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Summary. We present and study an optimized Schwarz Waveform Relaxation al-
gorithm for convection-diffusion problems with discontinuous coefficients. Such anal-
ysis is a first step towards the coupling of heterogeneous climatic models. The SWR
algorithms are global in time, and thus allow for the use of non conforming space-
time discretizations. They are therefore well adapted to coupling models whith very
different spatial and time scales, as in ocean-atmosphere coupling. As the cost per
iteration can be very high, we introduce new transmission conditions in the algo-
rithm which optimize the convergence speed. In order to get higher order schemes
in time, we use in each subdomain a discontinuous Galerkin method for the time-
discretization. We present numerical results to illustrate this approach, and we anal-
yse numerically the time-discretization error.

1 Introduction

We present an optimized Schwarz Waveform Relaxation algorithm for convection-
diffusion problems with discontinuous coefficients. Such methods have proven to be
an efficient approach in the case of the wave equation with discontinuous wave speed
[3], and convection-difusion problems in one [1] and two dimensions [5] with con-
stant coefficients. Our final objective is to propose efficient algorithms for coupling
heterogeneous models (e.g. ocean-atmosphere) in the context of climate modelling.
The SWR algorithms are global in time, and therefore are well adapted to coupling
models: they lead, at convergence, to a model with the physical transmission con-
ditions, they reduce the exchange of information between codes, and they permit
the use of non conforming discretizations in space-time. This last point is crucial in
climate modelling, where very different scales in time and space are present.

As a first step, we consider the domain decomposition problem for a convection-
diffusion equation with discontinuous coefficients. After introducing our model prob-
lem in Section 2, we present in Section 3 a classical strategy for coupling ocean and
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atmosphere models, which consists in realizing one additive Schwarz iteration with
physical transmission conditions, in each time window [6]. In order to get a more
efficient method which improves the converged solution, we introduce in Section 4
a Schwarz Waveform Relaxation method with optimized transmission conditions of
order 1. This method allows for the use of non conforming space-time discretizations.
As our objective is to get higher order schemes in time , we introduce a discontinu-
ous Galerkin method [4]. The formulation is given in Section 5. As the grids in time
are different in each subdomain, the projection between arbitrary grids is performed
by an efficient algorithm introduced in [3]. Numerical results illustrate the validity
of our approach in Section 6.

2 Model problem

We consider the one dimensional convection diffusion equation

Lu = f, in Ω × (0, T ),
u(x, 0) = u0(x), ∀x ∈ Ω,
u(x0, t) = u(x1, t) = 0, t ∈ (0, T ),

where Ω =]x0, x1[ is a bounded open subset of R (containing zero), L is the convec-
tion diffusion operator

Lu :=
∂u

∂t
+

∂

∂x
(a(x)u) − ∂

∂x
(ν(x)

∂u

∂x
),

and the velocity a and the viscosity ν are supposed to be constant in the two nonover-
lapping subregions Ω1 =]x0, 0[ and Ω2 =]0, x1[ of Ω, but can be discontinuous at
zero :

a(x) =



a1, x ∈ Ω1

a2, x ∈ Ω2
, ν(x) =



ν1, x ∈ Ω1

ν2, x ∈ Ω2
,

with νi > 0, i = 1, 2. Without loss of generality, we can assume that a is non-
negative. This problem is equivalent to the following subproblems :

8

>

<

>

:

L1u1 :=
∂u1

∂t
+ a1

∂u1

∂x
− ν1

∂2u1

∂x2
= f, in Ω1 × (0, T ),

u1(x, 0) = u0(x), ∀x ∈ Ω1,
u1(x0, t) = 0, t ∈ (0, T ),

8

>

<

>

:

L2u2 :=
∂u2

∂t
+ a2

∂u2

∂x
− ν2

∂2u2

∂x2
= f, in Ω2 × (0, T ),

u2(x, 0) = u0(x), ∀x ∈ Ω2,
u2(t, x1) = 0, t ∈ (0, T ),

with the physical transmission conditions at x = 0 :

(

u1(0, t) = u2(0, t), t ∈ (0, T ),

(a1 − ν1
∂

∂x
)u1(0, t) = (a2 − ν2

∂

∂x
)u2(0, t), t ∈ (0, T ).

(1)

To solve numerically this problem, it is natural to use an algorithm where the trans-
mission conditions are the physical conditions (in our case, conditions (1)), and it
is especially the case when coupling heterogeneous climate component models.
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3 Algorithm in ocean-atmosphere coupling

A commonly used strategy for solving ocean-atmosphere coupling consists in de-
composing the time interval (0, T ) into windows, [0, T ] = ∪N

n=0[Tn, Tn+1], and to use
one additive Schwarz iteration with the physical transmission conditions, in each
time window [6]. Let ui,n be a discrete approximation of ui in Ωi in the window
[Tn−1, Tn]. Then, ui,n+1, i = 1, 2, is the solution of

8

>

>

<

>

>

:

L1u1,n+1 = f, in Ω1 × (Tn, Tn+1),
u1,n+1(x, Tn) = u1,n(x, Tn), ∀x ∈ Ω1,
u1,n+1(x0, t) = 0, t ∈ (Tn, Tn+1),
u1,n+1(0, t) = u2,n(0, Tn), t ∈ (Tn, Tn+1),

(2)

8

>

>

>

<

>

>

>

:

L2u2,n+1 = f, in Ω2 × (Tn, Tn+1),
u2,n+1(x, Tn) = u2,n(x, Tn), ∀x ∈ Ω2,
u2,n+1(t, x1) = 0, t ∈ (Tn, Tn+1),

(a2 − ν2
∂

∂x
)u2,n+1(0, t) = (a1 − ν1

∂

∂x
)u1,n(0, Tn), t ∈ (Tn, Tn+1),

(3)

Remark 1. It is important to notice that in the previous algorithm the transmission
conditions are constant in time, on each time window (Ti, Ti+1).

In ocean-atmosphere coupling, the use of very few iteration (one iteration here) in
each time window is motivated by the fact that the computation time per iteration
is very high. In order to improve the numerical solution, with very few iteration
per time window, we propose to use in each time window an Optimized Schwarz
Waveform Relaxation, with differential in time transmission conditions.

4 Optimized Schwarz Waveform Relaxation

The general Schwarz Waveform Relaxation, in one time window, for example in the
whole window (0, T ) is written as follows :

8

>

>

>

<

>

>

>

:

L1u
k+1
1 = f, in Ω1 × (0, T ),

uk+1
1 (x, 0) = u0(x), ∀x ∈ Ω1,

uk+1
1 (x0, t) = 0, t ∈ (0, T ),

(ν1
∂

∂x
− a1 + Λ1)u

k+1
1 (0, t) = (ν2

∂

∂x
− a2 + Λ1)u

k
2(0, t), t ∈ (0, T ),

8

>

>

>

<

>

>

>

:

L2u
k+1
2 = f, in Ω2 × (0, T ),

uk+1
2 (x, 0) = u0(x), ∀x ∈ Ω2,

uk+1
2 (t, x1) = 0, t ∈ (0, T ),

(ν2
∂

∂x
− a2 + Λ2)u

k+1
2 (0, t) = (ν1

∂

∂x
− a1 + Λ2)u

k
1(0, t), t ∈ (0, T ),

where Λ1 and Λ2 are linear operators, involving derivatives in time.
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4.1 Optimized transmission conditions

The optimal transmission conditions can be derived from a Fourier analysis in the
case Ω = R. Using the error equations and a Fourier transform with parameter ω,

ρ(ω) :=

„

λ2(ω) − r−1 (ω)

λ1(ω) − r−1 (ω)

« „

λ1(ω) − r+
2 (ω)

λ2(ω) − r+
2 (ω)

«

with r−1 (ω) =
a1−

√
a2
1
+4ν1iω

2
, r+

2 (ω) =
a2+

√
a2
2
+4ν2iω

2
and λi, i = 1, 2 the symbol of

Λi. The optimal choice, which gives a convergence in 2 iterations, is λ2 = r−1 (ω) and
λ1 = r+

2 (ω). The calculations are straightforward extensions to those in [1]. As the
optimal corresponding transfer operators Λ1, Λ2 are nonlocal in time and thus more
costly than local transfers, we propose to use the following transfer operators

Λ1 :=
a2 + p2

2
+

q2

2

∂

∂t
, Λ2 :=

a1 − p1

2
− q1

2

∂

∂t

where the parameters p1, p2, q1, q2 minimize the convergence rate,The condition on
the parameters p1, p2, q1, q2 for the local subdomain problems to be well-posed are
qj ≥ 0 (due to energy estimates as in [1]). The question of convergence of the
algorithm remains open, even though there are numerical evidences for a positive
answer (see [2] for theoretical results using Robin transmission conditions).

4.2 Optimized Schwarz Waveform Relaxation with time windows

We now define the algorithm with many several time windows : Let [0, T ] =
∪N

n=0[Tn, Tn+1], and let p ≥ 1 be an integer, that we will take small (typically
p ≤ 3) in order to make very few iterations in each time window. Let uk

i,n be a
discrete approximation of ui in Ωi in the window (Tn−1, Tn) at step k of the SWR
method. Then, the next time window’s solution ui,n+1 in Ωi is obtained after p
SWR iterations :
for k = 0, ..., p − 1 :

8

>

>

>

<

>

>

>

:

L1u
k+1
1,n = f, in Ω1 × (Tn, Tn+1),

uk+1
1,n (x, Tn) = u1,n(x, Tn), ∀x ∈ Ω1,

uk+1
1,n (x0, t) = 0, t ∈ (Tn, Tn+1),

(ν1
∂

∂x
− a1 + Λ1)u

k+1
1,n (0, t) = (ν2

∂

∂x
− a2 + Λ1)u

k
2,n(0, t), t ∈ (Tn, Tn+1),

(4)
8

>

>

>

<

>

>

>

:

L2u
k+1
2,n = f, in Ω2 × (Tn, Tn+1),

uk+1
2,n (x, Tn) = u2,n(x, Tn), ∀x ∈ Ω2,

uk+1
2,n (t, x1) = 0, t ∈ (Tn, Tn+1),

(ν2
∂

∂x
− a2 + Λ2)u

k+1
2,n (0, t) = (ν1

∂

∂x
− a1 + Λ2)u

k
1,n(0, t), t ∈ (Tn, Tn+1),

(5)
and u1,n+1 := up

1,n, u2,n+1 := up
2,n.
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5 Time discretization with a discontinuous Galerkin

Method

Let us introduce the discretization of the subproblems in a time window I =
(Tn, Tn+1). We consider, for example, the subproblem in Ω1 at step k of the SWR
procedure. It can be written in the form

8

>

>

>

<

>

>

>

:

L1u = f in Ω1 × I,
u(x0, ·) = 0 in I,

(ν1
∂u

∂x
+ βu + γ

∂u

∂t
)(0, ·) = g in I,

u(·, 0) = u0, in Ω1,

with β = −a1 + a2+p2

2
, γ = q2

2
, and g(t) = (ν2

∂
∂x

− a2 + Λ1)u
k
2,n(0, t).

This problem is equivalent to the weak formulation : Find u(t) ∈ V = H1(Ω1) such
that u(0) = u0 and

((u̇(t), v)) + ã(u(t), v) = `t(v), ∀v ∈ V

with (·, ·) the scalar product in L2(Ω1), and for u ∈ V :

8

>

<

>

:

((u, v)) := (u, v) + γu(0)v(0)

ã(u, v) := b(u, v) + βu(0)v(0), with b(u, v) = ν1(
∂u

∂x
,
∂v

∂x
) + a1(

∂u

∂x
, v)

`t(v) := (f(t), v) + g(t)v(0)

The discontinuous Galerkin Method [4] is based on the use of a discontinuous finite
element formulation in time. Let I =

QK

k=1 Ik with Ik = [tk−1, tk], and let vk
+ =

lims→0+ v(tk+s) and vk
− = lims→0− v(tk+s). Let Vh be a finite-dimensional subspace

of V , and

Pq(Ik) = {v : Ik −→ Vh : v(t) =

q
X

i=0

vit
i with vi ∈ Vh}

The discontinuous Galerkin Method can now be formulated as follows :
8

>

>

>

<

>

>

>

:

U0
− = u0

For k = 1, · · · , K, given Uk−1
− , find U ≡ U|Ik

∈ Pq(Ik) such that
R

Ik

[((U̇ , v)) + ã(U, v)]dt + ((Uk−1
+ , vk−1

+ )) =
R

Ik

`t(v)dt + ((Uk−1
− , vk−1

+ )), ∀v ∈ Pq(Ik)

(6)

For q = 0, using the notations Uk ≡ Uk
− ≡ Uk−1

+ and ∆tk = tk − tk−1, the method
reduces to

8

>

>

<

>

>

:

U0 = u0

For k = 1, · · · , K, find Uk ∈ Vh such that

((
Uk − Uk−1

∆tk

, v)) + ã(Uk, v) =
1

∆tk

Z

Ik

`t(v), ∀v ∈ Vh

This method is a simple modification of the backward Euler scheme in that case.
For q = 1, (6) is equivalent to the following system with, for t ∈ Ik, U(t) = U0 +
t − tk−1

∆tk

U1, Ui ∈ Vh,
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8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(U0, v) + ∆tk b(U0, v) + (∆tk β + γ)U0(0)v(0) + (U1, v)+
1

2
∆tk b(U1, v)

+∆tk (
β

2
+ γ)U1(0)v(0) = (Uk−1

− , v) + γUk−1
− (0) v(0)

+

Z

Ik

(f(s), v)ds + v(0)
R

Ik

g(s)ds, ∀v ∈ Vh

1

2
∆tk b(U0, v) +

β

2
∆tk U0(0)v(0) +

1

2
(U1, v) +

1

3
∆tk b(U1, v)

+(
γ

2
+

β

3
∆tk)U1(0)v(0) =

1

∆tk

Z

Ik

(s − tk−1)(f(s), v)ds

+
1

ν1
v(0)

Z

Ik

(s − tk−1) g(s)ds, ∀v ∈ Vh

6 Numerical results

In this presentation, we take q = 0 in the discontinuous Galerkin method.

6.1 Relative L
2 error versus the time step

In this part, we consider the case with one time window only, with different grids
in time in each subdomain, and we observe the relative L2 error between the SWR
converged solution and the continuous solution, versus the number of refinements
of the time grid. We choose a1 = a2 = 1, ν1 = ν2 = 1, and u(x, t) = sin(x)cos(t),
in [0, 2π] × [0, 2.5] as exact solution. The space domain [0, 2π] is decomposed in
two subdomains Ω̄1 = [0, 2] and Ω̄2 = [2, 2π]. The mesh size is h1 = 0.01 for Ω1

and h2 = (2π − 2)/200 for Ω2. In order to compare the L2 relative error on the
nonconforming time grids case to the error obtained on a uniform conforming time
grid, we consider four initial meshes in time (see figure 1) :

• a uniform finner conforming mesh (mesh 1) with ∆t = 2.5/24,
• a nonconforming mesh (mesh 2) with ∆t = 2.5/24 in Ω1 and ∆t = 2.5/16 in Ω2,
• a nonconforming mesh (mesh 3) with ∆t = 2.5/16 in Ω1 and ∆t = 2.5/24 in Ω2,
• a uniform coarser conforming mesh (mesh 4) with ∆t = 2.5/16.

Figure 2 shows the relative L2 error versus the number of refinement for these four
meshes, and the time step ∆t versus the number of refinement, in logarithmic scale.
At each refinement, the time step is divided by two. The results of Figure 2 show
that the relative L2 error tends to zero at the same rate than the time step, and
this fits with the error estimates in [4]. On the other hand, we observe that the
two curves corresponding to the nonconforming meshes (mesh 2 and mesh 3) are
between the curves of the conforming meshes (mesh 1 and mesh 4).

6.2 Comparison of the 2 algorithms

In this part, we consider the problem

Lu = 0 in ]0, 6[×[0, 3]

u(0, t) = u(6, t) = 0 , t ∈ [0, 3], u(x, 0) = e−3(1.2−x).2 , x ∈ [0, 6]
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Fig. 1. Uniform conforming time grids (mesh 1 and mesh 4) and nonconforming
time grids (mesh 2 and mesh 3)
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Fig. 2. Relative L2 error versus the number of refinements for the initial meshes :
mesh 1 (diamond line), mesh 2 (solid line), mesh 3 (dashed line), and mesh 4 (star
line). The triangle line is the time step ∆t versus the number of refinements, in
logarithmic scale.

In order to compare algorithm (2)-(3) to the SWR algorithm (4)-(5), we decompose
the time interval into three windows : [0, 3] = [0, 1] ∪ [1, 2] ∪ [2, 3] and we compare
the computed solutions obtained from each method. We take a1 = 0.1, ν1 = 0.2,
a2 = ν2 = 1. The space domain [0, 6] is decomposed in two subdomains Ω̄1 = [0, 3]
and Ω̄2 = [3, 6]. The mesh size is h1 = 0.01 for Ω1 and h2 = 0.06 for Ω2. The time
step in each window is ∆t1 = 0.01 for Ω1 and ∆t2 = 0.02 for Ω2. On figure 3 on the
right, we observe that the 3-windows computed solution with the SWR algorithm
(4)-(5) is close to the one-window solution. Moreover it more precise than the 3-
windows computed solution of figure 3 which is obtain with the algorithm (2)-(3)
(figure 3 on the left).
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Fig. 3. One time window solution (solid line) and 3-windows solutions (dashed line
for Ω1 and dashdot line for Ω2), with algorithm (2)-(3) on the left, at time t=T=3,
and with the SWR method on the right, at time t=T=3, and at SWR iteration 3.

7 Conclusion

We have introduced a Schwarz Waveform Relaxation Algorithm for the convection-
diffusion equation with discontinuous coefficients. The transmission conditions in-
volve normal derivatives and derivatives in time as well. We have used those in
computations, together with a zero-order discontinuous Galerkin method and a pro-
jection between the time grids. We showed numerically that the discretization order
is preserved. We intend now to extend the strategy to higher order Galerkin meth-
ods, and to write projection steps that keep, for the whole process, the order of the
scheme in each subdomain.
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