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Abstract. Modes of operation adapt block ciphers to many applica-
tions. Among the encryption modes, only CFB (Cipher Feedback) has
both of the following properties: Firstly it allows transmission units
shorter than the block-cipher length to be encrypted and sent without
delay and message expansion. Secondly, it can resynchronize after the
loss of such transmission units.
However, CFB is inefficient in such applications, since for every trans-
mission unit, regardless how short, a call to the block cipher is needed.
We propose a new mode of operation based on CFB which remedies
this problem. Our proposal, OCFB, is almost optimally efficient (i.e.,
almost as many message bits are encrypted as block-cipher output bits
produced) and it can self-synchronize after the loss or insertion of trans-
mission units. We prove the security of CFB and OCFB in the sense of
modern cryptography.

1 Introduction

Symmetric-key block ciphers are one of the most prominent building blocks in
many cryptographic systems. They are used to construct various primitives such
as stream ciphers, message authentication codes, and hash functions. Concep-
tually, a block cipher is a function that maps fixed-size l-bit plaintext blocks
to l-bit ciphertext blocks (l is called the length of block cipher). The function
is parametrized by a key k of a certain length. Examples of well-known block
ciphers are Triple-DES (based on [DES77]), IDEA [LM91] and the AES can-
didates [NIST00], in particular Rijndael [DR99]. To encrypt longer messages
and to fulfil varying application requirements, several modes of operation for
block ciphers have been proposed. Among the standardized encryption modes
from [FIPS81], CBC (Cipher Block Chaining) and CFB (Cipher Feedback) use
the previous ciphertext block in the encryption so that each ciphertext block de-
pends on the preceding plaintext, while OFB (Output Feedback) acts as pseudo-
random bit generator and allows a large part of the encryption procedure to be
precomputed. CFB and OFB can be used for applications where plaintext units
with L < l bits (L = 8 and L = 1 are typical cases) must be encrypted and
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transmitted without delay. We call this a transmission unit. The counter mode
(e.g., [DH79,LRW00]) can replace OFB.

Several applications need a self-synchronizing mode of operation, i.e., an er-
ror in the ciphertext must only lead to a small amount of incorrect plaintext.
These are applications where the protocols have no or very basic built-in fault
tolerance because the data type, e.g., voice or video, is such that small errors
are unnoticeable or recoverable by natural redundancy. A more systematic al-
ternative to a self-synchronizing cipher would be to add more error correction
either to the transmission system or the application, but in practice, both may
be fixed and one has to offer a transparent encryption layer in between. An
application where we encountered this problem is ISDN, a common network
for the subscriber area in Europe and Japan [Boc92], in particular for integrat-
ing phone, fax and Internet access. An effective way to secure the voice and fax
communication, too, is transparent encryption directly before the ISDN network
termination, e.g., by an ISDN card together with software encryption. Here one
has precisely the network and application conditions for a self-synchronizing ci-
pher: no underlying error correction, no message expansion possible (at least not
without administrational problems), and the applications tolerate small errors
but not desynchronization.

There are different types of errors. We speak of bit errors if certain bits are
flipped, but the number of bits is unchanged. (Hence we include some burst errors
in this class.) Slips are errors where bits are lost or inserted. Apart from outside
disturbances, slips result from crossing networks with different clock frequency.
CBC and CFB only tolerate slips if entire transmission units are inserted or lost.
Hence only CFB can be used on networks where slips for units smaller than the
block-cipher length occur. For instance, ISDN is byte-synchronous, i.e., slips can
only be multiples of L = 8 bits [Boc92]. Hence CFB with 8-bit transmission
units can be used. If nothing at all is known about the slips, L = 1 must be
used. However, CFB is inefficient in such cases, since for every transmission unit
the block cipher is called to encrypt l bits, e.g., 64 or 128. This is n = l/L times
as often as in other modes.

In this paper we present a solution OCFB to this problem. It is based on CFB,
almost as efficient as CFB with L = l and self-synchronizing even for L < l. We
prove the concrete security of CFB and OCFB in the sense of [BDJR97]. To our
knowledge this is also the first rigorous security analysis of CFB.

These properties make our proposal very appealing also to all applications
which already use CFB.

Related literature: CFB and OCFB are so-called single modes of operation.
Recently, multiple modes of operation have found considerable attention, but
results as in [Bih94,Bih98,Wag98,HP99] suggest that single modes with a better
block cipher are more promising. Now that an AES winner has been announced,
this seems realistic.

Apart from that, recent research on modes of operation concentrates on
MAC modes, e.g., [BR00,PR00,CKM00] and modes combining integrity and
secrecy [GD00,Jut00,Rog00]. This is clearly important for many applications
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and the natural way to build new applications, but as motivated above, well-
established networks and applications remain where self-synchronization is im-
portant.

Proving the security of modes of operation started with [BKR94,BGR95], and
a large part of the new literature cited above contains such proofs. Encryption
modes (CBC and counter) were first treated in [BDJR97], and here also the
concrete security of symmetric encryption was defined in detail.

The only fairly recent security analysis for CFB we know is [PNRB94], but
rather from the point of view that CFB does not prevent differential and linear
cryptanalysis of the block cipher.

Outline of the paper: We first present some basics and notations: the trans-
mission model, notation for encryption, and CFB and its self-synchronization
properties. After this we present our proposed operation mode OCFB and its
self-synchronization property and compare the efficiency of CFB and OCFB.
Finally, we present left-or-right security [BDJR97] as a basis for our security
treatment and give concrete security proofs for both standard CFB and OCFB.

2 Preliminaries

2.1 Transmission Model

As motivated above, we assume a communication system with L-bit transmission
units. The most important fact is that slips, i.e., losses or insertions, only occur
for entire transmission units. The main case we consider is L = 8. We assume
that we are not allowed any message expansion.

2.2 Encryption Notation

A block cipher is a triple (gen, enc, dec). The algorithm gen randomly generates
a key k, which is used by the encryption function enck : {0, 1}l → {0, 1}l to
encrypt a plaintext message m to a ciphertext c = enck(m). The decryption
function deck decrypts a ciphertext c′ to m′ = deck(c′) using the same key k.
The value l is called the block-cipher length.1

CFB and OCFB use l-bit shift registers consisting of n = l/L positions
SR[1], . . . ,SR[n] of L-bit transmission units. By r = SR or SR = r we denote
reading or writing the entire register. Shifting a transmission unit m into the
register is written SR ← m, i.e., this means SR[i] = SR[i+1] for i = 1, . . . , n−1
and SR[n] = m. Shifting a transmission unit out is written m ← SR, i.e., this
means m = SR[1], SR[i] = SR[i + 1] for i = 1, . . . , n− 1 and SR[n] = 0.

Other notations are |m| for the length of a string and ⊕ for the bitwise exor of
strings of equal length. By a ∈R S we denote the random and uniform selection
of an element a from the set S. Further, P (pred(x) :: x = A(z)) represents
the probability that x fulfils a certain predicate pred if x is chosen with the
probabilistic algorithm A on input z.
1 CFB and OCFB do not use deck or the fact that enck is a permutation; hence we

could also define them with an arbitrary family F of functions enck.
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2.3 Cipher Feedback Mode

The Cipher Feedback Mode (CFB) is illustrated in Figure 1. More precisely,
CFB l,L denotes the version with an l-bit block cipher and L-bit transmission
units, where l = Ln.
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Fig. 1. Cipher Feedback Mode

In the figure, the block cipher enck followed by a fixed selection of L output
bits is summarized as a function fk : {0, 1}l → {0, 1}L. The values mi and ci

denote plaintext and ciphertext transmission units. A shift register SR1 holds
the last n ciphertext transmission units, i.e., SR1i = ci−n . . . ci−1 in Round
i > n. In round i = 1, it contains an initialization vector SR11 = IV . Then the
encryption algorithm of CFB l,L for the i-th transmission unit is:

1. oi = select(enck(SR1i));
2. ci = mi ⊕ oi;
3. SR1i+1 = (SR1i ← ci).

For decryption, Step 2 is replaced by mi = ci ⊕ oi.

Error Propagation: Under the given error model, i.e., if slips only occur for
multiples of transmission units, errors disturb decryption only as long as they
remain in the shift register of the receiver.

3 Optimized Cipher Feedback (OCFB)

For communication systems with L 	 l, CFB is inefficient. For instance, for
L = 8, it calls enck for every single transmitted byte. This is less efficient than
other modes by a factor of n = l/L, e.g., 8 for DES and 16 for AES.

The efficiency of CFB can be optimized by buffering all l output bits of enck

and using them for successive transmission units, using a counter to trigger a
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call of enck every n-th transmission unit. However, this would destroy the self-
synchronization for slips of individual transmission units because the counters of
the sender and the recipient would lose their synchrony (relative to the ciphertext
stream). Hence the counters must be resynchronized. As the transmission model
does not allow message expansion, this can only be done via the ciphertext
itself. The idea is to use a synchronization pattern; this is sketched in Figure 2.
Each automaton (for encryption and decryption) compares the content of its
shift register SR1 with this pattern after each transmission unit. If it finds the
pattern, it resets its counter; this reset synchronizes the counters of the two
automata.
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Fig. 2. OCFB

Let pattern denote the pattern, LP its length, and p the probability that it
matches a random register content. The pattern can be fixed at an arbitrary
time, it need not be secret or random. The counter is called shiftcount , and
match denotes the pattern-matching algorithm, typically a simple string com-
parison, possibly with wildcards. One can start with fixed initialization vectors
in the registers SR1 and shiftcount = n− 1, but also asynchronously. Then the
encryption algorithm of OCFB l,L,p for the i-th transmission unit is:

1. If match(SR1i, pattern) then shiftcount = n else shiftcount++;
2. if shiftcount = n then SR2i = enck(SR1i); shiftcount = 0;
3. SR2i+1 = (oi ← SR2i);2

4. ci = mi ⊕ oi;
5. SR1i+1 = (SR1i ← ci).
2 If encryption is called in the next round, two values are called SR2i+1. When in

doubt, the second (final) one is meant.
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For decryption, Step 4 is replaced by mi = ci ⊕ oi.
CFB can be seen as a special case of OCFB where the synchronization pattern

is found in every round (e.g., by using the pattern length zero).

4 Efficiency of CFB and OCFB

We define the efficiency effM of a mode of operation M as the average number
of encrypted plaintext bits per call to the l-bit block cipher, divided by l. The
optimum with any normal mode of operation is therefore 1.The efficiency of
CFB l,L is effCFBl,L = L/l. The efficiency of OCFB is E(X)/n, where X, called
distance, is the random variable describing the number of transmission units
between two calls to the block cipher, and E(X) its expectation. Recall that
the pattern matches random data with probability p.Let p = 1− p, and for the
pattern length we assume Lp ≤ L.3,4

If shiftcount = n, the block cipher is always called. Hence, assuming that
the values ci are random (this will be justified in Section 5), the distance X
has a cut-off geometric distribution: P (X = j) = pj−1p for 0 < j < n and
P (X = n) = pn−1. Hence

E(X) =
n∑

j=1

jP (X = j) =
n−1∑

j=1

jppj−1 + npn−1

=
1− pn

1− p
.

This can be verified by multiplying the terms out; a similar formula can, e.g.,
be found in [Nel95].Hence the efficiency is effOCFBl,L,p = (1− pn)/(np).
For instance, for l = 64 and L = 8, an 8-bit pattern with p = 2−8 gives an
efficiency of 0.986, i.e., one block-cipher call for 7.89 bytes on average.

Self-synchronization for bit errors is as in CFB. Self-synchronization after
a slip takes somewhat longer, 1/p transmission units on average. Tests have
shown that this is no problem for phone and fax with the parameters from the
previous example and the usual error rates of ISDN. Even with much larger p,
e.g., p = 1/n so that resynchronization after slips happens after about one l-bit
block just as for bit errors, the efficiency of OCFB is still far superior to that of
CFB. E.g., for l = 64 and L = 8, we then get effOCFBl,L,p = 1−(1−1/n)n ≈ 0.66,
which is more than 5 times faster than CFB.
3 For our main example L = 8, this is reasonable and simplifies the analysis because

successive matchings are independent. For small L (in particular, L = 1) we advise
a pattern like 100...000 where repetition is only possible after Lp/L transmission
units.

4 Depending on the soft- or hardware configuration, it may be useful to buffer the
values oi to avoid problems if the pattern sometimes repeats faster than its expec-
tation. In the definition, Step 4 becomes ci = mi ⊕ oi−β for a buffer length β. The
computation of the oi’s and the exors are then almost asynchronous. The security
analysis is easily adapted to this case.
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5 Security

In this section we prove the concrete security of CFB and OCFB, using the first
proof as a basis for the second one. The proof follows the pattern of other security
proofs of modes of operation: The block cipher is modeled as a pseudo-random
function [GGM86] or rather, for concrete security, one parametrizes the effort an
adversary needs to notice non-random properties [BKR94]. One then shows that
any attack against the mode of operation that succeeds with a certain probability
given a certain amount of resources would give an attack on the underlying block
cipher, again with precise resources and probability.

5.1 Left-or-Right Security

Left-or-right security was introduced in [BDJR97] as a strong (adaptive) form
of chosen-plaintext security.5 The attack is modeled as a game between an ac-
tive adversary (left-right distinguisher) Dlr and an encryption oracle Ek,b, which
contains a key k and a bit b ∈ {0, 1}. In each round, Dlr chooses two plain-
texts m0

i and m1
i with |m0

i | = |m1
i | and gives them to Ek,b. This oracle returns

ci = enck(mb
i ). (The cases b = 0 and b = 1 are called left and right case.) Finally,

Dlr outputs a bit e, meant as a guess at b. The adversary’s advantage AdvDlr is
the defined as for a statistical test, i.e., the probability difference of the output
e = 0 in the two cases.

The adversary’s resources are parametrized by its maximum running time t,
the number of queries q to the encryption oracle, and their total length µ. Its
maximum success probability is called ε.

Definition 1 (Left-or-right security [BDJR97]). An encryption scheme
(gen, enc, dec) is (t, q, µ, ε)-secure in the left-or-right sense if for any adver-
sary Dlr which runs in time at most t and asks at most q queries, these totaling
at most µ bits,

AdvDlr = P [Dlr
Ek,0 = 0 :: k ← gen]− P [Dlr

Ek,1 = 0 :: k ← gen] ≤ ε.

The first term describes the probability that Dlr outputs e = 0 when interact-
ing with the oracle containing b = 0, and the second term the corresponding
probability for an oracle with b = 1. The definition is illustrated for CFB in
Figure 3.

For modes of operation, the messages mb
i that the adversary can choose

adaptively may be individual transmission units.
Chosen-ciphertext security is not required in [BDJR97], and it cannot be

required in the strict sense for a self-synchronizing cipher: This would correspond
to non-malleability, but the purpose of self-synchronization is precisely to make
slightly distorted ciphertexts decrypt to related cleartexts.
5 More precisely, [BDJR97] contains four definitions and relations among them. It is

shown that concrete encryption systems are best proven with respect to left-or-right
security, since this implies good reductions to the other definitions.
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5.2 Function Families

When considering a mode of operation, the block cipher is typically modeled as
a pseudo-random function. In the case of CFB a weaker assumption is sufficient:
Only the family of functions fk = select(enck(·)) must be pseudo-random (see
Figure 1).

We use the concrete-security definitions from [BKR94,BDJR97]. An (l, λ)-
function family is a multiset F of functions fk : {0, 1}l → {0, 1}λ. Alternatively,
one writes f ∈R F for the random choice of a function from the family, or
k ← gen if an algorithm is given that generates a key such that fk is random in
F .

The (l, λ)-random function family Rl,λ consists of all functions rf : {0, 1}l →
{0, 1}λ. A key is simply an entire function rf . Clearly, such a key is much too
long in practice, but pseudo-randomness of other (l, λ)-function families F is
defined relative to Rl,λ: An adversary Dprf interacts with an oracle F that has
chosen a function f randomly from either F or Rl,λ. In each round, Dprf may
send a value x ∈ {0, 1}l and F answers with f(x). Again, the adversary has to
output a bit meant as a guess at the function family, and its advantage is defined
as for a statistical test.

Definition 2 (Pseudo-random functions [BDJR97]). An (l, λ)-function
family F is a (t, q, ε)-secure PRF family if for any distinguisher Dprf making
at most q oracle queries and running in time at most t,

AdvDprf (F ) = P [Dprf
f = 0 :: f ∈R F ]− P [Dprf

f = 0 :: f ∈R Rl,λ] ≤ ε.
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By CFB l,L(F ) we denote CFB used with a certain function family F in the place
of the functions fk = select(enck(·)). Similarly, OCFB l,L,p(F ) denotes OCFB
with F as the functions enck.

5.3 Security with Random Functions

Before proving a certain degree of concrete security, it is useful to consider what
one can reasonably expect. This is a birthday bound, similar to other modes
with feedback. The basic idea is that left-or-right security breaks down at the
first repetition of the value of SR1: The adversary Dlr knows the values in SR1
(they are ciphertexts, at least after the initialization vector). If SR1i = SR1j

for i �= j, then also oi = oj in CFB. Hence ci ⊕ cj = mb
i ⊕ mb

j , and thus b is
revealed if m0

i ⊕m0
j �= m1

i ⊕m1
j , which will typically be the case. For OCFB, a

similar argument holds, but only those values in SR1 must be considered where
encryption is called, i.e., on average they are fewer by a factor of n · effOCFB .

We now show that if CFB were used with real random functions, there would
indeed be no better attack than waiting for collisions among values of SR1, and
we derive the resulting concrete security.

Lemma 1 (Concrete security of CFB with random functions).
CFB with random functions, i.e., CFB l,L(Rl,L), is (t, q, Lq, εCFBl,L,q)-secure in
the left-or-right sense for any t (i.e., no runtime restriction), any number q of
queries (of one transmission unit each), and εCFBl,L,q = q(q − 1)2−l−1.

Proof. We abbreviate probabilities in the left-or-right game with bit b as Pb, and
for intermediate values in such a game (e.g., ci) we use the notation introduced
in the text (see also Figure 3).For instance, the advantage can then be written
AdvDlr = P0[e = 0]− P1[e = 0].

We distinguish whether a collision occurs during the attack or not. Let C be
the collision event, i.e., it contains all runs of the game where i �= j exist with
1 ≤ i, j ≤ q and SR1i = SR1j . Its complement is called C.

As long as no collision has occurred, each value oi = f(SR1i) can be seen as
randomly and independently chosen (by the definition of random functions), i.e.,
it is a one-time pad for the plaintext transmission unit mb

i . Hence ci is random
and independent of c1, . . . , ci−1 and mb

1, . . . ,m
b
i . Thus the collision probability

in round i does not depend on b, and overall we can abbreviate

P [C] = P0[C] = P1[C]. (1)

For the same reason, collisions are the only help for the adversary. If no collision
occurs, the adversary outputs e = 0 with the same probability for b = 0 and
b = 1.

P0[e = 0 | C] = P1[e = 0 | C]. (2)
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We can therefore rewrite the adversary’s advantage as follows (using (1) and (2)
in the last equality):

AdvDlr = P0[e = 0]− P1[e = 0]
= P0[e = 0 | C] P0[C] + P0[e = 0 | C] P0[C]
− P1[e = 0 | C] P1[C]− P1[e = 0 | C] P1[C]

= P [C](P0[e = 0 | C]− P1[e = 0 | C])
≤ P [C].

Collisions: For the collision probability, we cannot simply use the birthday for-
mula because SR1i and SR1j are not independent if |j − i| < n. We then say
that SR1i and SR1j overlap.

We define the stream B = IV c1 . . . cq−1 of all the collision-relevant trans-
mission units, i.e., those shifted through SR1 until the last, q-th, encryption.
The length of B is Q = (n + q − 1)L bits, and the shift register contents
are SR1i = B[i] . . . B[i + n − 1] for i = 1, . . . , q. We first derive the number
col i,j of streams with a collision SR1i = SR1j for every possible pair (i, j), i.e.,
1 ≤ i < j ≤ q. We do this for the case with random initialization vector IV .
(The difference in the other case is negligible).

a) Without overlapping, i.e., j ≥ i + n:
As SR1i = SR1j , there are 2l possible values for the shift register contents
of both rounds. The remaining Q − 2l bits offer 2Q−2l possibilities. Thus
col i,j = 2Q−l.

b) With overlapping, i.e., i < j < i + n:
Let d = j − i. Then SR1i and SR1j together use l + dL bits, and those
have 2dL possible values because SR1i[1] = SR1i[1 + d], . . . , SR1i[n− d] =
SR1i[n]. The remaining Q − l − dL bits offer 2Q−l−dL possibilities. Thus
again col i,j = 2dL · 2Q−l−dL = 2Q−l.

There are q(q − 1)/2 possible pairs (i, j). Hence the number col of streams B
with at least one collision is less than q(q − 1)2Q−l−1. (In the bound, streams
with several collisions are counted several times.)

We have shown above that each stream without collision has the prob-
ability 2−Q (because each new ci is uniformly distributed). Hence P [C] =
(2Q − col)/2Q > 1− q(q − 1)2−l−1. This implies

P [C] ≤ q(q − 1)2−l−1,

which remained to be shown. ✷

Lemma 2 (Concrete security of OCFB with random function).
For all parameters, OCFB with random functions is at least as secure as CFB for
the same length of the block cipher and transmission units, i.e., OCFB l,L,p(Rl,l)
is at least as secure as CFB l,L(Rl,L).
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Proof. The structure of the proof is similar to that for CFB.
First we have to show again that each value oi, and thus also ci, is random

and independent of c1, . . . , ci−1 and mb
1, . . . ,m

b
i . By the use of shiftcount in the

encryption algorithm, SR2 is set to a value rf (SR1i) at least every n transmis-
sion units, where rf is the random function replacing enck. This gives n potential
values oi, . . . , oi+n−1 which are totally random at this point in time. The adver-
sary may choose mb

i+1, . . . ,m
b
i+n−1 adaptively after this, but no information at

all about oi+j is given out before its use in ci+j . Thus the claimed independence
holds. This implies, as in the proof of Lemma 1, that AdvDlr ≤ P [Cenc ], where
Cenc is the event that there is a collision SR1i = SR1j for two indices i, j where
encryption (i.e., here rf ) is called.

Clearly P [Cenc ] < P [C], the probability of collisions for arbitrary indices i, j.
Hence, with the results of the previous paragraph, an upper bound for P [C] can
be computed literally as for CFB. ✷

This lemma shows that OCFB l,L,p(Rl,l) is (t, q, Lq, εCFBl,L,q)-secure for all
t and q. In fact, the security is even somewhat better: It is approximately
(t, q, Lq, εOCFBl,L,p,q), where εOCFBl,L,p,q = q′(q′ − 1)2−l−1 with q′ = q/(n ·
effOCFBl,L,p ). This follows by counting only the collisions in Cenc in the second
part of the proof: On average, encryption is called for every (n · effOCFBl,L,p )-th
index. Thus q′ roughly plays the role of q in the proof above, i.e., the number of
possibilities for i and j.

5.4 Security with Pseudo-Random Functions

Now we want to prove the security of CFB and OCFB with pseudo-random
functions, i.e., in the real world, as far as the block cipher is pseudo-random.

Theorem 1 (Concrete security of CFB with pseudo-random func-
tions).
Let F be a (t′, q′, ε′)-secure (l, L)-bit pseudo-random function family, and tCFB
the time needed for one CFB round without the computation of fk. Then
CFB l,L(F ) is (t, q, µ, ε)-secure in the left-or-right sense with q = q′, µ = q′L,
t = t′ − qtCFB − tconst for a small constant tconst , and ε = 2ε′ + εCFBl,L,q.

These bounds are very good: The allowed time t for an attack is almost t′

(because t′ is the time for an attack on F , while qtCFB is time needed for the
correct use of CFB), and an addition of 2ε′ is standard for this kind of proof
(see [BDJR97]).

The basic idea of the proof is the standard pseudo-randomness argument: If
an adversary could break left-or-right security of CFB with a pseudo-random
function family better than this is possible with random functions, one could
use this adversary as a distinguisher between real and pseudo-random functions.
The following reduction gives the concrete security for this argument.

Proof. We assume that a distinguisherDlr contradicts the theorem. We construct
a distinguisher Dprf which contains Dlr as a black box, playing the left-or-right
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game with a CFB oracle, see Figure 4. The CFB oracle is implemented by Dprf
itself, using its own oracle F (containing a random or pseudo-random function)
as fk. Hence Dprf chooses b itself (randomly) and can compare Dlr ’s output e
with b. It outputs the Boolean value e∗ = ¬(e = b).

Dprf

b ∈R {0, 1}

Dlr

e

CFB

F

m0
1, m

1
1 mb

1

c1

m0
2, m

1
2 mb

2

c2

m0
q, m

1
q mb

q

cq

e∗ = ¬(e = b) e∗

Fig. 4. Reduction of CFB to PRF

For each query of Dlr to the assumed CFB oracle, Dprf must make one query
to F and update the CFB state. Hence it makes q′ = q queries and takes time
t′ = t+qtCFB +tconst , where tconst is the time for set-up and the final comparison.
Hence Dprf is a distinguisher against which the function family F is assumed to
be secure.

We now abbreviate Rl,L by R, and for G ∈ {R,F} we write AdvDlr (G)
for the advantage of Dlr (according to Definition 2) when CFB l,L(G) is used.
Furthermore, let PF and PR denote the two probability spaces from Definition 2.
Then we can write the advantage of Dprf as

AdvDprf = PF [e∗ = 0]− PR[e∗ = 0],

and for G ∈ {R,F}, we can continue

PG[e∗ = 0] = P [e∗ = 0 :: f ∈R G; e∗ ← Dprf
f ]

= P [e = b :: f ∈R G; b ∈R {0, 1}; e← Dlr
CFBf,b ].

Here we used the construction of Dprf and introduced the notation CFBf,b (cor-
responding to Definition 1) for a CFB left-or-right oracle with the particular
function f and bit b. As the choices of f and b are independent, b can be chosen
first and we get
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PG[e∗ = 0] =
1
2

∑

b∈{0,1}
P [Dlr

CFBf,b = b :: f ∈R G]

=
1
2

(P [Dlr
CFBf,0 = 0 :: f ∈R G] + 1− P [Dlr

CFBf,1 = 0 :: f ∈R G])

=
1
2

+
1
2
AdvDlr (G).

We have assumed AdvDlr (F ) > ε, and by Lemma 1, AdvDlr (R) ≤ εCFBl,L,q.
Hence

AdvDprf =
1
2

(AdvDlr (F )−AdvDlr (R)) >
1
2

(ε− εCFBl,L,q) = ε′.

This is the desired contradiction to the security of the pseudo-random function
family F . ✷

Theorem 2 (Concrete security of OCFB with pseudo-random func-
tions).
OCFB is as secure as CFB in the following sense: Let F be a (t′, q′, ε′)-secure
(l, l)-bit pseudo-random function family. Then OCFB l,L,p(F ) is (t, q, µ, ε)-secure
in the left-or-right sense with q = q′, µ = qL, t = t′ − qtOCFB − tconst , and
ε = 2ε′ + εCFBl,L,q.

Proof. This proof is almost identical to that for CFB. The only difference is that
Dlr simulates an OCFB-oracle instead of a CFB-oracle, and therefore the time
for each call is tOCFB instead of tCFB . ✷

In fact, the security is better: On average, Dlr only needs q′ = q/(n ·
effOCFBl,L,p ) calls to its own oracle F (corresponding to the block cipher) to
encrypt the q transmission units, i.e., q can be chosen correspondingly larger.

Furthermore, as discussed after Lemma 2, the bound εCFBl,L,q in that lemma
is not quite tight. The proof of Theorem 2 remains unchanged for whatever value
εOCFBl,L,p,q is proven in Lemma 1.
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