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Abstract. The classical Schwarz method is a domain decomposition method to solve elliptic
partial differential equations in parallel. Convergence is achieved through overlap of the subdomains.
We study in this paper a variant of the Schwarz method which converges without overlap for the
Helmholtz equation. We show that the key ingredients for such an algorithm are the transmission
conditions. We derive optimal transmission conditions which lead to convergence of the algorithm
in a finite number of steps. These conditions are, however, nonlocal in nature, and we introduce
local approximations which we optimize for performance of the Schwarz method. This leads to an
algorithm in the class of optimized Schwarz methods. We present an asymptotic analysis of the opti-
mized Schwarz method for two types of transmission conditions, Robin conditions and transmission
conditions with second order tangential derivatives. Numerical results illustrate the effectiveness of
the optimized Schwarz method on a model problem and on a problem from industry.
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1. Introduction. The classical Schwarz algorithm has a long history. It was
invented by Schwarz more than a century ago [25] to prove existence and uniqueness
of solutions to Laplace’s equation on irregular domains. Schwarz decomposed the ir-
regular domain into overlapping regular ones and formulated an iteration which used
only solutions on regular domains and which converged to a unique solution on the
irregular domain. A century later the Schwarz method was proposed as a computa-
tional method by Miller in [23], but it was only with the advent of parallel computers
that the Schwarz method really gained popularity and was analyzed in depth both
at the continuous level (see, for example, [17], [18], [19]) and as a preconditioner for
discretized problems (see the books by Quarteroni and Valli [24] and Smith, Bjørstad,
and Gropp [26] or the survey papers by Chan and Mathew [4], Xu [28], Xu and
Zou [29], and references therein). The classical Schwarz algorithm is not effective for
Helmholtz problems because the convergence mechanism of the Schwarz algorithm
works only for the evanescent modes, not for the propagative ones. Nevertheless, the
Schwarz algorithm has been applied to Helmholtz problems by adding a relatively fine
coarse mesh for the propagative modes in [3] and changing the transmission conditions
from Dirichlet in the classical Schwarz case to Robin, as first done in [9], and then in
[8], [1], [7], [22], [2], [21], [6]. We study in this paper the influence of the transmission
conditions on the Schwarz algorithm for the Helmholtz equation. We derive optimal
transmission conditions which lead to the best possible convergence of the Schwarz
algorithm and which do not require overlap to be effective as in [12]. These optimal
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transmission conditions, however, are nonlocal in nature and thus not ideal for im-
plementations. We focus in what follows on approximating the optimal transmission
conditions by local transmission conditions and we optimize them for performance of
the Schwarz algorithm, which leads to optimized Schwarz methods without overlap
for the Helmholtz equation. Even though the optimization is performed on a model
problem in the whole plane, the derived optimized transmission conditions can be
used for general decompositions of arbitrary domains, as we illustrate in section 5,
and they prove to be effective on both the model problem and the industrial case
presented in section 6. A preliminary study of the presented approach can be found
in [5] and in [20].

2. The Schwarz algorithm without overlap. We consider the Helmholtz
equation

L(u) := (−ω2 − ∆)(u) = f(x, y), x, y ∈ Ω.

Although the following analysis could be carried out on rectangular domains as well,
we prefer for simplicity to present the analysis in the domain Ω = R

2 with the Som-
merfeld radiation condition at infinity,

lim
r→∞

√
r

(
∂u

∂r
+ iωu

)
= 0,

where r =
√
x2 + y2. The results we obtain for the unbounded domain are valid as

well on bounded domains with a suitable restriction of the spectrum, which we discuss
briefly in section 3.1. We decompose the domain into two nonoverlapping subdomains
Ω1 = (−∞, 0] × R and Ω2 = [0,∞) × R and consider the Schwarz algorithm

−∆un+1
1 − ω2un+1

1 = f(x, y), x, y ∈ Ω1,
B1(u

n+1
1 )(0, y) = B1(u

n
2 )(0, y), y ∈ R,

(2.1)

and

−∆un+1
2 − ω2un+1

2 = f(x, y), x, y ∈ Ω2,
B2(u

n+1
2 )(0, y) = B2(u

n
1 )(0, y), y ∈ R,

(2.2)

where Bj , j = 1, 2, are two linear operators. Note that for the classical Schwarz
method Bj is the identity, Bj = I, and without overlap the algorithm cannot converge.
However, even with overlap in the case of the Helmholtz equation, only the evanescent
modes in the error are damped, while the propagating modes are unaffected by the
Schwarz algorithm [11]. One possible remedy is to use a relatively fine coarse grid [3]
or Robin transmission conditions; see, for example, [8] and [2]. We propose here a new
type of transmission conditions which leads to a convergent nonoverlapping version
of the Schwarz method. We assume that the linear operators Bj are of the form

Bj := ∂x + Sj , j = 1, 2,

for two linear operators S1 and S2 acting in the tangential direction on the interface.
Our goal is to use these operators to optimize the convergence rate of the algorithm.
For the analysis it suffices to consider by linearity the case f(x, y) = 0 and to analyze
convergence to the zero solution. Taking a Fourier transform in the y direction we
obtain

−∂2ûn+1
1

∂x2
− (ω2 − k2)ûn+1

1 = 0, x < 0, k ∈ R,

(∂x + σ1(k))(ûn+1
1 )(0, k) = (∂x + σ1(k))(ûn

2 )(0, k), k ∈ R

(2.3)
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and

−∂2ûn+1
2

∂x2
− (ω2 − k2)ûn+1

2 = 0, x > 0, k ∈ R,

(∂x + σ2(k))(ûn+1
2 )(0, k) = (∂x + σ2(k))(ûn

1 )(0, k), k ∈ R,
(2.4)

where σj(k) denotes the symbol of the operator Sj and k is the Fourier variable, which
we also call frequency. The general solution of these ordinary differential equations is

ûn+1
j = Aje

λ(k)x + Bje
−λ(k)x, j = 1, 2,

where λ(k) denotes the root of the characteristic equation λ2 + (ω2 − k2) = 0 with
positive real or imaginary part, and

λ(k) =
√
k2 − ω2 for |k| ≥ ω, λ(k) = i

√
ω2 − k2 for |k| < ω.(2.5)

Since the Sommerfeld radiation condition excludes growing solutions as well as in-
coming modes at infinity we obtain the solutions

ûn+1
1 (x, k) = ûn+1

1 (0, k)eλ(k)x,
ûn+1

2 (x, k) = ûn+1
2 (0, k)e−λ(k)x.

Using the transmission conditions and the fact that

∂ûn+1
1

∂x
= λ(k)ûn+1

1 ,

∂ûn+1
2

∂x
= −λ(k)ûn+1

2

we obtain over one step of the Schwarz iteration

ûn+1
1 (x, k) =

−λ(k) + σ1(k)

λ(k) + σ1(k)
eλ(k)xûn

2 (0, k),

ûn+1
2 (x, k) =

λ(k) + σ2(k)

−λ(k) + σ2(k)
e−λ(k)xûn

1 (0, k).

Evaluating the second equation at x = 0 for iteration index n and inserting it into
the first equation, we get after evaluating again at x = 0

ûn+1
1 (0, k) =

−λ(k) + σ1(k)

λ(k) + σ1(k)
· λ(k) + σ2(k)

−λ(k) + σ2(k)
ûn−1

1 (0, k).

Defining the convergence rate ρ by

ρ(k) :=
−λ(k) + σ1(k)

λ(k) + σ1(k)
· λ(k) + σ2(k)

−λ(k) + σ2(k)
(2.6)

we find by induction

û2n
1 (0, k) = ρ(k)nû0

1(0, k)

and by a similar calculation on the second subdomain

û2n
2 (0, k) = ρ(k)nû0

2(0, k).
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Thus choosing in the Fourier transformed domain

σ1(k) := λ(k), σ2(k) := −λ(k)

we get ρ(k) ≡ 0, and the algorithm converges in two steps independently of the
initial guess. Unfortunately, this choice becomes difficult to use in the real domain
where computations take place, since the optimal choice of the symbols σj(k) leads
to nonlocal operators Sj in the real domain caused by the square root in the symbols.
In the next section we construct local approximations for the optimal transmission
conditions which lead to an algorithm in the class of optimized Schwarz methods.

3. Optimized transmission conditions. We approximate the nonlocal sym-
bols σj(k) involving the square root by polynomials σapp

j (k) which represent differ-
ential operators in physical space and are thus local. To avoid an increase in the
bandwidth of the local subproblems, we take polynomials of degree at most 2, which
leads to transmission operators Sapp

j which are at most second order partial differ-
ential operators acting along the interface. By symmetry of the Helmholtz equation
there is no interest in a first order term. We therefore approximate the operators
Sj either by a constant, Sapp

1 = −Sapp
2 = a, a ∈ C, which leads to a Robin trans-

mission condition, or by Sapp
1 = −Sapp

2 = a + b∂ττ , where τ denotes the tangent
direction at the interface and a, b ∈ C. A first approximation that comes to mind is
a low frequency approximation using a Taylor expansion of the optimal transmission
condition,

Sapp
1 = −Sapp

2 = i

(
ω − 1

2ω
∂ττ

)
,

which leads to the zeroth or second order Taylor transmission conditions, depending
on whether one keeps only the constant term or also the second order term. However,
these transmission conditions are effective only for the low frequency components of
the error. In the next two subsections we develop transmission conditions which are
effective for the entire spectrum.

3.1. Optimized Robin transmission conditions. We approximate the opti-
mal operators Sj , j = 1, 2, in the form

Sapp
1 = −Sapp

2 = p + qi, p, q ∈ R
+.(3.1)

The nonnegativity of p, q comes from the Shapiro–Lopatinski necessary condition for
the well-posedness of the local subproblems (2.1)–(2.2). Inserting this approximation
into the convergence rate (2.6) we find

ρ(p, q, k) =





p2+(q−
√
ω2−k2)

2

p2+(q+
√
ω2−k2)

2 , ω2 ≥ k2,

q2+(p−
√
k2−ω2)

2

q2+(p+
√
k2−ω2)

2 , ω2 < k2.
(3.2)

First note that for k2 = ω2 the convergence rate ρ(p, q, ω) = 1 no matter what one
chooses for the free parameters p and q. In the Helmholtz case one cannot uniformly
minimize the convergence rate over all relevant frequencies, as in the case of positive
definite problems; see [14], [11], [16]. The point k = ω represents, however, only one
single mode in the spectrum, and a Krylov method will easily take care of this when
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the Schwarz method is used as a preconditioner, as our numerical experiments will
show. We therefore consider the optimization problem

min
p,q∈R+

(
max

k∈(kmin, ω−)∪(ω+, kmax)
|ρ(p, q, k)|

)
,(3.3)

where ω− and ω+ are parameters to be chosen and kmin denotes the smallest frequency
relevant to the subdomain and kmax denotes the largest frequency supported by the
numerical grid. This largest frequency is of the order π/h. For example, if the
domain Ω is a strip of height L with homogeneous Dirichlet conditions on the top and
bottom, the solution can be expanded in a Fourier series with the harmonics sin( jπyL ),

j ∈ N. Hence the relevant frequencies are k = jπ
L . They are equally distributed

with a spacing π
L (the lowest one is kmin = π

L ) and choosing ω− = ω − π/L and
ω+ = ω+π/L leaves precisely one frequency k = ω for the Krylov method and treats
all the others by the optimization. If ω falls in between the relevant frequencies, say
jπ
L < ω < (j+1)π

L , then we can even get the iterative method to converge by choosing

ω− = jπ
L and ω+ = (j+1)π

L , which will allow us to directly verify our asymptotic
analysis numerically without the use of a Krylov method. How to choose the optimal
parameters p and q is given by the following theorem.

Theorem 3.1 (optimized Robin conditions). Under the three assumptions

2ω2 ≤ ω2
− + ω2

+, ω− < ω,(3.4)

2ω2 > k2
min + ω2

+,(3.5)

2ω2 < k2
min + k2

max,(3.6)

the solution to the min-max problem (3.3) is unique and the optimal parameters are

given by

p∗ = q∗ =

√√√√
√
ω2 − ω2

−
√
k2
max − ω2

2
.(3.7)

The optimized convergence rate (3.3) is then given by

max
k∈(kmin, ω−)∪(ω+, kmax)

ρ(p∗, q∗, k) =
1 −

√
2
(

ω2−ω2
−

k2
max−ω2

) 1
4

+

√
ω2−ω2

−

k2
max−ω2

1 +
√

2
(

ω2−ω2
−

k2
max−ω2

) 1
4

+

√
ω2−ω2

−

k2
max−ω2

.(3.8)

Remark 3.2. The assumptions in Theorem 3.1 are not restrictive: if we let

ω± = ω ± δ±, δ± > 0, then assumption (3.4) amounts to 2(δ+ − δ−)ω + δ2
+ + δ2

− ≥ 0
which is satisfied if, for example, δ+ = δ− > 0. Assumption (3.5) is not restrictive

either since in practice kmin is small and ω+ is close to ω. Finally, the rule of thumb

to take at least 10 points per wavelength leads to a typical mesh size h ≤ π
5ω . If

kmax = π
h , this rule gives kmax ≥ 5ω so that assumption (3.6) is also satisfied.

Proof. To use the symmetry in (3.2) we introduce the change of variables

x =

{ √
ω2 − k2, ω2 ≥ k2,√
k2 − ω2, ω2 ≤ k2,
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so that the min-max problem (3.3) becomes

min
p∈R+, q∈R+

(
max

(
max

x∈[x1, y1]
g(p, q, x), max

x∈[x2, y2]
g(q, p, x)

))
,(3.9)

where the function g is given by

g(p, q, x) =
p2 + (q − x)2

p2 + (q + x)2

and the limits in the new maximization are

x1 =
√
ω2 − ω2

−, y1 =
√

ω2 − k2
min, x2 =

√
ω2

+ − ω2, and y2 =
√
k2
max − ω2.

The assumptions in Theorem 3.1 now are

x1 ≤ x2 < y1 < y2.(3.10)

To prove Theorem 3.1, we need several lemmas.
Lemma 3.3. The optimal parameters are strictly positive; p∗ > 0 and q∗ > 0.
Proof. We need only to show that the optimal parameters cannot be zero, since

negative parameters are excluded in the optimization. We prove this by contradiction.
First note that g(p, q, x) < 1 as long as p, q, x > 0 so that the optimum is necessarily
less than one; ρ∗ < 1. Now suppose, for example, that p∗ = 0. Then g(q∗, 0, x) = 1 for
any x and therefore ρ∗ = 1. However, this cannot be an optimum, since we have just
seen that for p, q, x > 0 we have ρ∗ < 1. The same argument also holds for q∗.

The next three lemmas are about the function g. Let sgn(x) denote the following
signum function: sgn(x) = +1 if x > 0, sgn(x) = −1 if x < 0, and sgn(x) = 0 if x = 0.

Lemma 3.4. For all x > 0, we have sgn(p− q) = sgn(g(p, q, x) − g(q, p, x)).
Proof. A direct computation gives

g(p, q, x) − g(q, p, x) = 4(p− q)
x(p2 + q2 + x2)

(p2 + (q + x)2)(q2 + (p + x)2)
.

Lemma 3.5. Assuming that p, q > 0, the maximum of g(p, q, x) for 0 < x1 < x <
y1 is attained at either x1 or y1. Similarly, the maximum of g(q, p, x) for 0 < x2 <
x < y2 is attained at either x2 or y2.

Proof. Computing the derivative of g with respect to x we find

∂g

∂x
=

4q(x2 − (p2 + q2))

(p + (q + x)2)2
,

and hence there is only one extremum at x =
√
p2 + q2. Evaluating the second

derivative of g at the extremum gives

∂2g

∂x2

∣∣∣∣
x=

√
p2+q2

=
2q(p2 + q2)(q +

√
p2 + q2)

(p2 + q2 + q
√

p2 + q2)3
> 0

and thus the extremum is a minimum. Hence the maximum must be attained on the
boundary at either x1 or y1. The proof for the second statement of the lemma is
similar.
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Lemma 3.6. The function g(p, q, x) is monotonically increasing with p > 0 for

all x, q > 0.
Proof. The partial derivative of g(p, q, x) with respect to p is

∂g

∂p
=

8pqx

(p2 + (q + x)2)2
> 0.

The following lemmas are directly related to the min-max problem (3.9). For
given p, q > 0, let ρ denote the corresponding maximum value

ρ := max

(
max

x∈[x1, y1]
g(p, q, x), max

x∈[x2, y2]
g(q, p, x)

)
.

Since the maximum value is likely to be attained at several locations, we define the
sets where the maximum is attained by

E1(p, q) := {x ∈ {x1, y1} : g(p, q, x) = ρ}

and

E2(p, q) := {x ∈ {x2, y2} : g(q, p, x) = ρ},

and we denote their cardinality by #Ei(p, q), i = 1, 2. By Lemma 3.5, we know
that #Ei(p, q) ≤ 2. When there is no ambiguity, we sometimes omit the argument
(p, q). An optimal choice of the parameters will be denoted by (p∗, q∗), and we note
#E∗

i := #Ei(p
∗, q∗).

Lemma 3.7. Let (p∗, q∗) be an optimal choice of the parameters. Then the

cardinality #E∗
i ≥ 1 for i = 1, 2.

Proof. It is not possible to have #E∗
i = 0 for some i, as one can see by con-

tradiction: suppose, without loss of generality, that we have #E∗
1 = 0. Then, by

Lemma 3.6, lowering q and keeping p = p∗ would lead to a value of ρ smaller than ρ∗

and thus the choice (p∗, q∗) would not be optimal.
Lemma 3.8. Let (p∗, q∗) be an optimal choice of the parameters. If #E∗

1 =
#E∗

2 = 1, then p∗ = q∗.
Proof. Without loss of generality, we suppose E∗

1 = {x1} and E∗
2 = {y2}. The

other cases lead to computations identical to the ones we do for this case below. We
have a first relation between p∗ and q∗ given by

g(p∗, q∗, x1) = g(q∗, p∗, y2).(3.11)

We consider a small variation (δp, δq) of the parameters about the optimum (p∗, q∗)
so that the necessary optimality condition of Lemma 3.7 is satisfied. For variations
small enough, we have #Ei ≤ 1. Therefore, we can restrict ourselves to variations of
(p, q) which are such that #Ei = 1 and consequently such that g(p, q, x1) = g(q, p, y2),
i.e.,

∂1g(p
∗, q∗, x1)δp + ∂2g(p

∗, q∗, x1)δq = ∂1g(q
∗, p∗, y2)δq + ∂2g(q

∗, p∗, y2)δp,

or

δq =
∂1g(p

∗, q∗, x1) − ∂2g(q
∗, p∗, y2)

∂1g(q∗, p∗, y2) − ∂2g(p∗, q∗, x1)
δp,(3.12)
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where ∂1 and ∂2 denote the derivatives with respect to the first and second variable.
For (δp, δq) related by (3.12), the optimality condition is

δρ∗ = δg(p∗, q∗, x1) = ∂1g(p
∗, q∗, x1)δp + ∂2g(p

∗, q∗, x1)δq = 0.

Note that we could have chosen as optimality condition δg(q∗, p∗, y2) = 0 as well,
which is equivalent. Using (3.12) we get

δρ∗ =
(∂1g(p

∗, q∗, x1)∂1g(q
∗, p∗, y2) − ∂2g(p

∗, q∗, x1)∂2g(q
∗, p∗, y2))

(∂1g(q∗, p∗, y2) − ∂2g(p∗, q∗, x1))
δp = 0.

The case ∂1g(q
∗, p∗, y2)−∂2g(p

∗, q∗, x1) = 0 can be excluded since we have ∂1g(q
∗, p∗, y2)

> 0 by Lemma 3.6 and ∂2g(p
∗, q∗, x1) ≤ 0 because otherwise δp = 0 and δq < 0 would

lower both g(p∗, q∗, x1) and g(q∗, p∗, y2) and hence ρ∗. Thus we must have

0 = ∂1g(p
∗, q∗, x1)∂1g(q

∗, p∗, y2) − ∂2g(p
∗, q∗, x1)∂2g(q

∗, p∗, y2).(3.13)

Solving (3.11) and (3.13) for p∗ and q∗, we get

p∗ = q∗ =

√
x1y2

2
.

There are the following four possibilities remaining for a solution to the min-max
problem:

Case 1. #E∗
1 = #E∗

2 = 1.
Case 2. #E∗

1 = 2 and #E∗
2 = 1.

Case 3. #E∗
1 = 1 and #E∗

2 = 2.
Case 4. #E∗

1 = 2 and #E∗
2 = 2.

Case 4 can be excluded because it leads to a contradiction: #E∗
1 = #E∗

2 = 2
implies that all the maxima are equal; g(p∗, q∗, x1) = g(p∗, q∗, y1) = g(q∗, p∗, x2) =
g(q∗, p∗, y2). Then, for any y ∈ [x2, y2], we have ρ(q∗, p∗, y) ≤ ρ(q∗, p∗, y2) =
ρ(p∗, q∗, y1). In particular, for y = y1, we get ρ(q∗, p∗, y1) ≤ ρ(p∗, q∗, y1). There-
fore, by Lemma 3.4, q∗ ≤ p∗. Similarly, for any x ∈ [x1, y1], we have ρ(p∗, q∗, x) ≤
ρ(p∗, q∗, x1) = ρ(q∗, p∗, x2). In particular, for x = x2, we have ρ(p∗, q∗, x2) ≤
ρ(q∗, p∗, x2). Therefore, by Lemma 3.4, p∗ ≤ q∗. This shows that we must have
p∗ = q∗. However, from g(p∗, p∗, x1) = g(p∗, p∗, y1) = g(p∗, p∗, y2) together with as-
sumption (3.10) the function g(p∗, p∗, x) then must have at least three maxima on
[x1, y2], which contradicts Lemma 3.5. Now we examine the other three cases. By
Lemma 3.8, Case 1 corresponds to p∗ = q∗. By Lemma 3.5 and assumption (3.10),
this gives E∗

1 = {x1} and E∗
2 = {y2} which corresponds to the global solution given

in Theorem 3.1. Let ρ∗1 denote the corresponding value of ρ∗. In Case 2, the only
possibility is E∗

1 = {x1, y1} and E∗
2 = {y2} because of assumption (3.10) and we have

g(p∗, q∗, x1) = g(p∗, q∗, y1) = g(q∗, p∗, y2). A direct computation shows that

p∗ =

√
x1y1 (y2

2 + x1y1)√
y4
2 + 4y2

2x1y1 + x2
1y

2
1 + x2

1y
2
2 + y2

1y
2
2

,

q∗ =

√
x1y1 (x1 + y1)y2√

y4
2 + 4y2

2x1y1 + x2
1y

2
1 + x2

1y
2
2 + y2

1y
2
2

,

and we denote the corresponding value for ρ∗ by ρ∗2. In Case 3 the only possibility
is E∗

1 = {x1} and E∗
2 = {x2, y2} by assumption (3.10). Note that this reduces to
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Case 1 if x1 = x2. Therefore, we consider Case 3 only if x1 < x2. Then from
g(p∗, q∗, x1) = g(q∗, p∗, x2) = g(q∗, p∗, y2) we deduce by a direct computation that

p∗ =

√
y2x2 x1(x2 + y2)√

x2
1x

2
2 + 4x2

1y2x2 + x2
1y

2
2 + x4

1 + y2
2x

2
2

,

q∗ =

√
y2x2 (x2

1 + y2x2)√
x2

1x
2
2 + 4x2

1y2x2 + x2
1y

2
2 + x4

1 + y2
2x

2
2

,

which are the same formulas as in Case 2 when exchanging p with q and x1 with y2

and x1, y1 with x2, y2. We denote the corresponding value for ρ∗ by ρ∗3. A direct
comparison now shows that ρ∗1 < ρ∗2, and, provided that x1 < x2, we have ρ∗1 < ρ∗3
and thus Case 1 is the global optimum.

3.2. Optimized second order transmission conditions. We approximate
the operators Sj , j = 1, 2, in the form Sapp

1 = −Sapp
2 = a + b∂ττ with a, b ∈ C and τ

denoting the tangent direction at the interface. The design of optimized second order
transmission conditions is simplified by the following lemma.

Lemma 3.9. Let u1 and u2 be two functions which satisfy

L(uj) ≡ (−ω2 − ∆)(u) = f in Ωj, j = 1, 2,

and the transmission condition
(

∂

∂n1
+ α

)(
∂

∂n1
+ β

)
(u1) =

(
− ∂

∂n2
+ α

)(
− ∂

∂n2
+ β

)
(u2)(3.14)

with α, β ∈ C, α + β 6= 0, and nj denoting the unit outward normal to domain Ωj.

Then the second order transmission condition

(
∂

∂n1
+

αβ − ω2

α + β
− 1

α + β

∂2

∂τ2
1

)
(u1) =

(
− ∂

∂n2
+

αβ − ω2

α + β
− 1

α + β

∂2

∂τ2
2

)
(u2)

(3.15)

is satisfied as well.

Proof. Expanding the transmission condition (3.14) yields
(
∂2

∂n2
1

+ (α + β)
∂

∂n1
+ αβ

)
(u1) =

(
∂2

∂n2
2

− (α + β)
∂

∂n2
+ αβ

)
(u2).

Now using the equation L(u1) = f , we can substitute −( ∂2

∂τ2
1

+ω2)(u1)−f for ∂2

∂n2
1

(u1)

and similarly we can substitute −( ∂2

∂τ2
2

+ ω2)(u2) − f for ∂2

∂n2
2

(u2). Hence, we get

(
− ∂2

∂τ2
1

− ω2 + (α + β)
∂

∂n1
+ αβ

)
(u1)−f =

(
− ∂2

∂τ2
2

− ω2 − (α + β)
∂

∂n2
+ αβ

)
(u2)−f.

Now the terms f on both sides cancel and a division by α + β yields (3.15).
Note that Higdon has already proposed approximations to absorbing boundary

conditions in factored form in [13]. In our case, this special choice of approximating
σj(k) by

σapp
1 (k) = −σapp

2 (k) =
αβ − ω2

α + β
+

1

α + β
k2(3.16)
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leads to a particularly elegant formula for the convergence rate. Inserting σapp
j (k) into

the convergence rate (2.6) and simplifying, we obtain

ρ(k;α, β) :=

(
λ(k) − σ1

λ(k) + σ1

)2

=

(−(α + β)λ(k) + αβ + k2 − ω2

(α + β)λ(k) + αβ + k2 − ω2

)2

=

(
λ(k)2 − (α + β)λ(k) + αβ

λ(k)2 + (α + β)λ(k) + αβ

)2

=

(
λ(k) − α

λ(k) + α

)2(
λ(k) − β

λ(k) + β

)2

,(3.17)

where λ(k) is defined in (2.5) and the two parameters α, β ∈ C can be used to optimize
the performance. By the symmetry of λ(k) with respect to k, it suffices to consider
only positive k to optimize performance. We thus need to solve the min-max problem

min
α, β∈C

(
max

k∈(kmin, ω−)∪(ω+, kmax)
|ρ(k;α, β)|

)
,(3.18)

where ω− and ω+ are again the parameters to exclude the frequency k = ω where
the convergence rate equals 1, as in the zeroth order optimization problem. The
convergence rate ρ(k;α, β) consists of two factors, and λ is real for vanishing modes
and imaginary for propagative modes. If we choose α ∈ iR and β ∈ R, then for λ
real the first factor is of modulus one and the second one can be optimized using
β. If λ is imaginary, then the second factor is of modulus one and the first one can
be optimized independently using α. Hence for this choice of α and β the min-max
problem decouples. We therefore consider here the simpler min-max problem

min
α∈iR, β∈R

(
max

k∈(kmin, ω−)∪(ω+, kmax)
|ρ(k;α, β)|

)
(3.19)

which has an elegant analytical solution. Note, however, that the original minimiza-
tion problem (3.18) might have a solution with better convergence rate, an issue
investigated in [10].

Theorem 3.10 (optimized second order conditions). The solution of the min-
max problem (3.19) is unique and the optimal parameters are given by

α∗ = i
(
(ω2 − k2

min)(ω2 − ω2
−)
)1/4 ∈ iR(3.20)

and

β∗ =
(
(k2

max − ω2)(ω2
+ − ω2)

)1/4 ∈ R.(3.21)

The convergence rate (3.19) is then for the propagating modes given by

max
k∈(kmin,ω−)

|ρ(k, α∗, β∗)| =

(
(ω2 − ω2

−)1/4 − (ω2 − k2
min)1/4

(ω2 − ω2
−)1/4 + (ω2 − k2

min)1/4

)2

(3.22)

and for the evanescent modes it is

max
k∈(ω+, kmax)

ρ(k, α∗, β∗) =

(
(k2

max − ω2)1/4 − (ω2
+ − ω2)1/4

(k2
max − ω2)1/4 + (ω2

+ − ω2)1/4

)2

.(3.23)

Proof. For k ∈ (kmin, ω−) we have | i
√
ω2−k2−β

i
√
ω2−k2+β

| = 1 since β ∈ R and thus

|ρ(k;α, β)| = | i
√
ω2−k2−α

i
√
ω2−k2+α

|2 depends only on α . Similarly, for k ∈ (ω+, kmax) we have
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|
√
k2−ω2−α√
k2−ω2+α

| = 1 since α ∈ iR and therefore |ρ(k;α, β)| = |
√
k2−ω2−β√
k2−ω2+β

|2 depends only

on β. The solution (α, β) of the minimization problem (3.19) is thus given by the
solution of the two independent minimization problems

min
α∈iR,

(
max

k∈(kmin, ω−)

∣∣∣∣∣
i
√
ω2 − k2 − α

i
√
ω2 − k2 + α

∣∣∣∣∣

)
(3.24)

and

min
β∈R

(
max

k∈(ω+, kmax)

∣∣∣∣∣

√
k2 − ω2 − β√
k2 − ω2 + β

∣∣∣∣∣

)
.(3.25)

We show the solution for the second problem (3.25) only; the solution for the first

problem (3.24) is similar. First note that the maximum of |ρβ | := |
√
k2−ω2−β√
k2−ω2+β

| is

attained on the boundary of the interval [ω+, kmax] because the function ρβ (but not
|ρβ |) is monotonically increasing with k ∈ [ω+, kmax]. On the other hand, a function of
β, |ρβ(ω+)| grows monotonically with β while |ρβ(kmax)| decreases monotonically with
β. The optimum is therefore reached when we balance the two values on the boundary,
ρβ(ω+) = −ρβ(kmax), which implies that the optimal β satisfies the equation

√
k2
max − ω2 − β√

k2
max − ω2 + β

= −

√
ω2

+ − ω2 − β
√
ω2

+ − ω2 + β
(3.26)

whose solution is given in (3.21).
The optimization problem (3.25) arises also for symmetric positive definite prob-

lems when an optimized Schwarz algorithm without overlap and Robin transmission
conditions is used and the present solution can be found in [27].

4. Asymptotic analysis. The classical Schwarz method with overlap and Dirich-
let transmission conditions does not converge when applied to a Helmholtz problem.
The propagating modes are unaffected by the classical Schwarz method and errors
in that frequency range remain; the convergence rate ρp = 1 for propagating modes
[11]. Without an additional mechanism, like a coarse grid fine enough to carry all
the propagating modes [3], the method cannot be used. The evanescent modes of
the error, however, are damped, like in the case of Laplace’s equation, at a rate de-
pending on the size of the overlap [11]. If the overlap is of order h, which is often
all that one can afford in real applications, the convergence rate of the evanescent
modes is ρe = 1 − O(h). Here we analyze the asymptotic behavior of the discretized
counterparts of the optimized Schwarz methods introduced in the previous section.
As we have seen, there will always be one mode which is not affected by the opti-
mized Schwarz method, namely k = ω. All the other modes in the error, however
(the propagating ones and the evanescent ones), are converging. The following two
theorems give the asymptotic convergence rates in the mesh parameter h of the dis-
cretized zeroth and second order optimized Schwarz methods which we also call OO0
for “Optimized Order 0” and OO2 for “Optimized Order 2.”

Theorem 4.1 (asymptotic convergence rate of OO0). The asymptotic conver-

gence rate (3.3) of the nonoverlapping Schwarz method (2.1), (2.2) with optimized

zeroth order transmission conditions (3.7) discretized with mesh parameter h is given
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Fig. 4.1. Convergence rate of the optimized Schwarz method with zeroth order transmission

conditions in Fourier space for ω = 10π.

by

ρ = 1 − 2

√
2(ω2 − ω2

−)1/4√
π

√
h + O(h).(4.1)

Proof. Since on a numerical grid with grid spacing h the highest frequencies
representable are of the order kmax = π/h, we need only to compute the expansion in
h of the optimized convergence rate ρ(p∗, q∗, ω−) given in (3.8) for kmax = π/h, which
leads to the stated result.

Figure 4.1 shows the convergence rate obtained for a model problem on the unit
square with two subdomains, ω = 10π and h = 1/50. The optimal parameters were
found to be p∗ = q∗ = 32.462 which gives an overall convergence rate of ρ∗ = 0.4416.

Theorem 4.2 (asymptotic convergence rate of OO2). The asymptotic conver-

gence rate (3.19) of the nonoverlapping Schwarz method (2.1), (2.2) with optimized

second order transmission conditions (3.20), (3.21) discretized with mesh parameter

h is for the propagating modes

ρp = 1 − 4(2∆ω)1/4
(

1

ω

)1/4

+ O(
√

1/ω), ∆ω = ω − ω−,(4.2)

and for the evanescent modes

ρe = 1 − 4
(ω2

+ − ω2)1/4√
π

√
h + O(h).(4.3)

Proof. For the evanescent modes, using the fact that on a grid with grid spacing h
the highest frequencies representable are kmax = π/h, we can expand the convergence
rate (3.23) in h to find (4.3). For the propagating modes, we set ω− := ω − ∆ω and
perform an asymptotic expansion in ω of the convergence rate (3.22) to obtain the
result (4.2).

Figure 4.2 shows the convergence rate obtained for a model problem on the unit
square with two subdomains, ω = 10π and h = 1/50. The optimal parameters
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Fig. 4.2. Convergence rate of the optimized Schwarz method with second order transmission

conditions in Fourier space for ω = 10π.

were found to be α∗ = 20.741i and β∗ = 47.071 which gives a convergence rate of
ρ = 0.0419 for the propagating modes and ρ = 0.2826 for the evanescent modes. Note
how the convergence rate is uniformly faster than in the case of OO0. In addition,
the propagating modes converge extremely fast. It is interesting to note that with the
current practice in engineering of choosing about 10 grid points per wavelength, we
have h ≈ π/(5ω) and thus for the propagating modes the optimized Schwarz method
presented here has an asymptotic convergence rate of

ρp = 1 −O(h1/4).

5. Discretization. We now show how the new transmission conditions can be
implemented in a finite element framework. Implementations using finite difference
or finite volume discretizations could be considered as well. Using a reformulation
of the algorithm, we show that both the transmission conditions of Robin type and
the ones with second order tangential derivatives along the interface are as easy to
implement as Neumann conditions. We first treat the case of a decomposition into
two subdomains and then present the general case of an arbitrary decomposition of
the domain into subdomains.

5.1. Two-domain decomposition. We decompose the domain Ω into two sub-
domains Ω1 and Ω2 with interface Γ12. So far, we have considered the optimized
Schwarz algorithm at the continuous level

−∆un+1
1 − ω2un+1

1 = f1 in Ω1
∂un+1

1

∂n1
+ Sapp

1 (un+1
1 ) = −∂un

2

∂n2
+ Sapp

1 (un
2 ) on Γ12

−∆un+1
2 − ω2un+1

2 = f2 in Ω2
∂un+1

2

∂n2
+ Sapp

2 (un+1
2 ) = −∂un

1

∂n1
+ Sapp

2 (un
1 ) on Γ12.

(5.1)

A direct discretization would require the computation of the normal derivatives along
the interfaces in order to evaluate the right-hand sides in the transmission conditions
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of (5.1). This can be avoided by introducing two new variables,

λn
1 = −∂un

2

∂n2
+ Sapp

1 (un
2 ) and λn

2 = −∂un
1

∂n1
+ Sapp

2 (un
1 ).

The algorithm then becomes

−∆un+1
1 − ω2un+1

1 = f1 in Ω1,
∂un+1

1

∂n1
+ Sapp

1 (un+1
1 ) = λn

1 on Γ12,

−∆un+1
2 − ω2un+1

2 = f2 in Ω2,
∂un+1

2

∂n2
+ Sapp

2 (un+1
2 ) = λn

2 on Γ12,

λn+1
1 = −λn

2+ (Sapp
1 + Sapp

2 )(un+1
2 ),

λn+1
2 = −λn

1+ (Sapp
1 + Sapp

2 )(un+1
1 ).

(5.2)

We can interpret this new algorithm as a fixed point algorithm in the new variables
λj , j = 1, 2, to solve the substructured problem

λ1 = −λ2 + (Sapp
1 + Sapp

2 )(u2(λ2, f2)),
λ2 = −λ1 + (Sapp

1 + Sapp
2 )(u1(λ1, f1)),

(5.3)

where uj = uj(λj , fj), j = 1, 2, are solutions of

−∆uj − ω2uj = fj in Ωj
∂uj

∂nj
+ Sapp

j (uj) = λj on Γ12.

Instead of solving the substructured problem (5.3) by the fixed point iteration (5.2),
one usually uses a Krylov subspace method to solve the substructured problem di-
rectly. This corresponds to using the optimized Schwarz method as a preconditioner
for the Krylov subspace method. A finite element discretization of the substructured
problem (5.3) leads to the linear system

λ1 = −λ2 + (S1 + S2)B2u2,
λ2 = −λ1 + (S1 + S2)B1u1,

K̃1u1 = f1 + BT
1 λ1,

K̃2u2 = f2 + BT
2 λ2,

(5.4)

where B1 and B2 are the trace operators of domain Ω1 and Ω2 on the interface Γ12

and we omit the superscript app in the discretization Sj of the continuous operators
Sapp
j to reduce the notation. If the two vectors u1 and u2 containing the degrees of

freedom have their first components corresponding to the interior unknowns

uj =

[
ui
j

ub
j

]
, j = 1, 2,(5.5)

where the indices i and b correspond to interior and interface degrees of freedom,
respectively, for domain Ωj , then the discrete trace operators B1 and B2 are just the
boolean matrices corresponding to the decomposition (5.5) and they can be written
as

Bj =
[

0 I
]
, j = 1, 2,(5.6)
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where I denotes the identity matrix of appropriate size. For example, B1u1 = ub
1

and B2u2 = ub
2. The matrices K̃1 and K̃2 arise from the discretization of the local

Helmholtz subproblems along with the transmission conditions ∂n + a− b∂ττ ,

K̃j = Kj − ω2Mj + BT
j (aMΓ12

+ bKΓ12
)Bj , j = 1, 2.(5.7)

Here K1 and K2 are the stiffness matrices, M1 and M2 are the mass matrices, MΓ12

is the interface mass matrix, and KΓ12
is the interface stiffness matrix

[MΓ12
]nm =

∫

Γ12

φnφmdξ and [KΓ12
]nm =

∫

Γ12

∇τφn∇τφmdξ.(5.8)

The functions φn and φm are the basis functions associated with the degrees of freedom
n and m on the interface Γ12, and ∇τφ is the tangential component of ∇φ on the
interface. We have

Sj = aMΓ12
+ bKΓ12

, j = 1, 2.

For given λ1 and λ2, the acoustic pressure u1 and u2 can be computed by solving the
last two equations of (5.4). Eliminating u1 and u2 in the first two equations of (5.4)
using the last two equations of (5.4), we obtain the substructured linear system

Fλ = d,(5.9)

where λ = (λ1, λ2) and the matrix F and the right-hand side d are given by

F =

[
I I − (S1 + S2)B2K̃

−1
2 BT

2

I − (S1 + S2)B1K̃
−1
1 BT

1 I

]
,

d =

[
(S1 + S2)B1K̃

−1
1 f1

(S1 + S2)B2K̃
−1
2 f2

]
.

(5.10)

The linear system (5.9) is solved by a Krylov subspace method. The matrix vector
product amounts to solving a subproblem in each subdomain and sending interface
data between subdomains. Note that the optimization of the transmission condi-
tions was performed for the convergence rate of the additive Schwarz method and
not for a particular Krylov method applied to the substructured problem. In the
positive definite case one can show that minimizing the convergence rate is equivalent
to minimizing the condition number of the substructured problem [15]. Numerical
experiments in the next section indicate that for the Helmholtz equation our opti-
mization also leads to parameters close to the best ones for the preconditioned Krylov
method.

5.2. General case. A finite element formulation of the global problem leads to
the linear system

(K − ω2M)u = f,(5.11)

where K is the stiffness matrix and M is the mass matrix. The domain Ω is de-
composed into N nonoverlapping subdomains Ωj , j = 1, . . . , N . The substructured
problems are

λlj = −λjl + (Slj + Sjl)Bjluj , 1 ≤ l, j ≤ N, l 6= j,(5.12)

K̃lul = fl +
∑

j 6=l

BT
ljλlj , 1 ≤ l ≤ N,(5.13)
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where Blj is the trace operator of domain Ωl on the interface Γlj . The matrices

K̃l arise from the discretization of the local Helmholtz subproblems along with the
transmission conditions ∂n + a− b∂ττ ,

K̃l = Kl − ω2Ml +
∑

j 6=l

BT
lj(aMΓlj

+ bKΓlj
)Blj ,(5.14)

where Kl are the local stiffness matrices and Ml are the local mass matrices. The
interface stiffness matrices KΓlj

and the interface mass matrices MΓlj
are defined by

[KΓlj
]nm =

∫

Γlj

∇τφn∇τφmdξ and [MΓlj
]nm =

∫

Γlj

φnφmdξ,(5.15)

where φn and φm are the basis functions associated with the degrees of freedom n and
m on the interface Γlj and ∇τφ is the tangential component of ∇φ on the interface
as before. We have

Slj = aMΓlj
+ bKΓlj

, l 6= j.(5.16)

Lemma 5.1. On any interface, the matrix Slj + Sjl is invertible.

Proof. The matrix Slj + Sjl is square so that proving its invertibility reduces to
proving its kernel is null. By (3.16) we have Slj + Sjl = 2

α+β ((αβ − ω2)MΓlj
+KΓlj

).

Let φ be such that (Slj + Sjl)φ = 0. Taking its hermitian scalar product with φ, we
get

(φ, (αβ − ω2)MΓlj
φ) + (φ,KΓlj

φ) = 0.

From (3.19), we have α ∈ iR and β ∈ R so that by taking the imaginary part of the
above equation we get

(
φ,
(α
i
β
)
MΓlj

φ
)

= 0

which proves that φ ≡ 0 because the mass matrix is positive definite.
Theorem 5.2. If the original problem (5.11) is well-posed, then the substructured

problem (5.12)–(5.13) is also well-posed and the solution ((ul)1≤l≤N , (λjl)1≤j 6=l≤N ) is

such that ul is the restriction to subdomain Ωl of the solution u to the original problem

(5.11).
Proof. System (5.12)–(5.13) is square. Existence for any right-hand side is thus

equivalent to uniqueness for the zero right-hand side. We prove uniqueness by proving
that a solution to (5.12)–(5.13) yields a solution to (5.11) which is unique by assump-
tion. This proves the uniqueness of (ul)1≤l≤N solution to (5.12)–(5.13). Uniqueness
of (λjl)1≤j 6=l≤N follows by (5.13). Let Dl denote the restriction operator to domain
Ωl and Clj the restriction operator to the interface Γlj , l 6= j. Taking the equations
(5.12) on any interface Γlj once for lj and once for jl, and taking the difference, we
get

(Slj + Sjl)(Bjluj −Bljul) = 0.

Using Lemma 5.1 the only solution to this system is the zero solution and therefore

Bjluj = Bljul(5.17)
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which implies uj = ul on Γlj . It is therefore natural to define the solution on the
entire domain u from the solutions on the subdomains by Dlu = ul, 1 ≤ l ≤ N .
Then, multiplying (5.13) from the left by DT

l and summing over l, 1 ≤ l ≤ N , we
obtain, using (5.14) and (5.16),

∑

l

DT
l (Kl − ω2Ml)Dlu +

∑

l 6=j

DT
l B

T
ljSljBljul =

∑

l

DT
l fl +

∑

l 6=j

DT
l B

T
ljλlj ,

where here
∑

l 6=j denotes a double sum over the indices l and j. With the restriction

operators to the interfaces Clj = BljDl and their transposed CT
lj = DT

l B
T
lj , we get

∑

l

DT
l (Kl − ω2Ml)Dlu +

∑

l 6=j

CT
ljSljBljul =

∑

l

DT
l fl +

∑

l 6=j

CT
ljλlj .

Using CT
lj = CT

jl and Bljul = Bjluj from (5.17) we find

∑

l

DT
l (Kl − ω2Ml)Dlu +

∑

l<j

CT
lj(Slj + Sjl)Bjluj =

∑

l

DT
l fl +

∑

l<j

CT
lj(λlj + λjl),

where
∑

l<j is a double sum over the indices l and j which corresponds to the sum-
mation over the interfaces, each interface being counted once. From (5.12), we get

∑

l

DT
l (Kl − ω2Ml)Dlu =

∑

l

DT
l fl

which is equivalent to

(K − ω2M)u = f.

Remark 5.3. It is well known that problem (5.11) is not necessarily well-posed

since it corresponds to a Neumann problem for the Helmholtz equation. If a mixed

boundary condition ∂n+iω is imposed on part of the boundary, one can show that it is

well-posed. Theorem 5.2 is still valid in that case since its proof is purely algebraic.

6. Numerical experiments. We show two sets of numerical experiments. The
first set corresponds to the model problem analyzed in this paper, and the results
obtained illustrate the analysis and confirm the asymptotic convergence results. The
second numerical experiment comes from industry and consists of analyzing the noise
levels in the interior of a Volvo S90.

6.1. Model problem. We study a two-dimensional cavity on the unit square
Ω with homogeneous Dirichlet conditions on the top and bottom and on the left and
right radiation conditions of Robin type. We thus have the Helmholtz problem

−∆u− ω2u = f, 0 < x, y < 1,
u = 0, 0 < x < 1, y = 0, 1,

∂u
∂x − iωu = 0, x = 0, 0 < y < 1,

−∂u
∂x − iωu = 0, x = 1, 0 < y < 1.

(6.1)

We decompose the unit square into two subdomains of equal size, and we use a uniform
rectangular mesh for the discretization. We perform all our experiments directly on
the error equations, f = 0, and choose the initial guess of the Schwarz iteration so that
all the frequencies are present in the error. We show two sets of experiments. The first
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Table 6.1
Number of iterations for different transmission conditions and different mesh parameters for

the model problem.

Order zero Order two
Iterative Krylov Iterative Krylov

h Taylor Optimized Taylor Optimized Taylor Optimized Taylor Optimized
1/50 - 457 26 16 - 22 28 9
1/100 - 126 34 21 - 26 33 10
1/200 - 153 44 26 - 36 40 13
1/400 - 215 57 34 - 50 50 15
1/800 - 308 72 43 - 71 61 19
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Fig. 6.1. Asymptotic behavior on the left for the zeroth order transmission conditions and on

the right for the second order transmission conditions.

one is with ω = 9.5π, thus excluding ω from the frequencies k relevant in this setting,
k = nπ, n = 1, 2, . . . . This allows us to test directly the iterative Schwarz method,
since with optimization parameters ω− = 9π and ω+ = 10π we obtain a convergence
rate which is uniformly less than one for all k. Table 6.1 shows the number of iterations
needed for different values of the mesh parameter h for both the zeroth and second
order transmission conditions. The Taylor transmission conditions do not lead to a
convergent iterative algorithm because, for all frequencies k > ω, the convergence
rate equals 1. However, with Krylov acceleration, GMRES in this case, the methods
converge. Note, however, that the second order Taylor condition is only a little better
than the zeroth order Taylor conditions. The optimized transmission conditions lead,
in the case where ω lies between two frequencies, already to a convergent iterative
algorithm. The iterative version even beats the Krylov accelerated Taylor conditions
in the second order case. It is no wonder that the optimized conditions lead by far to
the best algorithms when they are accelerated by a Krylov method; the second order
optimized Schwarz method is more than a factor 3 faster than any Taylor method.
Note that the only difference in cost of the various transmission conditions consists
of different entries in the interface matrices, without enlarging the bandwidth of the
matrices. Figure 6.1 shows the asymptotic behavior of the methods considered, on
the left for zeroth order conditions and on the right for second order conditions. Note
that the scale on the right for the second order transmission conditions is different
by an order of magnitude. In both cases the asymptotic analysis is confirmed for
the iterative version of the optimized methods. In addition, one can see that the
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Table 6.2
Number of iterations for different transmission conditions and different mesh parameters for

the model problem when ω lies precisely on a frequency of the problem and thus Krylov acceleration

is mandatory.

Order zero Order two
h Taylor Optimized Taylor Optimized

1/50 24 15 27 9
1/100 35 21 35 11
1/200 44 26 41 13
1/400 56 33 52 16
1/800 73 43 65 20
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Fig. 6.2. Number of iterations needed to achieve a certain precision as function of the opti-

mization parameters p and q in the zeroth order transmission conditions, on the left for the iterative

algorithm and on the right for the Krylov accelerated one. The star denotes the optimized parameters

p∗ and q∗ found by our Fourier analysis.

Krylov method improves the asymptotic rate by almost an additional square root, as
expected from the analysis in ideal situations. Note the outlier of the zeroth order
optimized transmission condition for h = 1/50. It is due to the discrepancy between
the spectrum of the continuous and the discrete operator: ω = 9.5π lies precisely
in between two frequencies 9π and 10π at the continuous level, but for the discrete
Laplacian with h = 1/50 this spectrum is shifted to 8.88π and 9.84π and thus the
frequency 9.84π falls into the range [9π, 10π] neglected by the optimization. Note,
however, that this is of no importance when Krylov acceleration is used, so it is not
worthwhile to consider this issue further.

Now we put ω directly onto a frequency of the model problem, ω = 10π, so
that the iterative methods cannot be considered any more, since for that frequency
the convergence rate equals one. The Krylov accelerated versions, however, are not
affected by this, as one can see in Table 6.2. The number of iterations does not differ
from the case where ω was chosen to lie between two frequencies, which shows that
with Krylov acceleration the method is robust for any values of ω. We finally tested
for the smallest resolution of the model problem how well Fourier analysis predicts the
optimal parameters to use. Since we want to test both the iterative and the Krylov
versions, we again need to put the frequency ω in between two problem frequencies,
and in this case it is important to be precise. We therefore choose ω to be exactly
between two frequencies of the discrete problem, ω = 9.3596π, and optimized using
ω− = 8.8806π and ω+ = 9.8363π. Figure 6.2 shows the number of iterations the
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Fig. 6.3. Number of iterations needed to achieve a certain precision as function of the optimiza-

tion parameters α and β in the second order transmission conditions, on the left for the iterative

algorithm and on the right for the Krylov accelerated one. The star denotes the optimized parameters

α∗ and β∗ found by our Fourier analysis.
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Fig. 6.4. Decomposition of the passenger compartment into 16 subdomains.

algorithm needs to achieve a residual of 10e − 6 as a function of the optimization
parameters p and q of the zeroth order transmission conditions, on the left in the
iterative version and on the right for the Krylov accelerated version. The Fourier
analysis shows well where the optimal parameters lie, and, when a Krylov method
is used, the optimized Schwarz method is very robust with respect to the choice of
the optimization parameter. The same holds also for the second order transmission
conditions, as Figure 6.3 shows.

6.2. Noise levels in a Volvo S90. We analyze the noise level distribution in the
passenger cabin of a Volvo S90. The vibrations are stemming from the part of the car
called firewall. This example is representative for a large class of industrial problems
where one tries to determine the acoustic response in the interior of a cavity caused
by vibrating parts. We perform a two-dimensional simulation on a vertical cross
section of the car. Figure 6.4 shows the decomposition of the car into 16 subdomains.
The computations were performed in parallel on a network of Sun workstations with
four processors. The problem is characterized by ωa = 18.46 which corresponds to
a frequency of 1000 Hz in the car of length a. To solve the problem, the optimized
Schwarz method was used as a preconditioner for the Krylov method ORTHODIR
and as convergence criterion we used
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80

75

70

65

60

55

50

45

40

Fig. 6.5. Acoustic field in the passenger compartment of the Volvo S90.

‖K̃u− f‖L2
≤ 10−6 ‖f‖L2

.(6.2)

When using zeroth order Taylor conditions and a decomposition into 16 subdomains,
the method needed 105 iterations to converge, whereas when using second order opti-
mized transmission conditions, the method converged in 34 iterations, confirming that
also in real applications the optimized Schwarz method is about a factor 3 faster, as
we found for the model problem earlier. Figure 6.5 shows the acoustic field obtained
in the passenger compartment of the Volvo S90.

7. Conclusions. We introduced optimized Schwarz methods without overlap
for Helmholtz problems. We analyzed a model problem with two subdomains and
showed that the performance of the Schwarz method can be optimized using the
transmission conditions employed between subdomains. We chose zeroth and second
order transmission conditions and solved the corresponding optimization problems.
We showed for the zeroth order conditions that the asymptotic convergence rate of the
optimized Schwarz method discretized with mesh parameter h is 1−O(h1/2), whereas
for the second order transmission conditions the asymptotic convergence rate for the
propagating modes does not depend on the mesh parameter, while the convergence
rate for the vanishing modes is asymptotically 1 − O(h1/2) for the iterative method,
which gives together with Krylov acceleration an asymptotic rate of about 1−O(h1/4)
for both the OO0 and OO2 methods. Numerical experiments showed that the method
behaves asymptotically as predicted and that it is very effective on an industrial
problem.
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