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Abstract—Stencil based algorithms are used intensively in 
scientific computations. Graphics Processing Units (GPU) based 
implementations of stencil computations speed-up the execution 
significantly compared to conventional CPU only systems. In this 
paper we focus on double precision stencil computations, which 
are required for meeting the high accuracy requirements, 
inherent for scientific computations. Starting from two baseline 
implementations (using two dimensional and three dimensional 
thread block structures respectively), we employ different 
optimization techniques which lead to seven kernel versions. Both 
Fermi and Kepler GPUs are used, to evaluate the impact of 
different optimization techniques for the two architectures. 
Overall, the GTX680 GPU card performs best for a kernel with 
2D thread block structure and optimized register and shared 
memory usage. We show that, whereas shared memory is not 
essential for Fermi GPUs, it is a highly efficient optimization 
technique for Kepler GPUs (mainly due to the different L1 cache 
usage). Furthermore, we evaluate the performance of Kepler 
GPU cards designed for desktop PCs and notebook PCs. The 
results indicate that the ratio of execution time is roughly equal 
to the inverse of the ratio of power consumption. 

Keywords— stencil, GPU, double precision, Kepler, Fermi, 
optimization 

I.  INTRODUCTION 

Graphics Processing Units (GPUs) are dedicated 
processors, designed originally as graphic accelerators. Since 
CUDA (Compute Unified Device Architecture) was 
introduced in 2006 by NVIDIA as a graphic application 
programming interface (API), the GPU has been used 
increasingly in various areas of scientific computations due to 
its superior parallel performance and energy efficiency [1]. 

The GPU is viewed as a compute device which is able to 
run a very high number of threads in parallel inside a kernel (a 
function, written in C language, which is executed on the GPU 
and launched by the CPU). The threads of a kernel are 
organized at three levels: blocks of threads are organized in a 
three dimensional (3D) grid at the top level, threads are 
organized in 3D blocks at the middle level, and, at the lowest 
levels, threads are grouped into warps (groups of 32 threads 
formed by linearizing the 3D block structure along the x, y 
and z axes respectively) [2]. 

The GPU contains several streaming multiprocessors, each 
of them containing several cores. The GPU (usually also 
called device) contains a certain amount of global memory 

to/from which the CPU or host thread can write/read, and 
which is accessible by all multiprocessors. Furthermore, each 
multiprocessor also contains shared memory and registers 
which are split between the thread blocks and the threads, 
which run on the multiprocessor, respectively. With the 
introduction of the third and fourth generation general purpose 
GPU (GPGPU), the Fermi and the Kepler generations 
respectively [3], [4], the double precision performance has 
increased, and a true cache hierarchy (L1/L2) and more shared 
memory are available. Furthermore, the global memory 
bandwidth plays an important role since the performance of 
many kernels is bound by the peak global memory throughput: 
current GPUs have a bandwidth of up to 300 GB/s. The shared 
memory on the other side is a fast on-chip memory which can 
be accessed with similar throughput as the registers. 

Stencil computation is a computational pattern on an n-
dimensional grid, whereas each location is updated iteratively 
as a function of its neighboring locations. This pattern is found 
in several application domains, like image processing, 
computational fluid dynamics, weather prediction, quantum 
physics. Previous studies have shown that, if regular Cartesian 
grids are used, GPU based implementations are able to 
significantly speed up the execution compared to regular CPU 
based implementations [5], [6]. 

Research activities on stencil based computations have 
been reported long before the introduction of general purpose 
GPUs. These activities focused on the information transfer 
between nodes [7] and the relationship between partition 
shape, stencil structure and architecture [8]. Different 
optimization techniques have been reported more recently for 
GPU based stencil computations. The most often encountered 
optimization techniques used in the past are blocking at 
registers and at shared memory [9], [10]. Pre-Fermi GPUs did 
not have any cache memories, making the shared memory 
blocking technique vital for reducing memory access counts. 
Temporal blocking is another extensively used technique, with 
mixed performance improvements on GPUs [11], [12], [13]. 
Non-GPU architectures have also been used for stencil based 
computations [14]. 

The goal of the current work is to evaluate the 
performance of 3D stencil based algorithms on a series of 
recent GPUs. Previous research activities have focused on 
single precision computations. With the introduction of the 
Fermi and the Kepler architecture, the performance of double 
precision computations on NVIDIA GPU cards has increased 
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Fig. 1. 7-point stencil used for the numerical solution of the unsteady heat 

diffusion equation. 

substantially. To meet the high accuracy requirements, 
inherent for scientific computations [15], [16], in the current 
work we focus on double precision computations. Starting 
from two baseline implementations, we employ different 
optimization techniques which lead to seven different kernel 
versions. Both Fermi and Kepler GPUs are used, to evaluate 
the impact of different optimization techniques for the two 
architectures. 

The paper is organized as follows. Section II first performs 
a brief introduction of the 3D stencil used herein. Next, the 
baseline implementations are introduced, followed by the 
different optimized approaches. Section III displays the results 
obtained with the different kernel versions for different Fermi 
and Kepler GPUs. Finally, section IV draws the conclusions. 

II. METHODS 
For studying 3D stencil based algorithms implemented on 

graphics processing units, we consider the 3D unsteady heat 
conduction problem which is modeled as a second order 
partial differential equation describing the distribution of heat 
over time over a given 3D space: 
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where α is the thermal diffusivity constant and T represents the 
temperature at any point in space (x,y,z) or time (t). 

For the numerical solution of (1) we apply a finite 
difference method on a 3D grid of points. A uniform mesh of 
points is used and the forward difference in time and central 
difference in space (FTCS) method is applied, leading to a 3D 
7-point stencil: 
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which can be rewritten as: 
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where d = αΔt/Δx2. 

In the above equation n represents the discrete time step 
number, (i,j,k) represents the spatial index, Δt  is the time step 
and Δx is the mesh spacing, which is equal in all directions. 

n
kjiT ,,  represents the temperature value at point (i,j,k), at time 

step n. The numerical solution is stable if the CFL condition 
holds: d = αΔt/Δx2 < 1/6. 

As can be observed in (3), the value at a grid point at time 
step n+1 is computed from the values at the previous time 
step, from the same grid point and from its six neighboring 
points, leading to a 7 point stencil computation (fig. 1). 

This solution scheme is fully explicit: the computation of 
the new value at any grid point is fully independent from the 
computations at the other grid points. 

A. Baseline GPU-based implementations 
In the following we introduce two baseline GPU-based 

implementations of the unsteady heat diffusion problem. For 
the first baseline implementation (called in the following 
3DBase) each grid point is handled by a separate thread. Two 
buffers are allocated, one for the values at the previous time 
step and one for the values at the new time step. To eliminate 
the memory copy requirement from one buffer to the other, the 
buffers are swapped at the end of each time step.  

Since for the latest GPUs the execution configuration 
allows not only for 3D blocks of threads, but also for a 3D 
grid of thread blocks, the threads and the thread-blocks are 
organized both into 3D structures. Thus, each thread of the 
grid corresponds to a grid point in the 3-D computational 
domain. To compute the new value at a grid point each thread 
performs seven global memory read operations at each time 
step. Since global memory operations are very slow, this 
represents a severe limitation of the kernel performance. 

In the CUDA architecture, each thread block is divided 
into groups of 32 threads called warps, each of which is 
executed in a SIMD fashion (all threads of the same warp 
execute the same instruction at a time). If the threads inside a 
warp follow different execution paths, the execution of the 
branches is serialized. Thus, warp divergence is another aspect 
which leads to loss of parallel efficiency (a minimum amount 
of warp divergence is required to distinguish between 
boundary and non-boundary nodes, so as to perform the 
computations only for the latter ones). 

On the other hand, stencil codes can be characterized by 
their FLOPs per byte ratio. The baseline implementation 
performs 13 double-precision floating point operations per 
update [17]. This leads to 13 · xDim · yDim · zDim operations 
performed at each iteration (xDim, yDim and zDim represent 
the grid dimensions). If we assume that at each time step once 
the old values are loaded they remain in the cache memory 
(which is unlikely for grid dimensions which exceed the cache 
size) the amount of data loaded and stored per time step is 
equal to xDim · yDim · zDim · sizeof(double) · 2. Hence the 
flop per DRAM byte ratio is: 

.8125.0
2)(
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Current GPUs, however, have a significantly higher ratio. 
According to this model the performance of the stencil on the 
GPU is therefore limited by its memory bandwidth. 



 
Fig. 2. 2DBase kernel: the computational grid is divided into x-y planes 

and a loop is then used to traverse the grid in the z-direction.

 
Fig. 3. 3DShMOverL kernel: the shared memory arrays have the same 

size as the thread blocks. Thread blocks overlap to enable the 
computation at all grid points. 

 
Fig. 4. 3DShMNoOverL: the shared memory arrays are padded with 

additional data slices loaded by the threads located at the border of the 
thread block. 

To allow for a better memory usage, we also consider a 
more efficient approach, whereas threads and thread-blocks 
are organized into 2D structures. The computational grid is 
divided into x-y planes and the subdomains are assigned to 
separate thread blocks. Each 2-D slice is represented through 
the grid points in the x and y directions, providing for the 
threads the (i,j) indices of the grid points. A loop is then used 
to traverse the grid in the z-direction and obtain the final k 
coordinate as shown in fig. 2 (this kernel version is called in 
the following 2DBase). 

Unlike the 3DBase implementation, for which a thread 
updates a single point, herein the same thread operates on 
several grid points. These points are placed equidistant from 
each other, the distance from one grid point to another is 
determined based on the size of the 3D domain (xDim · yDim). 

B. Optimized implementations 
Next, we describe a series of optimization techniques for 

the two baseline implementations. We focus mainly on 
minimizing warp divergence and global memory accesses. 
Besides global memory, the GPU architecture provides fast 
on-chip memory, registers and shared memory, which is 
distributed between threads and thread blocks respectively. 

1) Three-dimensional baseline implementation with 
Shared Memory Usage and Data Overlap 

The starting point for the new kernel is the 3DBase 
implementation. Since shared memory is allocated at thread 
block level, threads can cooperate when populating data 
blocks allocated in the shared memory. If data can then be 
reused by different threads, global memory accesses are 
reduced and overall kernel performance is improved. 

Shared memory arrays of size blockXDim · blockYDim · 
blockZDim are allocated (blockXDim, blockYDim and 
blockZDim represent the dimensions of the thread blocks).  

Each thread within a block loads the value of the grid point 
it handles from global memory to shared memory. To avoid 
undefined behavior and incorrect results when sharing data 
read by different threads, a synchronization barrier is 
introduced. All values required for the implementation of (4) 
are then read from the shared memory. 

With this technique, threads lying at the border of a thread 
block do not have access to all their neighbors and can not 
compute the corresponding new values. Hence, the execution 
configuration is designed so as to ensure block overlapping in 

all directions (fig. 3 - 3DShMOverL). This, however, results in 
global memory read redundancy: grid points lying in the 
overlapping regions of the blocks are read more than once for 
a single time step. 

2) Three-dimensional baseline implementation with 
Shared Memory Usage and No Data Overlap 

Starting again from the 3DBase implementation, a 
different shared memory based strategy is developed. The 
shared memory arrays are padded with an additional slice on 
each side of the 3D block leading to a total size of (blockXDim 
+ 2) · (blockYDim + 2) · (blockZDim + 2), as shown in fig. 4. 

First, each thread populates the value of the grid point it 
handles in shared memory. Next, the threads located on the 
boundary of the block load the remaining data slices from 
global memory to the shared memory (note that the corner 
points of the blocks are not required for the 7-point stencil). 
To load points located outside of the block, conditional 
operations are introduced which cause branch divergence. 

Thus, each thread of a thread block has access to all its 
neighbors and is able to update the corresponding grid point 
(no overlapping between thread blocks is required - 
3DShMNoOverL). 

3) Two-dimensional distribution of threads with additional 
register usage 

The 2DBase implementation can be optimized by storing 
redundant data in registers. Therein, the value of the current 
grid point for adjacent 2D slices is read from the global 
memory by the same thread. The same holds true for grid 
points which lie on the front or back sides of the 2D slices.  

Because slices are iterated along the z direction, the value 



 
Fig. 5. 2DShMReg: Northern and southern slices are read from the shared 

memory, eastern and western values from the global memory.

 
Fig. 6. Computation result for the unsteady heat conduction problem on a 

rectangular domain with Dirichlet boundary conditions. 

at grid point (i, j, k+1) becomes the value at (i, j, k) at the next 
iteration. Similarly, the value at (i, j, k) becomes the value at 
(i, j, k–1). Instead of rereading these values, registers are used 
for caching them and two global memory accesses are saved at 
each iteration along the Z axis (in the following this kernel is 
called 2DReg). 

4) Two-dimensional distribution of threads with Shared 
Memory Usage 

As for the kernels with 3D thread blocks, shared memory 
can also be used to reduce global memory accesses for the 
kernels with 2D thread blocks. The size of the shared memory 
array chosen for this kernel version is (blockXDim + 2) · 
(blockYDim + 2). To allow each thread of the thread block to 
compute the new value of the corresponding grid point, 
additional slices are populated at each border of the 2D shared 
memory array. Hence, the size of the shared memory array 
used for this configuration is (blockXDim + 2) · (blockYDim + 
2). Each thread first reads the value of the grid point it handles 
and stores it in the shared memory. Next, threads located on 
the boundary of the block load the remaining values (in the 
following this kernel is called 2DShM). 

5) Two-dimensional distribution of threads with 
Additional Register and Shared Memory Usage 

For the implementation version described in section II.B.4 
the loading of the central section of the shared memory does 
not introduce any divergent branches since it is not 
conditioned. The loading of the slices with y index equal to 0 
or blockYDim + 2 introduces a maximum of two divergent 
branches, one for each half-warp, depending on the compute 
capability of the GPU. On the other side, the slices with x 
index equal to 0 or blockXDim + 2 lead to divergent branches 
and only one thread of the entire half-warp performs a read 
operation. This aspect may be alleviated by the cache memory, 
but this depends on the size of the slices. 

To reduce branch divergence, the shared memory array is 
used only for the central section and for the slices with index 
equal to 0 or blockYDim + 2, while the other values are read 
from the global memory and stored into registers. Only the 
threads lying at the left or right border perform separate global 
memory reads (fig. 5 - 2DShMReg), while the other values are 
safely read from the shared memory.   

Hence the size of shared memory array used in this case is 
blockXDim · (blockYDim + 2). Each thread first reads the 
value of the grid point it handles and stores it in the shared 

memory. Next, threads located on the upper and lower 
boundary of the block load the remaining values. 

Besides the two registers that store the values of the nodes 
located next to the left and right boundaries, another 2 
registers are used for the optimization described in section 
II.B.2. 

III. RESULTS 
To evaluate the performance of the different strategies for 

running 3D stencil based algorithms on GPUs, we used three 
different NVIDIA GPU cards: GeForce GTX 480, GeForce 
GTX 660M and GeForce GTX 680 (the first one is based on 
the Fermi architecture, while the other two are based on the 
Kepler architecture), and the CUDA toolkit version 5.5. The 
unsteady heat conduction problem was solved on a rectangular 
domain with Dirichlet boundary conditions, whereas the 
boundary values were set to 100� C for one side of the 
rectangle and 0� C for the other sides. The thermal diffusivity 
constant was se to 1.9 · 10-5 m2/s and the computations are 
performed until convergence is reached. The numerical 
solution was obtained on a grid of 128x128x128 nodes and is 
displayed in fig. 6. The numerical solution was identical for all 
three GPU cards and for all implementation versions down to 
the 15th decimal, i.e. close to the precision of the double-type 
representation in computer data structures. 

Table 1 displays the execution times for one time step for 
the three above mentioned GPU cards, obtained for the seven 
different kernel versions introduced in the previous section. 
The GTX660M card leads to the largest execution times 
although it has been considerably later released compared to 
the GTX480 card. This can be explained however by the fact 
that this card was specifically designed for low power 
consumption, so as to be used in notebook PCs (whereas the 
GTX480 and GTX680 were reported with a power 
consumption of 250W and 195W respectively, the GTX660M 
only required 50W). The GTX680 is the best performing card: 
for each of the seven implementation versions it leads to the 
smallest execution times. The ratio of the execution times for 
the GTX660M and GTX680 cards varies between 4.26 and 
5.56 for different kernel versions. This roughly reflects the 
inverse of the power consumption ratio, which is equal to 3.9. 



TABLE II. KERNEL PERFORMANCE AND DETAILS FOR THE GTX680 CARD. 

Method Execution 
time [ms] 

Reg. per 
thread 

Divergent 
branches 

Shared 
memory 
per block  
[bytes] 

Total number 
of 64 bit global 
load instr. 

Total 
number of 
64 bit global 
store instr. 

3DBase 0.62 25 12016 - 14002632 2000376 
3DShMOverL 1.13 19 20811 4096 4741632 2000376 
3DShMNoOverL 0.73 21 12694 8000 3524851 2000376 
2DBase 0.63 25 94 - 14002632 2000376 
2DReg 0.58 25 94 - 10033632 2000376 
2DShM 0.59 25 94 800 6953688 2000376 
2DShMReg 0.48 25 94 640 2984688 2000376 

TABLE I. EXECUTION TIME [MS] FOR A SINGLE TIME STEP, OBTAINED FOR 
THE SEVEN DIFFERENT IMPLEMENTATION VERSIONS ON THREE DIFFERENT 

GPU CARDS . 

Method GTX4
80 

GTX 
660M 

GTX 
680 

3DBase 1.7 3.45 0.62 
3DShMOverL 3.5 6.17 1.13 
3DShMNoOverL 1.8 3.78 0.73 
2DBase 1.2 3.09 0.63 
2DReg 0.9 2.47 0.58 
2DShM 1.2 2.87 0.59 
2DShMReg 1.09 2.32 0.48 

Interestingly, whereas for the GTX660M and the GTX680 
cards the 2DShMReg kernel performs best, for the GTX480 
card the 2DReg kernel leads to the smallest execution time. 
Shared memory based optimizations were particularly 
important for pre-Fermi GPU cards. For the Fermi architecture 
these optimizations were not always leading to a better 
performance due to the fact that the global memory read 
operations were cached at L1 level. Even though the cache 
size is regularly small, it is efficient for algorithms based on 
Cartesian grids where data access patterns are regular [6]. For 
the Kepler architecture however the L1 cache is no longer 
used for caching global memory read operations, but only for 
register spilling [4]. Hence, for the GTX480 card (Fermi), 
since the L1 cache is intensively used for caching global 
memory read operations, the 2DReg kernel outperforms the 
2DShMemReg kernel. On the other hand, for the GTX660M 
and the GTX680M, since the L1 cache functionality is limited 
to register spilling, shared memory usage became more 
important, illustrated by the better performance of the 
2DShMReg kernel. 

In the following we focus on the differences between the 
kernel versions for the GTX680 card, which was determined 
as the best performing one considered herein. Table 2 displays 
besides the execution time other important details of the 
various kernel versions. 

The two baseline implementations (2DBase and 3DBase) 
lead to almost identical execution times. Referring first to the 
kernels based on a 3D thread block structure, the 
3DShMOverL performs worse than the 3DBase kernel: 
execution time increased by 82% although the number of 
global accesses was reduced by 66.13%. This can be explained 
by the fact that a considerable amount of threads perform only 
load operations. 

Compared to the 3DShMOverL kernel, the execution time 

decreased by 35.39% and the total number of read operations 
was reduced by 25.66% for the 3DShMNoOverL kernel. 
Compared to the 3DBase kernel, this implementation is 
compute limited instead of bandwidth limited. The main 
reason for the change of the limitation type lies in the number 
of divergent branches, which increased considerably and 
which in the end leads to a higher execution time than for the 
3DBase kernel. 

Next, we refer to the kernels based on a 2D thread block 
structure. The 2DReg kernel leads to a significant reduction of 
memory operations (28.34%) and as a result of the execution 
time (7.93%), compared to the 2DBase kernel. The 2DShM 
kernel further reduces the number of global memory load 
operations but execution time increases slightly, which is 
caused by the non-optimized register usage. Finally the 
2DShMReg combines both techniques (optimized register and 
shared memory usage), and reduced execution time by 17.24% 
and the total number of read operations by 70.25% compared 
to the 2Dreg kernel. 

Overall, the kernels with 2D thread block structure 
outperform the ones with 3D thread block structure for double 
precision computations, confirming the findings for single 
precision computation reported in [17]. 

IV. CONCLUSIONS 
In this paper, we have presented performance studies for 

3D stencil based algorithms on recent NVIDIA GPUs. To our 
knowledge this is the first study to evaluate different 
implementation and optimization strategies for double 
precision computations. The increased accuracy obtained for 
double precision is required in scientific computations, which 
represent the main area of application for the 3D stencil based 
algorithms. 

For the analysis we have used Fermi and Kepler 
architecture based cards, which represent the last two released 
GPU architectures from NVIDIA. Besides the shift in L1 
cache usage from Fermi to Kepler, other important minor and 
major changes in the hardware configuration have been 
performed [4]. 

Hence, starting from two different baseline 
implementations (based on 3D and 2D thread block 
structures), we have applied different optimization strategies 
which have lead to different performance changes for the 
Fermi and Kepler cards. Overall the GTX680 GPU card 
(Kepler architecture) performed best for a kernel with 2D 



thread block structure and optimized register and shared 
memory usage. Conversely, for the GTX480 GPU card (Fermi 
architecture) the 2D kernel, which does not use shared 
memory but is optimized in terms of register usage, performed 
best, mainly due to the different L1 cache usage in the Fermi 
architecture. Hence, shared memory usage has become 
essential for double precision stencil based computation on 
Kepler GPUs. 

Finally, for the Kepler architecture we have evaluated the 
performance for a GPU designed for desktop PCs (GTX680) 
and for a GPU designed for notebook PCs (GTX660M). The 
results have indicated that the ratio of execution time is 
roughly equal to the inverse of the ratio of power 
consumption. 
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