 on ∂Ω2∩∂Ω

v = u0 on ∂Ω1∩ Ω̄2.

Let B1 := DtN2. This choice is optimal since we can check that −∇e1
2 · n2 +

B1(e
1
2) ≡ 0. The use of Bi = DtN j (i 6= j) as interface conditions in (3) is optimal:

we have (exact) convergence in two iterations.

The two-domain case for an operator with constant coefficients has been first

treated in [13]. The multidomain case for a variable coefficient operator with both

positive results [20] and negative conjectures [21] has been considered as well.

Remark 1. The main feature of this result is to be very general since it does not

depend on the exact form of the operator L and can also be extended to more general

systems or to coupled systems of equations as well with a proper care of the well

posedness of the algorithm.

As an application, we take Ω = R2 and Ω1 = (−∞,0) ×R. Using a Fourier

technique, it is possible to give the explicit form of the DtN operator for a constant

coefficient operator. If L = η −∆ , the DtN map is a pseudo-differential operator

whose symbol is

Bi,opt(k) =
√

η + k2,

i.e., Bi,opt(u)(0,y) =
∫

R Bi,opt(k)û(0,k)eiky dk. This symbol is not polynomial in the

Fourier variable k so that the operators and the above example shows, exact absorbing

conditions are in general pseudo-differential. They correspond to exact absorbing

conditions. These conditions are used on the artificial boundary resulting from the

truncation of a computational domain. On this boundary, boundary conditions have

to be imposed. The solution on the truncated domain depends on the choice of this
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artificial condition. We say that it is an exact absorbing boundary condition if the

solution computed on the truncated domain is the restriction of the solution of the

original problem. Surprisingly enough, the notions of exact absorbing conditions for

domain truncation and that of optimal interface conditions in domain decomposition

methods coincide.

As the above examples show, they are pseudodifferential. Therefore they are dif-

ficult to implement. Moreover, in the general case of variable coefficient operators

and/or a curved boundary, the exact form of these operators is not known, although

they can be approximated by partial differential operators which are easier to imple-

ment. The approximation of the DtN has been addressed by many authors since the

seminal paper [8] by Engquist and Majda on this question.

It turns out that the approximations designed for domain truncation perform poorly

when used in domain decomposition methods. There have been many research efforts

in the last 15 years on how to tune approximate DtN maps so that they perform well in

domain decomposition methods. The first works were based on Fourier techniques,

see e.g. [3, 4, 5] and references therein. These approaches work fine for smooth co-

efficients operators. But when dealing with highly discontinuous coefficients, it is

necessary to take a more algebraic approach, see [11, 18] in this direction. Results

are promising but many issues are still open, see below.

3 Conclusion and Open Problems

Both approaches (Neumann-Neumann and optimized Schwarz methods) are robust

thanks to Krylov methods. Neumann-Neumann, BDDC and FETI type methods are

optimal but lack generality. Optimized Schwarz methods are general but are more

difficult to tune. The main open problems are from a practical point of view

• the design of algebraic optimized interface conditions that are as efficient as the

analytic ones

• the interplay between the optimized interface conditions and a coarse grid

(see [15])
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