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Abstract—We address the problem of synthesizing safety-
critical cyber-physical system architectures to minimize a cost
function while guaranteeing the desired reliability. We cast
the problem as an integer linear program on a reconfigurable
graph which models the architecture. Since generating symbolic
probability constraints by exhaustive enumeration of failure cases
on all possible graph configurations takes exponential time, we
propose two algorithms to decrease the problem complexity,
i.e. Integer-Linear Programming Modulo Reliability (ILP-MR)
and Integer-Linear Programming with Approximate Reliability
(ILP-AR). We compare the two approaches and demonstrate
their effectiveness on the design of aircraft electric power system
architectures.

I. INTRODUCTION

In a typical cyber-physical system (CPS) architecture,
software components running on a hardware computing plat-
form are connected in feedback with physical processes to
form a large, distributed, control system subject to tight cost,
safety and reliability constraints. A major obstacle to the
development of model-based design tools for these systems is
the heterogeneity of the requirements, often expressed using
different mathematical formalisms, and hard to account for
at once. It is, therefore, desirable to devise abstractions that
enable scalable co-design and optimization of complex CPS
architectures for several, possible conflicting concerns, while
guaranteeing design correctness and fault tolerance.

In this paper, we propose an optimization-based method-
ology for the selection of CPS architectures whose reliability
is a function of the interconnection structure. Our goal is to
minimize the overall system cost (e.g. number and weight
of components) while guaranteeing that an upper bound on
system failure probability is met. Our contributions can be
summarized as follows:

(i) We provide a general graph representation of an architecture
that allows an efficient casting of the design problem as an
integer linear program (ILP), capable of modeling a variety of
system requirements, such as connectivity, safety, reliability
and energy balance;

(ii) We propose two algorithms to decrease the complexity
of exhaustively enumerating all failure cases on all possible
graph configurations, i.e. Integer-Linear Programming Modulo
Reliability (ILP-MR) and Integer-Linear Programming with
Approximate Reliability (ILP-AR). ILP-MR lazily combines
an ILP solver with a background exact reliability analysis rou-
tine. The solver iteratively provides candidate configurations
that are analyzed and accordingly modified, only when needed,
to satisfy the reliability requirements. Conversely, ILP-AR
eagerly generates monolithic problem instances in polynomial
time using approximate reliability computations that can still
generate estimations to the correct order of magnitude, and
with an explicit theoretical bound on the approximation error;
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(iii) We compare the performance of the two approaches
and demonstrate their effectiveness on the design of safety-
critical industrial-scale architectures for aircraft electric power
distribution.

Traditional safety and reliability assessment is based on
a set of methods that are hard to incorporate into automatic
design exploration and optimization frameworks. In addition
to the complexity of exact network reliability analysis, which
is an NP-hard problem [1], techniques such as Fault Tree
Analysis (FTA) or Reliability Block Diagrams (RBD) often
rely on a set of system abstractions, which are hardly in-
teroperable with system design flows [2]. For instance, in
FTA, causal chains leading to some failure are depicted as a
tree, inherently describing a hierarchical breakdown. However,
in FTA, decomposition into modules mostly relates to the
hierarchy of failure influences rather than to the actual system
architecture. Therefore, the integration of fault trees with other
system design models is not directly possible.

In contrast, we propose to evaluate reliability directly
from the system structure, by associating a reliability model
to each system component and interconnection, as proposed
by Kaiser et al. [2]. This compositional approach allows
us to formulate two algorithms to concurrently optimize for
reliability and cost. Instead of formulating a single, “flat” opti-
mization problem, the ILP-MR algorithm avoids the expensive
generation of symbolic reliability constraints via an iterative
approach inspired by the ILP Modulo Theory paradigm [3], [4].
On the other hand, the ILP-AR algorithm aims to efficiently
solve a single optimization problem, albeit of a larger size,
without repetitive calls to the exact reliability analysis function,
which may also be expensive. ILP-AR exploits an approximate
“algebra” for reliability calculation, inspired by the work of
Helle et al. [5]. However, our algebra is richer than the
previously proposed one, since it accounts for the number
of redundant paths implementing a certain function as well
as the number of components of the same type that are
actually used in these paths. As a result, we can relax the
simplifying assumption that any used component is either
maximally redundant (i.e. participates in just one path) or
essential (i.e. participates in all paths).

II. PROBLEM FORMULATION

We assume that a design is assembled out of a library
(collection) L of components and composition rules. Each
component is associated with a set of attributes, which are used
to capture both its functional and non-functional properties,
such as energy, performance, and cost. Components can be
connected via terminals and terminal variables. At this level
of abstraction, terminals are logic in nature. Input terminals
are used to receive a signal or the value of a terminal variable;
output terminals are used to send a signal or assign a value of
a terminal variable. Composition rules define how terminals
are connected and terminal variables are assigned between
components. For the purpose of this paper, L is parameterized
by a set of vectors, including terminal variables w, component
costs c, and failure probabilities p. Moreover, we assume that
each component can also be labelled with a type, defining its
functionality (role or task) in a system, as formalized below.
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Figure 1: (a) Architecture template configuration example; (b) Archi-
tecture analyzed in Example 1; (c) Sample single-line diagram of an
aircraft electric power system from [4]: contactors are represented by
double bars.

Definition II.1 (Architecture). A system architecture consists
of a finite set of components and their interconnections, and
can be modeled as a directed graph G = (V,E), where
each node vi ∈ V represents a component and each edge
eij ∈ E represents the interconnection from vi to vj (i, j ∈
{1, . . . , |V |}, |V | being the cardinality of V ).

As shown in Fig. 1a, a template T is an architecture, in
which the set of nodes is fixed, while the interconnection
structure is variable and can be reconfigured. In a template, the
edges can also be represented using a set of Boolean variables
E = {eij}, each denoting the presence or absence of an
interconnection. An assignment over E is a configuration. In
practice, every node in an abstract architecture can be mapped
to an element of a physical architecture; edges can also be con-
veniently associated with switches to denote interconnections
that are selectively activated. Based on the attributes of our
library, both nodes and edges can be labeled with the terminal
variables w, costs c and failure probabilities p. Finally, we
assume that an external control unit can react to component
failures, by modifying the link (switch) configuration to acti-
vate alternative paths from sources to sinks. The reliability of
an architecture is then determined by its topological structure
and the redundancy of the paths available to perform a critical
function, associated to a functional link. To define a functional
link, we first introduce a partition on G, to which we link the
notion of component type as follows.
Definition II.2 (Graph Partition and Component Type). A
partition Π = {Π1,Π2, . . . ,Πn} over the set of nodes V of
G is a set of nonempty subsets of V such that V is a disjoint
union of these subsets. We say that two nodes a and b have
the same type, written a ∼ b, when they belong to the same
set in Π. If a is in Πi, then we say that its type is i.

We also recall that a walk µ(va, vb) of G is a sequence of
nodes {n0, . . . , nk} such that n0 = va, nk = vb and enini+1

∈
E for each i. When all nodes in µ are distinct, we say that
µ is a (simple) path, and write |µ| to denote the length of µ.
Let Π1 and Πn be the subsets of V including, respectively,
all sources and sinks. Then, a functional link Fi is the set of
paths from any source in Π1 to a sink vi ∈ Πn that are used
to perform an essential system function, on which a reliability
requirement is given; in practice, such a function may consist
in transferring data or energy from a source to the sink through
a sequence of input-output links.

Based on the definitions above, we cast the architecture
selection problem as an optimization problem. Given a library
L and a template T , our goal is to derive a configuration that
satisfies a set of interconnection and reliability requirements,
while minimizing the cost and the complexity (number of com-
ponents) of the overall network. The set of Boolean variables
E will then include our decision variables. Based on the final
assignment over E, some of the edges and nodes in T will be

selected to generate an optimal architecture; unnecessary nodes
and edges will instead be pruned away to minimize the overall
cost. In the following, we provide example formulations for the
objective function and the requirements in terms of Boolean
arithmetic constraints.

Objective Function. Let e be the adjacency matrix of T ,
i.e. eij = 1 if there is one connection from vi to vj , and
0 otherwise. Then, the objective function can be expressed as
the sum of the costs of all components (associated with nodes)
and switches (associated with edges) used in the template, i.e.

|V |∑
i=1

δici +

|V |∑
i=1

|V |∑
j=i+1

(eij ∨ eji)c̃ij (1)

where ci is the cost of component i, c̃ij is the cost of the
switch on edge eij , and δi is a binary variable equal to one
if the component is instantiated in a configuration and zero
otherwise. We express δi in terms of the edge variables as
δi =

∨|V |
j=1(eij ∨ eji), meaning that δi is one if there exists

at least an edge (either ingoing or outgoing) between vi and
any other node in the graph (we assume eii = 0 for all i).
Moreover, we use (eij ∨ eji) when computing the cost of the
switches, to avoid double counting the contribution of a switch
associated to a bidirectional interconnection.

Interconnection Constraints. Interconnection requirements
originate from the composition rules in L and are used to
enforce legal connections among components. For example,
let D, L, and B be subsets of V . Then, we can prescribe that
there exists at least (most) one connection from a node in L
and a node in D as follows:

|D|∑
i=1

eljdi ≥ (≤) 1 ∀ j ∈ N : 1 ≤ j ≤ |L|, (2)

where eljdi is the edge from node lj to node di, and the
inequality turns into an equality when one and only one
connection is admitted. Moreover, we can state that if there
exists an interconnection from any node in L to a node dj in
D, then dj must be connected to at least one node in B, using
a constraint of the form:∨

1≤i≤|L|

elidj ≤
∨

1≤k≤|B|

edjbk ∀ j ∈ N : 1 ≤ j ≤ |D|. (3)

Another set of interconnection constraints can be used to
enforce conservation laws or balance equations in physical
systems, e.g. requiring that the maximum power provided by
a source in T is greater than or equal to the maximum power
required by the connected sinks. Let d be a node in the graph,
which is neither a source nor a sink. Let B be the set of direct
predecessors of d, and L be the set of its direct successors.
Then, the balance equation at the terminals of d can be written
as

|B|∑
i=1

wbiebid ≥
|L|∑
j=1

wljedlj . (4)

Interconnection requirements as the ones above originate linear
arithmetic constraints in the decision variables, or include
logical operations (conjunctions and disjunctions) that can be
linearized with standard techniques [6].

Reliability Constraints. A typical reliability requirement pre-
scribes that the failure probability of a sink, i.e. the probability
that a sink gets disconnected from a source because of failures,
should be less than a desired threshold. Therefore, to formulate
a reliability constraint, we need to compute the probability
of composite failure events in the system, starting from the
failure probabilities of the components. Specifically, we denote
as system failure Ri an event in which there is no possible



Algorithm 1 ILP Modulo Reliability (ILP-MR)
Input: Architecture template T , component variables w, costs c and
failure probabilities p, reliability requirement r∗

Output: Adjacency matrix e∗ of the final architecture G∗

r ← 2r∗

(Cost, Cons) ← GENILP(T , w, c)
while r > r∗ do . failure probability

e∗ ← SOLVEILP(Cost, Cons)
if e∗ = [ ] then return UNFEASIBLE

r ← RELANALYSIS(e∗, p)
if r > r∗ then

Cons← LEARNCONS(Cons, r, r∗, e∗)
if Cons = [ ] then return UNFEASIBLE

return e∗

connection between any of the available sources and a sink i,
i.e. when the functional link Fi breaks, and as reliability level
ri the probability of Ri. Practically, the above notion of failure
models the interruption of any information or energy transfer
to an essential portion of the system. We assume that when
a component fails it cannot be recovered, and the adjacent
links are no longer usable. Moreover, failures in different
components are independent.

Let Pi be the event that component i fails (self-induced
failure). Then, the event Ri of a system failure affecting
component i can be recursively computed as follows

Ri = Pi ∪
⋂

1≤j≤|V |,eji 6=0

Rj , (5)

where eji is jth-row, ith-column element of the adjacency
matrix e of T . In other words, component i fails when either
a failure is generated in itself, or when failures are induced
through its predecessors. A symbolic constraint for ri can
then be generated using (5) to enumerate all possible failure
events while traversing T from node i to the sources. However,
such an exact computation, based on the enumeration of all
possible component failure events, has exponential complexity
on a fixed graph configuration [1]. The problem is further
exacerbated when compiling a symbolic expression for a re-
configurable graph, since, in general, enumerating all possible
configurations has also exponential complexity. To overcome
this issue, we propose two approaches to the solution of the
optimal architecture selection problem, namely, ILP-MR and
ILP-AR, which we detail in the following sections.

III. ILP MODULO RELIABILITY

The ILP Modulo Reliability (ILP-MR) algorithm avoids
the expensive generation of symbolic reliability constraints by
adapting the ILP Modulo Theory approach [3] to reliability
computations, as summarized in Algorithm 1. ILP-MR receives
as inputs: the library of components L, together with their
attributes c, w and p, the template T , and the set of require-
ments, including interconnection and reliability constraints. To
simplify, we assume that r is the worst case failure probability
over a set of nodes of interest, for which the same reliability
requirement r∗ must be satisfied.

An ILP is solved in a loop with a reliability analysis
routine. SOLVEILP generates minimum cost architectures for
the given set of interconnection constraints. The RELANAL-
YSIS routine computes the probability of composite failure
events at critical nodes, starting from the failure probabilities
of the components, a problem known as K-terminal reliability
problem in the literature [1]. To do so, we implement a
modified depth-first search algorithm to traverse the graph G
from node i (root) to the source nodes (leaves), by applying
a path enumeration method, and by turning event relations as

Algorithm 2 LEARNCONS

Input: Current constraints Cons, reliability r, reliability requirement
r∗, adjacency matrix e∗

Output: Final constraints Cons

k ← ESTPATH(r, r∗, e∗)
NewCons← [ ]
S ← GETSINKS(e∗)
(T1, . . . , Tn)← GETTYPES(e∗)
for all v ∈ S do

if k ≥ 1 then
for all i ∈ (Tn−1, Tn−2, . . . , T1) do

NewCons ← ADDPATH(v, i, k, NewCons, e∗)
else

i← FINDMINREDTYPE(v, e∗)
NewCons ← ADDPATH(v, i, 1, NewCons, e∗)

if NewCons = [ ] then return UNFEASIBLE

Cons← (Cons,NewCons)
return Cons

in (5) into probability expressions. However, any other exact
reliability analysis method for directed graphs can also be
used [1]. Although the K-terminal reliability problem is NP-
hard, the key idea is to solve it only when needed, i.e. a small
number of times, and possibly on smaller graph instances.

At each iteration of ILP-MR, if the optimal architecture
satisfies the reliability constraints, it is returned as the final
solution. Otherwise, LEARNCONS estimates the number of
redundant paths needed to achieve the desired reliability and
suggests a set of strategies to implement the required paths
by augmenting the original optimization problem with a set of
interconnection constraints. This constraint learning function
is, therefore, instrumental to efficiently converge towards a
reliable architecture, while minimizing the number of calls to
RELANALYSIS. We provide details about this function in the
following section.

A. Learning Constraints to Improve Reliability

When no reliability constraints are enforced in the ILP,
the solver attempts to use the minimum number of compo-
nents and interconnections to perform a specific function at
minimum cost. Typically, such a “minimal” architecture has
also minimal redundancy, hence minimal reliability. Based on
this intuition, we develop strategies that increase the reliability
of the solution, albeit at a higher cost, by enforcing a larger
number of redundant components and interconnections. We
have recently reported an iterative approach similar to ILP-
MR, based on a set of ad hoc strategies, customized for the
specific problem at hand [4], [7]. In Algorithm 2, we introduce
instead a generic template that can directly apply to the general
problem formulation in Section II, hence to a broader set of
applications.

Based on the current reliability level r, LEARNCONS
estimates the number of additional redundant paths k required
to satisfy the desired reliability r∗ (function ESTPATH). As
an example, under the assumption that all the paths in a
functional link F are independent, then k can be computed
as k = blog(r∗/r)/ log ρc , where ρ is the failure probability
of a single path in F , and bxc denotes the integer part of
x. Since, in reality, the paths in F are not independent, this
is a conservative estimation which avoids over-design. Then,
if at least one additional path is required, for all the sinks
and component types implementing F and used in the current
architecture, ADDPATH generates new constraints to enforce
that at least k additional components of each type have a
path to the sink. These constraints do not necessarily translate
into instantiating more components, as far as additional paths



to the sink can be obtained by just increasing the number
of interconnections. If k additional paths cannot be obtained
with the current template, ADDPATH attempts to enforce
the maximum available number of paths. Conversely, if the
estimated number of paths is zero, LEARNCONS attempts to
still improve the overall reliability by enforcing one additional
path between the sink and a component whose type has
minimum redundancy in the current architecture, i.e. for which
the total number of paths to the sink is minimum (as obtained
from FINDMINREDTYPE). If no additional paths can be added
between a sink and a component of any type, LEARNCONS
terminates with UNFEASIBLE.

To enforce additional paths, ADDPATH uses the walk
indicator matrix of T , defined below.
Lemma 1 (Walk Indicator Matrix). Let e be the adjacency
matrix of a graph T ; let a � b the logical product of two
logical matrices a and b in Bm×m, defined as (a � b)ij =∨m
k=1 aik∧bkj; let ek = e� . . .� e︸ ︷︷ ︸

k times

be the k-th logical power

of e. Then, the entry in row i and column j, ηnij , of the walk
indicator matrix ηn =

∨n
k=1 e

k is 1 if and only if there exists
a directed walk of length less or equal n from vertex vi to
vertex vj .

We can then require at least k additional connections of
components of type Ti, belonging to the set Πi of the partition
Π of T , to a sink v via at least one path of length n− i+ 1
by enforcing∑

w∈Πi

ηn−i+1w,v ≥ k +
∑
w∈Πi

η∗n−i+1w,v
, (6)

where ηn−i+1 and η∗n−i+1 are the walk indicator matrices,
respectively, for T (decision variables) and the current ar-
chitecture G∗. The constraint (6) can be converted into an
equivalent set of linear constraints in the elements of e (edge
variables) by using standard linearization techniques. The
following result summarizes the properties of the ILP-MR
approach.
Theorem 1 (Correctness of ILP-MR). For a given template
T and within the approximation error ε of the SOLVEILP and
RELANALYSIS routines, ILP-MR (Algorithm 1) is sound and
complete.

For the sake of conciseness, the formal proof of the theo-
rems in this paper will be omitted. Informally, we observe that,
since the number of components in T is finite, the ILP-MR
routine, based on Algorithms 1 and 2, will terminate. More-
over, because RELANALYSIS implements an exact reliability
analysis method, if a final architecture is found, then it will
satisfy all the requirements, being only subject to the rounding
error ε due to the ILP solver and to RELANALYSIS. On the
other hand, because all available components will be eventually
used to increase the reliability, if ILP-MR terminates with
UNFEASIBLE, then there is no architecture, obtained from
the given template, which is able to satisfy all the constraints.

IV. ILP WITH APPROXIMATE RELIABILITY

The ILP-AR algorithm replaces exact reliability compu-
tations with an approximate algebra that allows encoding a
reliability requirement into a number of linear constraints
on Boolean variables, which is polynomial in the size of
the template. In Section IV-A we introduce the approximate
reliability algebra, which estimates the correct order of mag-
nitude for the failure probabilities of all the components in an
architecture by leveraging the fact that components with the
highest failure probability tend to dominate the overall failure
probability. Then, in Section IV-B we report the main results
on correctness and complexity of ILP-AR.

A. Approximate Reliability Algebra
In the approximate algebra, components contribute to the

system failure probability based on their degree of redundancy,
which is defined based on the notions of functional link and
component type defined in Section II. We recall that any path
in a functional link Fi consists of an interconnection of com-
ponents, each having a role or performing a sub-task defined
by its type. Components of the same type can be interchanged
and introduce redundancy in the system architecture. We say
that a component type j, associated to a partition Π of G,
jointly implements a functional link Fi, written Πj ` Fi, if
all paths in the functional link Fi include at least one node
in Πj , i.e. Πj ` Fi iff ∀µ ∈ Fi : µ ∩ Πj 6= ∅. Trivially,
we have Π1 ` Fi and Πn ` Fi for all i. Moreover, multiple
nodes of the same type are allowed in a path as far as they
are adjacent to each other. Given a path µ, possibly including
multiple instances of the same type, we denote as µ̂ the reduced
path obtained from µ after replacing all the instances of the
same type with a single node, still of the same type.

We can then define the degree of redundancy hij associated
with type j and link Fi as the number of components of type j
used in at least one reduced path of Fi, i.e. hij = |(∪µ∈Fi

µ̂)∩
Πj |. Finally, we approximate the failure probability ri of a
functional link Fi by

r̃i =
∑
j∈Ii

hijp
hij

j (7)

where Ii = {j|Πj ` Fi} is the set of all component types that
jointly implement Fi, pj is the probability of failure of any of
the components of type j, and hij is the degree of redundancy
associated with type j and link Fi.
Example 1. We illustrate the application of (7) to the ar-
chitecture E represented in Fig. 1b. We consider a partition
where Π1 = {G1, G2}, Π2 = {B1, B2}, Π3 = {D1, D2} and
Π4 = {L}. Sink L is connected to sources G1 and G2 via two
(reduced) paths, each using components of all the four types
listed above. Then, the approximate expression for the failure
probability of L would be r̃L = pL+ 2p2

D + 2p2
B + 2p2

G, while
exact calculations lead to

rL = pL + (1− pL){pD + (1− pD)[pB + (1− pB)pG]}2.
When all components are assumed to fail with the same proba-
bility p� 1, we obtain r̃L = p+6p2 and rL = p+9p2+O(p3).

The estimation in Example 1 has the same order of the
exact calculation, and the error becomes negligible for small
p. In general, it is possible to state the following theorem,
providing a bound on the error of the approximate reliability
algebra.
Theorem 2. Given a graph G and a partition Π, let r̃ and r
be, respectively, the approximate and exact failure probability
for a functional link F = {µ1, . . . , µf}, denoted by its set of
f paths (f = |F |). Let I = {j|Πj ` F} the set of component
types jointly implementing F . Then, the following inequality
holds:

r̃

r
≥ mf

Mf
, (8)

where Mf =
∏j=f
j=1 |µj | and m = |I|.

Based on Theorem 2, (7) can provide “optimistic” esti-
mations, but the bound to such optimism can be explicitly
estimated for a given graph template T .

B. Correctness and Complexity of ILP-AR
The overall ILP-AR approach is illustrated in Algorithm 3.

To implement GENILP-AR, we use the approximate algebra to



Algorithm 3 ILP With Approximate Reliability (ILP-AR)
Input: Architecture template T , component variables w, costs c and
failure probabilities p, reliability requirement r∗

Output: Adjacency matrix e∗ of the final architecture G∗

(Cost, Cons) ← GENILP-AR(T , w, c, p, r∗)
e∗ ← SOLVEILP(Cost, Cons)
if e∗ = [ ] then return UNFEASIBLE
return e∗

Table I: Components and attributes used in the EPS example.

Generators g (kW) Loads l (kW) Components c
LG1 70 LL1 30 Generator g/10
LG2 50 LL2 10 Bus 2000
RG1 80 RL1 10 Rectifier 2000
RG2 30 RL2 20 Contactor 1000
APU 100

capture all the reliability requirements. While (7) is a nonlinear
expression, a linear encoding of the same constraint can be
obtained as follows ∑

k∈{1,...,kmax},j∈{1,...,n}

k · xijk · pkj ≤ r∗i , (9)

where r∗i is the required failure probability, xijk is an auxiliary
binary variable equal to 1 if j ∈ Ii and hij = k, and 0
otherwise, and kmax is the maximum possible value for hij
in the given template, i.e. kmax = max1≤j≤n |Πj |.

Additional constraints are needed to express the auxiliary
variables xijk in terms of our decision variables. We assume
that the reference template T only includes reduced paths.
This is not a restrictive assumption, since multiple instances
of adjacent nodes of the same type can be added by refining T
in a second step of the selection process. Then, by lemma 1,
we link the indicator variables xijk to the decision variables by
adding the following constraints for each type j in {1, . . . , n}:

kmax∑
k=0

xijk ≤ 1, (10)

and, ∀k ∈ N : 0 ≤ k ≤ kmax,∑
w∈Πj

(
ηnw,vi ∧

( ∨
s∈Π1

ηns,w

))
= k → (xijk = 1). (11)

The constraint in (11) counts the number of components of
type j which are connected by at least one path to vi and
to any source in Π1. The indicator variable xijk is then set
to 1 if the number of such components is k. Constraint (10)
enforces that only one of the xijk variables be set to one.
The implication in (11) can be easily converted into a linear
constraint using standard techniques [6]. Overall, it can be
shown that the number of constraints (and auxiliary variables)
generated by the computations in (9)-(11) is O(|V |3n), where
n = |Π|. This amounts to a polynomial complexity in the
number of nodes and partitions in T , which contrasts with the
exponential complexity of the exact computations in Section II
and III. Finally, the following result holds for the ILP-AR
approach.
Theorem 3 (Correctness of ILP-AR). For a given template T
and within the error bound provided in Theorem 2, ILP-AR
(Algorithm 3) is sound and complete.

Informally, the result follows from the fact that, for each
type of components, ILP-AR attempts to determine the degree
of redundancy needed to meet the reliability requirement.

(a) Architecture 1 (b) Architecture 2 (c) Architecture 3

Figure 2: EPS architectures and reliability as obtained at each iteration
of an ILP-MR run with r∗ = 2 × 10−10: (a) r = 6 × 10−4; (b)
r = 2.8× 10−10; (c) r = 0.79× 10−10.

Therefore, if ILP-AR returns UNFEASIBLE, assuming that the
interconnection constraints are feasible, then we can conclude
that T does not provide enough redundancy to satisfy the reli-
ability constraints. On the other hand, when ILP-AR provides
an optimal topology, the solution will satisfy the reliability
requirement with an approximation error which is worst case
bounded by (8).

V. AIRCRAFT POWER SYSTEM ARCHITECTURE DESIGN

We apply our algorithms to the selection of optimal archi-
tectures for power generation and distribution in a passenger
aircraft. Fig. 1c illustrates a sample architecture in the form
of a single-line diagram, a simplified notation for three-phase
power systems [4]. Typically, aircraft Electric Power System
(EPS) components include power sources, such as the left
and right generators (L/R-GEN) and the auxiliary power units
(APU) in Fig. 1c. The generators power the buses and their
loads (not shown in Fig. 1c). AC power is converted to DC
power by rectifier units (TRU). A bus power control unit
monitors the availability of power sources and configures a
set of switches, denoted as contactors, such that essential buses
remain powered even in the presence of failures.

We aim to generate an EPS architecture that satisfies a set
of connectivity, power flow and reliability requirements, while
minimizing the total cost. We then model the architecture as a
directed graph, where each node represents a component (with
the exception of contactors, which are associated with edges)
and each edge represents an interconnection. We assume a
template T consisting of the following component types:
generators (LG/RG), AC buses (LB/RB), rectifiers (LR/RR),
DC buses (LD/RD), loads (LL/RL), two on each side, and
one APU. The platform library attributes include generator
power ratings g, load power requirements l, component costs
c and failure probabilities p, as summarized in Table I. In our
examples, we assume that only generators, buses and rectifiers
fail with a probability of 2× 10−4.

Connectivity properties can be expressed by using con-
straints as the ones in (2) and (3). For instance, we can
prescribe that any rectifier must be directly connected to only
one AC bus, and that all DC buses that are connected to a load
or another DC bus must be connected to at least one rectifier
to receive power from an AC bus. Power-flow constraints are
used to enforce that the total power provided by the generators
in each operating condition is greater than or equal to the total
power required by the connected loads, by using expressions
as in (4). Finally, a reliability constraint prescribes that the
probability that a load gets unpowered because of failures
should be less than a desired threshold. A functional link
will then consist of the set of paths from any generator to
the load. Moreover, since our template supports only reduced
paths, we use an edge between two nodes of the same type as
a shorthand notation to indicate two redundant components: if
vi and vj , with vi ∼ vj , are connected by an edge, then any
direct predecessor of vi is also a direct predecessor of vj and
vice versa.

We have developed ARCHEX, a prototype framework for
system architecture exploration and synthesis, implementing
both the ILP-MR and ILP-AR algorithms. ARCHEX leverages
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Figure 3: EPS architectures synthesized using ILP-AR for different
reliability requirements: (a) r∗ = 2 × 10−3, r̃ = 6.0 × 10−4, r =
6× 10−4; (b) r∗ = 2× 10−6, r̃ = 2.4× 10−7, r = 3.5× 10−7; (c)
r∗ = 2× 10−10, r̃ = 7.2× 10−11, r = 2.8× 10−10.

YALMIP [8] and CPLEX [9] to, respectively, formulate and
solve ILP problems. All the numerical experiments were
performed on an Intel Core i7 2.8-GHz processor with 8-
GB memory. Figure 2 shows the architectures obtained at
each iteration of the ILP-MR algorithm for a load failure
probability requirement r∗ = 2 × 10−10. By solving for just
the connectivity and power flow constraints, we obtain the
simplest possible architecture (Fig. 2a), which only provides a
single path from a load to a generator (or APU), thus showing
the highest failure probability. Based on the parameters in
Table I we obtain ρ = 8 × 10−4, which leads to k = 2, as
discussed in Section III-A. Therefore, at the second iteration,
two additional paths are enforced between each load and a
generator, as shown in Fig. 2b. Since the requirement is not
yet satisfied, a third iteration is used to fine tune the reliability,
by adding one more path between each load and an AC
bus. The total computation time to generate the architectures
in Fig. 2 was about 38 s. Three architectures obtained using
the ILP-AR algorithm for different load failure probability
requirements are instead shown in Fig. 3. The lower the
required failure probability, the higher the number of redundant
paths and components instantiated from the original template,
and the higher the associated cost. For each architecture, the
approximate algebra provides an estimation r̃ of the failure
probability which is extremely close to the actual value r
obtained by exact computations. While the failure probability
of the architecture in Fig. 3c exceeds the requirement, the
error is well within the bound predicted by Theorem 2. The
execution time of each optimization run in Fig. 3 was also
approximately 38 s; however, about 70% of the computation
time was used to generate the optimization constraints, which
can also be performed off-line for a given template.

To test the scalability of both the approaches, we designed
EPS architectures with an increasing number of components.
In Table II, we report on the execution time of the ILP-
MR approach using Algorithm 2 (at the top) in comparison
with the one obtained by a lazier approach, which only adds
one additional path at each iteration between the load and a
component with a minimal degree of redundancy. The dramatic
reduction in time spent for reliability analysis (e.g., more than
one day versus 3 min for a 50-node architecture) shows the
advantage of using the analysis results to infer the number of
required redundant paths, as proposed in Algorithm 2. When
this inference is feasible, ILP-MR outperforms ILP-AR (see
solver times in Table III) for architectures with more than 40
nodes. On the other hand, as evident from Table III, once
the optimization problem is generated for a given template,
ILP-AR is more competitive for smaller architectures. Yet,
problems with several thousands of constraints, and including
a realistic number of generators (normally less than 10), can
still be formulated and solved in a few hours. We also observe
that, because of the sparsity of the EPS adjacency matrix,
in this case study, it was possible to reduce the number
of generated constraints, which is always smaller than the
asymptotic estimation in Section IV.

Overall, we infer that ILP-AR turns out to be preferable
when we aim to a coarser estimation of the capability (and
limitations) of an architecture template and a platform library

Table II: Number of iterations, reliability analysis and solver time for
different EPS architecture sizes (r∗ = 10−11, n = 5) using ILP-MR
with LEARNCONS (top) and with a lazier strategy, adding only one
path at each iteration (bottom).

|V | (# Generators) #Iterations Analysis time (s) Solver time (s)
20 (4) 3 34 4.3
30 (6) 3 78 9
40 (8) 3 106 14
50 (10) 3 181 18
20 (4) 4 72 13
30 (6) 7 852 28
40 (8) 10 9118 58
50 (10) 14 39563 114

Table III: Number of constraints, problem generation (setup) and
solver time for different EPS architecture sizes (r∗ = 10−11, n = 5)
using ILP-AR.

|V | (# Generators) # Constraints Setup time (s) Solver time (s)
20 (4) 5290 27 11
30 (6) 24514 402 77
40 (8) 74258 3341 494

50 (10) 176794 18902 5059

in terms of reliability. On the other hand, ILP-MR makes
it easier to incorporate domain-specific knowledge, since a
designer can customize the techniques adopted to improve
reliability at each iteration. Moreover, ILP-MR becomes the
preferred choice, especially for larger problem instances, when
we can estimate the number of redundant paths needed to
satisfy the requirement as early as possible, or when we are
willing to pay for a longer execution time to incrementally fine
tune the reliability of the design.

VI. CONCLUSIONS

We have introduced, characterized and demonstrated two
efficient ILP-based algorithms for the optimal selection of
cyber-physical system architectures subject to safety and re-
liability constraints. As a future work, we plan to further
investigate the generalization of the presented approaches to
support a broader category of systems (e.g. power grids,
communication networks) and design concerns (e.g. impact of
system dynamics and transients).
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