
Optimized Three-Dimensional Stencil Computation
on Fermi and Kepler GPUs

Anamaria Vizitiu, Lucian Itu, Cosmin Niţă, Constantin Suciu
Siemens Corporate Technology, SC Siemens SRL

Department of Automation and Information Technology, Transilvania University of Braşov
Braşov, Romania

Abstract—Stencil based algorithms are used intensively in
scientific computations. Graphics Processing Units (GPU) based
implementations of stencil computations speed-up the execution
significantly compared to conventional CPU only systems. In this
paper we focus on double precision stencil computations, which
are required for meeting the high accuracy requirements,
inherent for scientific computations. Starting from two baseline
implementations (using two dimensional and three dimensional
thread block structures respectively), we employ different
optimization techniques which lead to seven kernel versions. Both
Fermi and Kepler GPUs are used, to evaluate the impact of
different optimization techniques for the two architectures.
Overall, the GTX680 GPU card performs best for a kernel with
2D thread block structure and optimized register and shared
memory usage. We show that, whereas shared memory is not
essential for Fermi GPUs, it is a highly efficient optimization
technique for Kepler GPUs (mainly due to the different L1 cache
usage). Furthermore, we evaluate the performance of Kepler
GPU cards designed for desktop PCs and notebook PCs. The
results indicate that the ratio of execution time is roughly equal
to the inverse of the ratio of power consumption.

Keywords— stencil, GPU, double precision, Kepler, Fermi,
optimization

I. INTRODUCTION

Graphics Processing Units (GPUs) are dedicated
processors, designed originally as graphic accelerators. Since
CUDA (Compute Unified Device Architecture) was
introduced in 2006 by NVIDIA as a graphic application
programming interface (API), the GPU has been used
increasingly in various areas of scientific computations due to
its superior parallel performance and energy efficiency [1].

The GPU is viewed as a compute device which is able to
run a very high number of threads in parallel inside a kernel (a
function, written in C language, which is executed on the GPU
and launched by the CPU). The threads of a kernel are
organized at three levels: blocks of threads are organized in a
three dimensional (3D) grid at the top level, threads are
organized in 3D blocks at the middle level, and, at the lowest
levels, threads are grouped into warps (groups of 32 threads
formed by linearizing the 3D block structure along the x, y
and z axes respectively) [2].

The GPU contains several streaming multiprocessors, each
of them containing several cores. The GPU (usually also
called device) contains a certain amount of global memory

to/from which the CPU or host thread can write/read, and
which is accessible by all multiprocessors. Furthermore, each
multiprocessor also contains shared memory and registers
which are split between the thread blocks and the threads,
which run on the multiprocessor, respectively. With the
introduction of the third and fourth generation general purpose
GPU (GPGPU), the Fermi and the Kepler generations
respectively [3], [4], the double precision performance has
increased, and a true cache hierarchy (L1/L2) and more shared
memory are available. Furthermore, the global memory
bandwidth plays an important role since the performance of
many kernels is bound by the peak global memory throughput:
current GPUs have a bandwidth of up to 300 GB/s. The shared
memory on the other side is a fast on-chip memory which can
be accessed with similar throughput as the registers.

Stencil computation is a computational pattern on an n-
dimensional grid, whereas each location is updated iteratively
as a function of its neighboring locations. This pattern is found
in several application domains, like image processing,
computational fluid dynamics, weather prediction, quantum
physics. Previous studies have shown that, if regular Cartesian
grids are used, GPU based implementations are able to
significantly speed up the execution compared to regular CPU
based implementations [5], [6].

Research activities on stencil based computations have
been reported long before the introduction of general purpose
GPUs. These activities focused on the information transfer
between nodes [7] and the relationship between partition
shape, stencil structure and architecture [8]. Different
optimization techniques have been reported more recently for
GPU based stencil computations. The most often encountered
optimization techniques used in the past are blocking at
registers and at shared memory [9], [10]. Pre-Fermi GPUs did
not have any cache memories, making the shared memory
blocking technique vital for reducing memory access counts.
Temporal blocking is another extensively used technique, with
mixed performance improvements on GPUs [11], [12], [13].
Non-GPU architectures have also been used for stencil based
computations [14].

The goal of the current work is to evaluate the
performance of 3D stencil based algorithms on a series of
recent GPUs. Previous research activities have focused on
single precision computations. With the introduction of the
Fermi and the Kepler architecture, the performance of double
precision computations on NVIDIA GPU cards has increased

978-1-4799-6233-4/14/$31.00 ©2014 IEEE

Fig. 1. 7-point stencil used for the numerical solution of the unsteady heat

diffusion equation.

substantially. To meet the high accuracy requirements,
inherent for scientific computations [15], [16], in the current
work we focus on double precision computations. Starting
from two baseline implementations, we employ different
optimization techniques which lead to seven different kernel
versions. Both Fermi and Kepler GPUs are used, to evaluate
the impact of different optimization techniques for the two
architectures.

The paper is organized as follows. Section II first performs
a brief introduction of the 3D stencil used herein. Next, the
baseline implementations are introduced, followed by the
different optimized approaches. Section III displays the results
obtained with the different kernel versions for different Fermi
and Kepler GPUs. Finally, section IV draws the conclusions.

II. METHODS
For studying 3D stencil based algorithms implemented on

graphics processing units, we consider the 3D unsteady heat
conduction problem which is modeled as a second order
partial differential equation describing the distribution of heat
over time over a given 3D space:

0)(2

2

2

2

2

2

=
∂
∂+

∂
∂+

∂
∂α−

∂
∂

z
T

y
T

x
T

t
T (1)

where α is the thermal diffusivity constant and T represents the
temperature at any point in space (x,y,z) or time (t).

For the numerical solution of (1) we apply a finite
difference method on a 3D grid of points. A uniform mesh of
points is used and the forward difference in time and central
difference in space (FTCS) method is applied, leading to a 3D
7-point stencil:

,0)
2

22
(

2
1,,,,1,,

2
,1,,,,1,

2
,,1,,,,1,,

1
,,

=
Δ

+−
+

Δ
+−

+
Δ

+−
α=

Δ
−

−+

−+−+
+

z
TTT

y
TTT

x
TTT

t
TT

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

 , (2)

which can be rewritten as:

),6

(

,,1,,1,,

,1,,1,,,1,,1,,
1

,,

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

n
kji

TTT

TTTTdTT

−+

+++++=

−+

−+−+
+

 (3)

where d = αΔt/Δx2.

In the above equation n represents the discrete time step
number, (i,j,k) represents the spatial index, Δt is the time step
and Δx is the mesh spacing, which is equal in all directions.

n
kjiT ,, represents the temperature value at point (i,j,k), at time

step n. The numerical solution is stable if the CFL condition
holds: d = αΔt/Δx2 < 1/6.

As can be observed in (3), the value at a grid point at time
step n+1 is computed from the values at the previous time
step, from the same grid point and from its six neighboring
points, leading to a 7 point stencil computation (fig. 1).

This solution scheme is fully explicit: the computation of
the new value at any grid point is fully independent from the
computations at the other grid points.

A. Baseline GPU-based implementations
In the following we introduce two baseline GPU-based

implementations of the unsteady heat diffusion problem. For
the first baseline implementation (called in the following
3DBase) each grid point is handled by a separate thread. Two
buffers are allocated, one for the values at the previous time
step and one for the values at the new time step. To eliminate
the memory copy requirement from one buffer to the other, the
buffers are swapped at the end of each time step.

Since for the latest GPUs the execution configuration
allows not only for 3D blocks of threads, but also for a 3D
grid of thread blocks, the threads and the thread-blocks are
organized both into 3D structures. Thus, each thread of the
grid corresponds to a grid point in the 3-D computational
domain. To compute the new value at a grid point each thread
performs seven global memory read operations at each time
step. Since global memory operations are very slow, this
represents a severe limitation of the kernel performance.

In the CUDA architecture, each thread block is divided
into groups of 32 threads called warps, each of which is
executed in a SIMD fashion (all threads of the same warp
execute the same instruction at a time). If the threads inside a
warp follow different execution paths, the execution of the
branches is serialized. Thus, warp divergence is another aspect
which leads to loss of parallel efficiency (a minimum amount
of warp divergence is required to distinguish between
boundary and non-boundary nodes, so as to perform the
computations only for the latter ones).

On the other hand, stencil codes can be characterized by
their FLOPs per byte ratio. The baseline implementation
performs 13 double-precision floating point operations per
update [17]. This leads to 13 · xDim · yDim · zDim operations
performed at each iteration (xDim, yDim and zDim represent
the grid dimensions). If we assume that at each time step once
the old values are loaded they remain in the cache memory
(which is unlikely for grid dimensions which exceed the cache
size) the amount of data loaded and stored per time step is
equal to xDim · yDim · zDim · sizeof(double) · 2. Hence the
flop per DRAM byte ratio is:

.8125.0
2)(

13 =
⋅⋅⋅⋅

⋅⋅⋅
doublesizeofzDimyDimxDim

zDimyDimxDim (4)

Current GPUs, however, have a significantly higher ratio.
According to this model the performance of the stencil on the
GPU is therefore limited by its memory bandwidth.

Fig. 2. 2DBase kernel: the computational grid is divided into x-y planes

and a loop is then used to traverse the grid in the z-direction.

Fig. 3. 3DShMOverL kernel: the shared memory arrays have the same

size as the thread blocks. Thread blocks overlap to enable the
computation at all grid points.

Fig. 4. 3DShMNoOverL: the shared memory arrays are padded with

additional data slices loaded by the threads located at the border of the
thread block.

To allow for a better memory usage, we also consider a
more efficient approach, whereas threads and thread-blocks
are organized into 2D structures. The computational grid is
divided into x-y planes and the subdomains are assigned to
separate thread blocks. Each 2-D slice is represented through
the grid points in the x and y directions, providing for the
threads the (i,j) indices of the grid points. A loop is then used
to traverse the grid in the z-direction and obtain the final k
coordinate as shown in fig. 2 (this kernel version is called in
the following 2DBase).

Unlike the 3DBase implementation, for which a thread
updates a single point, herein the same thread operates on
several grid points. These points are placed equidistant from
each other, the distance from one grid point to another is
determined based on the size of the 3D domain (xDim · yDim).

B. Optimized implementations
Next, we describe a series of optimization techniques for

the two baseline implementations. We focus mainly on
minimizing warp divergence and global memory accesses.
Besides global memory, the GPU architecture provides fast
on-chip memory, registers and shared memory, which is
distributed between threads and thread blocks respectively.

1) Three-dimensional baseline implementation with
Shared Memory Usage and Data Overlap

The starting point for the new kernel is the 3DBase
implementation. Since shared memory is allocated at thread
block level, threads can cooperate when populating data
blocks allocated in the shared memory. If data can then be
reused by different threads, global memory accesses are
reduced and overall kernel performance is improved.

Shared memory arrays of size blockXDim · blockYDim ·
blockZDim are allocated (blockXDim, blockYDim and
blockZDim represent the dimensions of the thread blocks).

Each thread within a block loads the value of the grid point
it handles from global memory to shared memory. To avoid
undefined behavior and incorrect results when sharing data
read by different threads, a synchronization barrier is
introduced. All values required for the implementation of (4)
are then read from the shared memory.

With this technique, threads lying at the border of a thread
block do not have access to all their neighbors and can not
compute the corresponding new values. Hence, the execution
configuration is designed so as to ensure block overlapping in

all directions (fig. 3 - 3DShMOverL). This, however, results in
global memory read redundancy: grid points lying in the
overlapping regions of the blocks are read more than once for
a single time step.

2) Three-dimensional baseline implementation with
Shared Memory Usage and No Data Overlap

Starting again from the 3DBase implementation, a
different shared memory based strategy is developed. The
shared memory arrays are padded with an additional slice on
each side of the 3D block leading to a total size of (blockXDim
+ 2) · (blockYDim + 2) · (blockZDim + 2), as shown in fig. 4.

First, each thread populates the value of the grid point it
handles in shared memory. Next, the threads located on the
boundary of the block load the remaining data slices from
global memory to the shared memory (note that the corner
points of the blocks are not required for the 7-point stencil).
To load points located outside of the block, conditional
operations are introduced which cause branch divergence.

Thus, each thread of a thread block has access to all its
neighbors and is able to update the corresponding grid point
(no overlapping between thread blocks is required -
3DShMNoOverL).

3) Two-dimensional distribution of threads with additional
register usage

The 2DBase implementation can be optimized by storing
redundant data in registers. Therein, the value of the current
grid point for adjacent 2D slices is read from the global
memory by the same thread. The same holds true for grid
points which lie on the front or back sides of the 2D slices.

Because slices are iterated along the z direction, the value

Fig. 5. 2DShMReg: Northern and southern slices are read from the shared

memory, eastern and western values from the global memory.

Fig. 6. Computation result for the unsteady heat conduction problem on a

rectangular domain with Dirichlet boundary conditions.

at grid point (i, j, k+1) becomes the value at (i, j, k) at the next
iteration. Similarly, the value at (i, j, k) becomes the value at
(i, j, k–1). Instead of rereading these values, registers are used
for caching them and two global memory accesses are saved at
each iteration along the Z axis (in the following this kernel is
called 2DReg).

4) Two-dimensional distribution of threads with Shared
Memory Usage

As for the kernels with 3D thread blocks, shared memory
can also be used to reduce global memory accesses for the
kernels with 2D thread blocks. The size of the shared memory
array chosen for this kernel version is (blockXDim + 2) ·
(blockYDim + 2). To allow each thread of the thread block to
compute the new value of the corresponding grid point,
additional slices are populated at each border of the 2D shared
memory array. Hence, the size of the shared memory array
used for this configuration is (blockXDim + 2) · (blockYDim +
2). Each thread first reads the value of the grid point it handles
and stores it in the shared memory. Next, threads located on
the boundary of the block load the remaining values (in the
following this kernel is called 2DShM).

5) Two-dimensional distribution of threads with
Additional Register and Shared Memory Usage

For the implementation version described in section II.B.4
the loading of the central section of the shared memory does
not introduce any divergent branches since it is not
conditioned. The loading of the slices with y index equal to 0
or blockYDim + 2 introduces a maximum of two divergent
branches, one for each half-warp, depending on the compute
capability of the GPU. On the other side, the slices with x
index equal to 0 or blockXDim + 2 lead to divergent branches
and only one thread of the entire half-warp performs a read
operation. This aspect may be alleviated by the cache memory,
but this depends on the size of the slices.

To reduce branch divergence, the shared memory array is
used only for the central section and for the slices with index
equal to 0 or blockYDim + 2, while the other values are read
from the global memory and stored into registers. Only the
threads lying at the left or right border perform separate global
memory reads (fig. 5 - 2DShMReg), while the other values are
safely read from the shared memory.

Hence the size of shared memory array used in this case is
blockXDim · (blockYDim + 2). Each thread first reads the
value of the grid point it handles and stores it in the shared

memory. Next, threads located on the upper and lower
boundary of the block load the remaining values.

Besides the two registers that store the values of the nodes
located next to the left and right boundaries, another 2
registers are used for the optimization described in section
II.B.2.

III. RESULTS
To evaluate the performance of the different strategies for

running 3D stencil based algorithms on GPUs, we used three
different NVIDIA GPU cards: GeForce GTX 480, GeForce
GTX 660M and GeForce GTX 680 (the first one is based on
the Fermi architecture, while the other two are based on the
Kepler architecture), and the CUDA toolkit version 5.5. The
unsteady heat conduction problem was solved on a rectangular
domain with Dirichlet boundary conditions, whereas the
boundary values were set to 100� C for one side of the
rectangle and 0� C for the other sides. The thermal diffusivity
constant was se to 1.9 · 10-5 m2/s and the computations are
performed until convergence is reached. The numerical
solution was obtained on a grid of 128x128x128 nodes and is
displayed in fig. 6. The numerical solution was identical for all
three GPU cards and for all implementation versions down to
the 15th decimal, i.e. close to the precision of the double-type
representation in computer data structures.

Table 1 displays the execution times for one time step for
the three above mentioned GPU cards, obtained for the seven
different kernel versions introduced in the previous section.
The GTX660M card leads to the largest execution times
although it has been considerably later released compared to
the GTX480 card. This can be explained however by the fact
that this card was specifically designed for low power
consumption, so as to be used in notebook PCs (whereas the
GTX480 and GTX680 were reported with a power
consumption of 250W and 195W respectively, the GTX660M
only required 50W). The GTX680 is the best performing card:
for each of the seven implementation versions it leads to the
smallest execution times. The ratio of the execution times for
the GTX660M and GTX680 cards varies between 4.26 and
5.56 for different kernel versions. This roughly reflects the
inverse of the power consumption ratio, which is equal to 3.9.

TABLE II. KERNEL PERFORMANCE AND DETAILS FOR THE GTX680 CARD.

Method Execution
time [ms]

Reg. per
thread

Divergent
branches

Shared
memory
per block
[bytes]

Total number
of 64 bit global
load instr.

Total
number of
64 bit global
store instr.

3DBase 0.62 25 12016 - 14002632 2000376
3DShMOverL 1.13 19 20811 4096 4741632 2000376
3DShMNoOverL 0.73 21 12694 8000 3524851 2000376
2DBase 0.63 25 94 - 14002632 2000376
2DReg 0.58 25 94 - 10033632 2000376
2DShM 0.59 25 94 800 6953688 2000376
2DShMReg 0.48 25 94 640 2984688 2000376

TABLE I. EXECUTION TIME [MS] FOR A SINGLE TIME STEP, OBTAINED FOR
THE SEVEN DIFFERENT IMPLEMENTATION VERSIONS ON THREE DIFFERENT

GPU CARDS .

Method GTX4
80

GTX
660M

GTX
680

3DBase 1.7 3.45 0.62
3DShMOverL 3.5 6.17 1.13
3DShMNoOverL 1.8 3.78 0.73
2DBase 1.2 3.09 0.63
2DReg 0.9 2.47 0.58
2DShM 1.2 2.87 0.59
2DShMReg 1.09 2.32 0.48

Interestingly, whereas for the GTX660M and the GTX680
cards the 2DShMReg kernel performs best, for the GTX480
card the 2DReg kernel leads to the smallest execution time.
Shared memory based optimizations were particularly
important for pre-Fermi GPU cards. For the Fermi architecture
these optimizations were not always leading to a better
performance due to the fact that the global memory read
operations were cached at L1 level. Even though the cache
size is regularly small, it is efficient for algorithms based on
Cartesian grids where data access patterns are regular [6]. For
the Kepler architecture however the L1 cache is no longer
used for caching global memory read operations, but only for
register spilling [4]. Hence, for the GTX480 card (Fermi),
since the L1 cache is intensively used for caching global
memory read operations, the 2DReg kernel outperforms the
2DShMemReg kernel. On the other hand, for the GTX660M
and the GTX680M, since the L1 cache functionality is limited
to register spilling, shared memory usage became more
important, illustrated by the better performance of the
2DShMReg kernel.

In the following we focus on the differences between the
kernel versions for the GTX680 card, which was determined
as the best performing one considered herein. Table 2 displays
besides the execution time other important details of the
various kernel versions.

The two baseline implementations (2DBase and 3DBase)
lead to almost identical execution times. Referring first to the
kernels based on a 3D thread block structure, the
3DShMOverL performs worse than the 3DBase kernel:
execution time increased by 82% although the number of
global accesses was reduced by 66.13%. This can be explained
by the fact that a considerable amount of threads perform only
load operations.

Compared to the 3DShMOverL kernel, the execution time

decreased by 35.39% and the total number of read operations
was reduced by 25.66% for the 3DShMNoOverL kernel.
Compared to the 3DBase kernel, this implementation is
compute limited instead of bandwidth limited. The main
reason for the change of the limitation type lies in the number
of divergent branches, which increased considerably and
which in the end leads to a higher execution time than for the
3DBase kernel.

Next, we refer to the kernels based on a 2D thread block
structure. The 2DReg kernel leads to a significant reduction of
memory operations (28.34%) and as a result of the execution
time (7.93%), compared to the 2DBase kernel. The 2DShM
kernel further reduces the number of global memory load
operations but execution time increases slightly, which is
caused by the non-optimized register usage. Finally the
2DShMReg combines both techniques (optimized register and
shared memory usage), and reduced execution time by 17.24%
and the total number of read operations by 70.25% compared
to the 2Dreg kernel.

Overall, the kernels with 2D thread block structure
outperform the ones with 3D thread block structure for double
precision computations, confirming the findings for single
precision computation reported in [17].

IV. CONCLUSIONS
In this paper, we have presented performance studies for

3D stencil based algorithms on recent NVIDIA GPUs. To our
knowledge this is the first study to evaluate different
implementation and optimization strategies for double
precision computations. The increased accuracy obtained for
double precision is required in scientific computations, which
represent the main area of application for the 3D stencil based
algorithms.

For the analysis we have used Fermi and Kepler
architecture based cards, which represent the last two released
GPU architectures from NVIDIA. Besides the shift in L1
cache usage from Fermi to Kepler, other important minor and
major changes in the hardware configuration have been
performed [4].

Hence, starting from two different baseline
implementations (based on 3D and 2D thread block
structures), we have applied different optimization strategies
which have lead to different performance changes for the
Fermi and Kepler cards. Overall the GTX680 GPU card
(Kepler architecture) performed best for a kernel with 2D

thread block structure and optimized register and shared
memory usage. Conversely, for the GTX480 GPU card (Fermi
architecture) the 2D kernel, which does not use shared
memory but is optimized in terms of register usage, performed
best, mainly due to the different L1 cache usage in the Fermi
architecture. Hence, shared memory usage has become
essential for double precision stencil based computation on
Kepler GPUs.

Finally, for the Kepler architecture we have evaluated the
performance for a GPU designed for desktop PCs (GTX680)
and for a GPU designed for notebook PCs (GTX660M). The
results have indicated that the ratio of execution time is
roughly equal to the inverse of the ratio of power
consumption.

ACKNOWLEDGMENT
This work is supported by the program Partnerships in

Priority Domains (PN II), financed by ANCS, CNDI -
UEFISCDI, under the project nr. 130/2012.

This paper is supported by the Sectoral Operational
Programme Human Resources Development (SOP HRD),
ID134378 financed from the European Social Fund and by the
Romanian Government.

The research leading to these results has received funding
from the European Union's Seventh Framework Programme
(FP7/2007-2013) under grant agreement n° 600932.

We hereby acknowledge the structural funds project PRO-
DD (POS-CCE, O.2.2.1., ID 123, SMIS 2637, ctr. No
11/2009) for providing the infrastructure used in this work.

REFERENCES

[1] D. Kirk, and W.M. Hwu, Programming Massively Parallel Processors: A

Hands-on Approach, London: Elsevier, 2010.
[2] NVIDIA Corporation, “CUDA, Compute unified device architecture

Programming Guide v5.5”, 2013.

[3] NVIDIA Corporation, “NVIDIA’s next generation CUDA compute
architecture: Fermi”, 2011.

[4] NVIDIA Corporation, “NVIDIA Kepler GK110 Architecture
Whitepaper”, 2013.

[5] E. Phillips, and M. Fatica, “Implementing the Himeno benchmark with
CUDA on GPU clusters”, IEEE Intern. Parallel & Distributed
Processing Symposium, pp. 1-10, April 2010.

[6] T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka, N.
Maruyama, A. Nukada, and S. Matsuoka, “Peta-scale phase-field
simulation for dendritic solidification on the TSUBAME 2.0
supercomputer”, Intern. Conf. for High Performance Computing,
Networking, Storage and Analysis, pp. 13-18, 2011.

[7] G.C. Fox, “Concurrent processing for scientific calculations”, IEEE
Computer Society International Conference, pp. 70-73, 1984.

[8] D. Reed, L. Adams, and M. Patrick, “Stencils and problem partitionings:
Their influence on the performance of multiple processor systems”,
IEEE Trans. Comput., vol. 7, pp. 845-858, 1987.

[9] P. Micikevicius, “3D Finite difference computation on GPUs using
CUDA”. Workshop on General Purpose Processing on Graphics
Processing Units, pp. 79-84, 2009.

[10] L. M. Itu, C. Suciu, F. Moldoveanu, and A. Postelnicu, “GPU Optimized
Computation of Stencil Based Algorithms”, RoEduNet Inter. Conf., pp.
1-4, June 2011.

[11] T. Grosser, A. Cohen, P. H. J. Kelly, J. Ramanujam, P. Sadayappan, and
S. Verdoolaege, “Split tiling for GPUs: automatic parallelization using
trapezoidal tiles”, Workshop on General Purpose Processor Using
Graphics Processing Units, pp. 24-31, 2013.

[12] J. Holewinski, L. N. Pouchet, and P. Sadayappan, “High-performance
code generation for stencil computations on GPU architectures”, ACM
Intern. Conf. on Supercomputing, pp. 311-320, 2012.

[13] G. Zumbusch, “Vectorized higher order finite difference kernels”,
Lecture Notes in Computer Science, vol. 7782, pp. 343-357, 2013.

[14] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D.
Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization
and autotuning on state-of-the-art multicore architectures”, ACM/IEEE
Conf. on Supercomputing, pp. 1-12, Nov. 2008.

[15] C. Niţă, L. M. Itu, and C. Suciu, “GPU Accelerated Blood Flow
Computation using the Lattice Boltzmann Method”, IEEE High
Performance Extreme Computing Conference, pp. 1-6, Sept. 2013.

[16] P. Zaspel, M. Griebel, “Solving incompressible two-phase flows on
multi-GPU clusters”, Computers & Fluids 2012, vol. 80, pp. 356-364,
2013.

[17] N. Maruyama, and T. Aoki, “Optimizing stencil computations for
NVIDIA Kepler GPUs”, Intern. Workshop on High-Performance Stencil
Computations, pp. 1-7, Jan. 2104.

