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The soft X-ray (SXR) emission provides valuable insight into processes happening inside of high-temperature
plasmas. A standard method for deriving the local emissivity profiles of the plasma from the line-of-sight
integrals measured by pinhole cameras is the tomographic inversion. Such an inversion is challenging due
to its ill-conditioned nature and because the reconstructed profiles depend not only on the quality of the
measurements, but also on the inversion algorithm used. This paper provides a detailed description of
several tomography algorithms, which solve the inversion problem of Tikhonov regularization with linear
computational complexity in the number of basis functions. The feasibility of combining these methods
with the Minimum Fisher Information Regularization is demonstrated, and various statistical methods for
the optimal choice of the regularization parameter are investigated with emphasis on their reliability and
robustness. Finally, the accuracy and the capability of the methods are demonstrated by reconstructions of
experimental SXR profiles, featuring poloidal asymmetric impurity distributions as measured at the ASDEX
Upgrade tokamak.
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I. INTRODUCTION

Elements with a high atomic number Z (e.q. tungsten),
are expected to be an essential part of the plasma-facing
components (PFC) in future fusion reactors1–3. The un-
avoidable sputtering of these materials caused by plasma
wall interactions leads to an influx of the heavy impu-
rities into the plasma. The radiation losses from the
partially stripped high-Z ions can be beneficial at the
plasma edge because the power exhaust in the divertor is
significantly reduced. However, intense radiative cooling
in the plasma core leads to a deterioration of the fusion
performance4. Moreover, unfavorable impurity transport
in the plasma core may cause impurity accumulation and,
consequently, a radiative collapse of the plasma5.

An essential tool for monitoring the spatial impurity
distribution are the soft X-ray (SXR) diagnostics. SXR
radiation from high-Z elements (i.e. line radiation) is
typically much larger than from low-Z elements and main
ions (i.e bremsstrahlung). The local impurity density can
be estimated from the known relation between the SXR
radiation and impurity density as is shown in Refs. 4
and 6. The spatial information about the SXR radiation
is provided by several pinhole cameras surrounding the
plasma. Low numbers (i.e. 102) of available lines of sight
(LOS) and the sparse coverage of the plasma leads to
a non-trivial, ill-posed inversion problem of the limited
angle tomography7, i.e. tomography with relatively few
cameras.
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A large number of different algorithms have been pro-
posed for solving the SXR tomography problem. The
most common methods are based on a series expansion
like the Cormack-Bessel or the Fourier-Bessel8, the maxi-
mum entropy methods9, and the Tikhonov regularization
related pixel methods10,11. However, the very strong de-
pendence of the tungsten SXR radiation on the electron
temperature, along with peaked temperature and peaked
tungsten density profiles, results in very steep and local-
ized gradients in the SXR radiation. The presence of
such features requires a high dynamic range of the tomo-
graphic reconstruction (up to 3 orders of magnitude) in
order to resolve the radiation profile from the core to the
edge. The best results are typically obtained by employ-
ing weakly nonlinear algorithms like the anisotropic Min-
imum Fisher Information (MFI)12 and the Minimum nor-
malized gradient method (MNGR)13. A common draw-
back of the existing algorithms used by pixel based meth-
ods is the cubic computational complexity. The improved
algorithms described in this manuscript find a solution to
this particular inversion problem with linear complexity
in the number of pixels. Additionally, various methods
for a robust and automatic choice of the optimal regu-
larization level are investigated. The performance of the
proposed tomographic methods is verified by reconstruc-
tions of the SXR emissivity from a hundred of discharges
from the ASDEX Upgrade tokamak (AUG).

AUG is a mid-sized tokamak with R = 1.65m,
a = 0.5m, Ip ≤ 1.4MA, Bt ≤ 3.1T, and tungsten cov-
ered PFCs14. The metal wall and the high heating power
provided by 8 neutral beam injection (NBI) sources deliv-
ering up to 20MW, 6MW of ion cyclotron heating, and
4MW of electron cyclotron heating make this tokamak



Optimized tomography methods for plasma reconstruction at AUG 2

well suited for power exhaust studies relevant for future
fusion reactors. The SXR diagnostic in AUG is regularly
used for the analysis of the impurity transport15,16, mag-
netohydrodynamic (MHD) instabilities17 and fast par-
ticles in the plasma18. All of these measurements can
benefit from the high-quality tomographic methods de-
scribed in this article.
The current paper is organized as follows: Section 2

contains a description of the AUG SXR diagnostic, which
features a progressive design well suited for tomography.
In Section 3, we give an overview of the tomography prob-
lem and the Tikhonov regularization method followed by
the description of the algorithms used in Sec. 4. Vari-
ous methods for the optimal choice of the regularization
level are examined in Section 5. Additionally, since the
reconstruction is always subject to experimental errors,
a detailed investigation of the variance and the bias is
done in Sec. 6. Finally, the performance of the proposed
methods on real SXR profiles from AUG is presented in
Sec. 7.

II. SXR DIAGNOSTIC ON AUG

The current AUG SXR system has been, with only
a few minor changes, operational since the year 200619.
The diagnostic consists of 15 miniature heads with sep-
arate pinholes and chips, assembled to 8 cameras named
F,. . . ,M resulting in a total of 208 LOSs. The cameras
H, I and J have three heads each; camera K has two and
cameras F,G, L and M only one head each due to spatial
constraints in the divertor and the wall gaps. The design
of all heads is identical with a focal length of 14.0mm and
a slit of size 0.3×5.0mm2. The arrays of SXR-diodes are
centered perpendicularly to the axis of the heads.
Each head is equipped with a linear array of 35 Cen-

tronic Series 5T (LD35-5T) diodes of size 4.6×0.96mm2

with 30µm separation. The diodes are shielded by cir-
cular curved Be foils attached behind the slits. The
measured foil thickness is 75µm with a relative variabil-
ity below 5%. The spectral interval with a detection
response higher than 50% ranges from 2.3 keV to about
13 keV. To limit the range of the incidence angles of the
measured lines of sight, because a too shallow angle is
associated with a larger effective thickness and, conse-
quently, a different spectral sensitivity20,21, roughly only
half of the central diodes on a chip are utilized. De-
spite this restriction on the incidence angles, the effective
thickness of the diodes can vary by 12% (Cameras H, J)
up to 19% (camera I) between the central and the edge
diodes. The increased effective thickness influences the
sensitivity only for photons with energies above 7 keV,
which usually are not emitted in the cold edge plasma
observed by the side LOSs. Therefore, this effect was
neglected in the calibration.
The positions of all cameras and their observation

cones are depicted in Fig. 1. Camera F is situated in
the tokamak sector 5 of 16, while the rest are in sector

Figure 1. A poloidal projection of the experimental setup of
the AUG soft X-ray diagnostic system. The viewing cones of
each camera are indicated by black circular sectors. Outboard
cameras H, I, J and K are composed of multiple heads each
with the slit in the same position. The viewing geometry of
the F camera is similar to that of the G camera, however, F is
toroidally separated by 137° from the other cameras. In gray
the volumes of core LOSs from the G and I cameras are shown
and in the background, contours of the real SXR emissivity
are presented.
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Figure 2. The AUG SXR diagnostic (Fig. 1) depicted in the
projection space, where the LOSs are indicated by the dots,
p and ξ are the distance and angle of the LOS tangent to
the magnetic axis. The LOSs of the central heads are colored
black, and the side heads are red and blue. The contours
of the Radon transformation22 of the radiation profile from
Fig. 1 are shown in the background. Beige areas indicate the
tokamak vessel, while a typical shape of the last closed flux
surface (LCFS) is presented via the dashed line.
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11 separated by 137°. Because camera G has an almost
identical geometry as camera F, the toroidal mode num-
ber of the emissivity perturbation can be estimated from
the SXR measurements alone. The location of the cam-
eras provides an acceptable coverage of the projection
space22 shown in Fig. 2 with the LOSs from the central
head of each camera always crossing the plasma core.
The spatial resolution can be estimated from the width
of the volume of sights (VOS) in the plasma core. The
full width at half maximum of the vertical VOS of cam-
era F is 7 cm due to the significant distance from the
plasma core, but only 4 cm for the horizontal camera I,
which is the closest. The available spatial resolution of
the tomography is moderately improved by synergies of
multiple overlapping camera heads as shown in Fig. 1.

The etendue of the LOSs were calculated by a full
3D model of the VOS including all obstacles in the
paths23,24. The toroidal spreading of the VOS and the
toroidal curvature of the plasma column cause an out-
ward radial shift of the VOS centroid in the plasma core
of around 5mm compared to the LOS. The largest radial
shift due to this effect is observed for the vertical LOSs
of the F,G and K cameras. This effect is included in the
tomography by an analytical correction23.

The signals from the diodes are measured by two dis-
tinct acquisition systems. The older one, measuring
80 LOSs (mainly the H camera and the lower half of the I
camera), is equipped with 12-bit analog-digital convert-
ers (ADCs) with a 500 kHz sampling frequency and an
80 kHz low pass filter. The newer system acquires the re-
maining 128 LOSs with 14 bit ADCs, a 2MHz sampling
frequency, and a fixed low pass filter at 500 kHz. Both
systems are used for the regular tomographic reconstruc-
tions and, therefore, the slower system is interpolated
onto the 2MHz sampling rate. The uncertainty of these
interpolated signals is increased by factor of 2 to re-
flect the fact that some temporal information was lost.
However, only the new system is usable for studying the
fastest MHD phenomena like toroidal Alfven eigenmodes.

The amplification chain is composed of a preamplifier
installed close to the tokamak vessel and a two stage main
amplifier in a shielded area. The gain of the preampli-
fier can be varied in the range 3.75-250µA/V and the
main amplifier’s gain can be set between 1 and 210. The
power incident on the diodes is estimated from the gen-
eral factor 3.62W/A describing the diodes sensitivity in
the X-ray range25. However, an independent absolute
calibration26 was not performed. The gain is adjusted
before every plasma discharge for each LOSs based on
the expected emission intensity. The dark current of the
diodes is compensated in the main amplifiers before the
discharge starts. Additionally, a small offset is added
to use the full range of the ADC without cutting off the
noise with negative values. After the acquisition, the raw
data is stored in a shotfile database, consuming in total
5.5GB of disk space per discharge. Finally, because man-
aging of such large data files is very demanding for the
memory and computing power, a data edition decimated

to 5 kHz is saved as well. It is commonly used for impu-
rity transport and sawtooths studies and the observation
of slow MHD modes.

III. PLASMA TOMOGRAPHY

A. The tomography problem

A pinhole camera does not directly measure the local
emissivity, but only a signal integrated over the VOS.
The goal of the tomography is thus to reveal the best
estimate of the local spatial distribution of the emissivity.
The power Pi incident on the detector i is given by

Pi =

∫∫∫

VOS

Ωi(r)

4π
G(r)dV, (1)

where the integration is done over the whole volume ob-
served by the detector; Ωi(r) denotes the solid angle of
the cone from the exposed surface of the detector and
G(r) is the emitted power density in W/m3, i.e. spec-
tral power density integrated over the sensitivity range of
the detector. The brightness bi (in units W/m2) can be
expressed when both sides of Eq. (1) are normalized by
4π over the etendue, defined as the product of the solid
angle Ωi and the area A perpendicular to the axis of the
cone Ωi

bi = Pi
4π

〈AΩi〉
=

∫∫

Ti(R, z)G(R, z, ϕ)dRdz. (2)

The coordinates R and z correspond to the horizontal
and vertical directions in the poloidal tokamak cross-
section and ϕ represents the toroidal angle. Since the
toroidal extend of the VOS is small, variation of the emis-
sivity in the toroidal direction will be ignored. The oper-
ator Ti then introduces a mapping of the 2D emissivity
G to a discrete measurement bi. This operator is defined
as follows:

Ti(R, z) =

∫

Ωi

〈AΩi〉
Rdϕ (3)

and describes the geometric properties of the diagnostics.
The equation (2) for bi represents the Fredholm integral
equations of the first kind, which will be solved by a
discretization on a rectangular grid with the total number
of pixels n. Thus, the problem can be rewritten as a set
of m linear equations for m detectors

bi =

n
∑

j=1

Tijgj i ∈ 1, . . . ,m (4)

T ∈ R
m,n denotes a geometry matrix, defining the con-

tribution of a pixel j to the measurement i and gj is the
local emissivity at the j-th pixel in units of W/m3. The

measured brightness b̂i is subject to experimental errors.

Therefore, b̂i = bi + ξi, where ξi represents a random er-
ror with zero mean and a variance of σ2

i .
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B. Tikhonov regularization

The system of equations obtained by discretization
of the Fredholm integral equations is ill-posed and for
the tomography of a plasma also usually significantly
under-determined (m ≪ n). A common method to find
a unique and sensible solution is the Tikhonov-Philips
regularization27 in the general form, which searches for a
minimum of the functional Λ(g) is given by

Λ(g) = (Tg − b̂)TΣ−1(Tg − b̂) + λO(g) (5)

The first term stands for the data fidelity, i.e. the
residuum weighted by the expected covariance matrix Σ,
O(g) denotes a regularization functional and λ is a posi-
tive regularization parameter balancing the strength of a
priori constraints with respect to the goodness of fit. For
the sake of simplicity, we will further assume that T and
b are already weighted by a square root of the covariance
matrix

T← Σ− 1

2T b← Σ− 1

2b.

The purpose of O(g) is to impose a priori knowledge
about the emissivity profiles. This is often some kind of
a roughness penalty and a boundary constraint. The
regularization operator is typically a quadratic form
O(g) = gTH(g)g, with a symmetric and positive semi-
definite operator H ∈ R

n,n which can be a function of g.
A common boundary constraint is zero emissivity at the
borders, enforced by adding a sufficiently large positive
value to the diagonal points of H corresponding to the
pixels outside of the boundary. Therefore, the regular-
ization operator includes all soft constraints for the solu-
tions. Hard constraints can be imposed by introducing an
orthonormal matrix P ∈ R

m,l and performing the trans-
formations T̂ = TP, Ĥ = PTHP and ĝ = PTg. The
solution will be restricted to a linear subspace generated
by the columns of P. An example of P are the orthonor-
malized Fourier-Bessel basis functions in the straight field
line coordinates.
A minimum of Eq.(5) is now expressed as a quadratic

optimization problem for a constant matrix H

Λ(g) = ||Tg − b̂||22 + λgTHg (6)

with the minimum reached at

g = (TTT+ λH)−1TT b̂. (7)

A direct inversion of this equation is possible. However,
due to the large dimension of the matrices (n × n), the
high computational complexity O(n3) of the inversion,
and the required number of inversions to a find proper λ,
this procedure is highly impractical.
The optimization problem (6) has a unique solution if

the null spaces ofT andH have only a trivial intersection
(i.e. kerT ∩ kerH = 0). In order to employ computa-
tionally efficient numerical algorithms, we will require an

invertibleHmatrix. Invertibility can always be imposed
by a proper definition of the boundary constraints or by
adding an identity matrix εI to H, where ε has the size
of the order of the smallest non-zero eigenvalues of H.

C. Minimum Fisher Information

The most common regularization operators are the
identity operator, suppressing the Euclidean norm of the
solution, and the Laplace operator, reducing the curva-
ture of the emissivity profile28,29. Nevertheless, the spe-
cial features of the SXR profiles, like the peaked distri-
bution of the SXR radiation, the sharp gradients, and
the large dynamic range, make the nonlinear Minimum
Fisher Information regularization (MFI)10 an ideal can-
didate for the regularization functional. This functional
can be expressed in the following form:

OMFI(G) =

∫∫

dS
1

G
(∇uG)TJ2(∇vG), (8)

where u(x, y) and v(x, y) are two locally orthogonal vec-
tor fields and J2 ∈ R

2,2 represents a matrix of ones. If u
is parallel with the Cartesian coordinates, the method is
called isotropic MFI and if u is locally tangential to the
magnetic flux surfaces, the anisotropic MFI regulariza-
tion is obtained. More details about the implementation
of the anisotropic MFI can be found in Ref. 12. The
regularization operator H, representing a linearized and
discretized functional (8), is given by:

H(k) =
∑

ℓ∈{u,v}

BT
ℓ W

(k)Bℓ, (9)

where Bℓ denotes a discretized gradient operator ∇ℓ and

W
(k)
ij is a weight matrix defined as the inverse of g(k)

W
(k+1)
ij = δij/max {g

(k)
j , ε}.

The MFI regularization must be solved iteratively, be-
cause the weight matrix W depends on the emissivity g.
The small positive constant ε prevents division by zero
and, moreover, it serves as a weak positivity constraint
for the Tikhonov regularization, because the regions with
the negative values are strongly smoothed and pushed
closer to or above zero. For this work ε = 10−8 of the
emissivity maximum was used, which is usually an ade-
quate compromise between the positivity and a numerical
instability caused by a too low value of ε.
Another method used to enforce the positivity of the

solution was proposed in Ref. 30. This algorithm is based
on the active set approach from quadratic programming
and can be effectively combined with the matrix decom-
positions presented in the next section.

IV. SPARSE DIAGONALIZATION METHODS

A large variety of methods were developed to solve the
Tikhonov problem, for instance the generalized eigenval-
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ues (GEV)30,31 method, the singular value decomposi-
tion (SVD) method32, the generalized SVD (GSVD)29,33

method, bidiagonalization34, and the most common is
the direct inversion10,12,35,36. However, in the current
implementation, none of these methods are able to effi-
ciently take advantage of all of the aspects specific to
the Tikhonov regularized SXR tomography. First of
all, the projection matrix T has a small numerical rank
r ≤ m ≪ n, with typical values of r = m ∼ 102 and
n ∼ 104. The regularization operatorH is a full rank pos-
itive definite matrix. Further, both matrices are sparse;
the T matrix for the AUG SXR system has roughly only
5% non-zero elements and the matrix H has a regular
sparsity pattern and approximately 0.01% fill-in.
In this section, we present modifications of the SVD

and QR algorithms for the solution of the Tikhonov reg-
ularization that allows for taking full advantage of these
conditions.

A. Sparse SVD decomposition (sSVD)

Singular value decomposition is a common tool for the
solution of the Tikhonov regularization in the standard
form, i.e. when the regularization operator is an identity
matrix In

37. Hence, it is necessary to transform Eq. (6)
into the standard form, before the SVD method can be
applied. In the case of H = LTL and if L is an invertible
operator, the transformation is straightforward:

T̄ = TL−1 ḡ = Lg

and then substitution into Eq. (6) we get

‖Tg − b‖22 + λ‖Lg‖22 = ‖T̄ḡ − b‖22 + λ‖ḡ‖22,

where ‖ · ‖22 denotes the Euclidean norm. This trans-
formation method was proposed by Tarasaki32 for the
discretized Laplace operator. Let’s consider a more gen-
eral case of a sparse and positive definite, but otherwise
arbitrary, matrix H. The transformation to the stan-
dard form can be performed very effectively by the sparse
Cholesky decomposition38 of H. A regularized solution
is found via the following steps:

1. The sparse Cholesky decomposition of the matrix
H is evaluated through

PHPT = LLT , (10)

where L is a sparse lower triangular matrix and P

is a fill-reducing permutation.

2. In the next step, Eq. (7) is transformed into the
standard form

(

TTT+ λPTLLTP
)−1

TT = PTL−T
(

ATA+ λIn
)

AT

(11)

defining the integrated projection matrix L−1PTT

asA. Exploiting the sparsity of theH andTmatri-
ces, such an inversion can be evaluated with O(nm)

complexity. The matrix A is not sparse anymore,
except for the empty rows corresponding to the pix-
els outside of the plasma boundary. For this reason,
the SVD in the following step will be evaluated for
non-zero rows only.

3. After the standard form is obtained, the solution
can be found by the SVD decomposition of the
matrix A, i.e. A = UDVT . The columns of the
matrices U ∈ R

m,r and V ∈ R
n,r are left-singular

and right-singular vectors of A, and D ∈ R
r,r is

a matrix with singular values on the diagonal in
descending order. Substituting the obtained SVD
of A into Eq. (11) results in a decomposition of a
form that is already appropriate for the numerical
solution

PTL−T
(

ATA+ λIn
)

AT = Ṽ(D2 + λIr)
−1DUT

where matrix Ṽ ∈ R
n,r of the reconstruction

basis is defined as Ṽ ≡ PTL−TV. Neverthe-
less, since the matrix A is “tall-and-slim”, it is
usually more economical to calculate an eigen-
decomposition of the smaller Hermitian matrix
AAT = XΛXT instead of a proper SVD. In such a
case D = Λ1/2, U corresponds to the eigenvectors
X and V = ATUD−1. Since the matrix AAT has
a squared condition number compared to A, one
could expect a reduced numerical accuracy. But
the regularization is suppressing the least signifi-
cant eigenvalues and no impact on the reconstruc-
tion accuracy was observed.

4. The regularized solution gλ is obtained in the form
of a series expansion

gλ =

r
∑

i=1

fi,λ
(UT

i b)

Di
Ṽi. (12)

Here Ui and Ṽi denote columns of matrices U and
Ṽ, respectively. The filtering factors are defined as
fi,λ = (1+λ/D2

i )
−1, monotonously decreasing with

λ and i.

The first step, when the Cholesky decomposition of the
H matrix is performed, has linear complexity because
of the regular sparsity pattern and the small number of
non-zero elements proportional to n. The time spent
in this step is negligible. The second step is done by
back-substitution of the sparse lower triangular matrix
L with O(nm) complexity. When SVD is replaced by
the eigenvector decomposition (EV), then the required
number of operations scales as O(m3+nm2), while if the
thin SVD is applied, the number of flops will increase to
2nm2+11m3 as was shown in Ref. 39, and the measured
computing time was increased by a factor of five. The
other steps also do not affect the final linear complexity.
Moreover, our analysis indicates a cubic dependence of
the decomposition time on the number of detectors m in
the EV.
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B. Sparse QR decomposition (sQR)

An alternative method based on a triple application
of the QR decomposition was proposed in Ref. 40 by
Hosoda. This method does not provide a perfect solu-
tion of Eq. (7), however, the solution is a very close ap-
proximation, the difference is usually lower than 0.1%.
Previous comparisons of the original algorithms32 have
shown ten times lower computation cost than the former
SVD method.
The description of the optimized algorithm for the

decomposition of the sparse matrices is summarized
below:

1. The first step is identical to the sSVD method; the
matrix A is obtained via the integration of the pro-
jection matrix.

2. In the next step, the pivoted rank-revealing QR
decomposition is applied on A

Q1D̂S
RRQR
= AΠ, (13)

where Q1 ∈ R
n,r is a unitary matrix, D̂ ∈ R

r,r

is a diagonal matrix with positive diagonal values
sorted in non-increasing order, S is an upper tri-
angular matrix with a unitary diagonal and Π is
a permutation matrix. The Q-less QR decomposi-
tion can be employed, because Q1 is not required
explicitly in the following steps.

3. The ordinary QR decomposition is applied to the
matrix ΠST

Q2R2
QR
= ΠST

where R2 ∈ R
r,r is an upper triangular matrix and

Q2 ∈ R
m,r is a unitary matrix.

4. Now the diagonal matrix D is swapped with the
R2 matrix

M = D̂RT
2 D̂

−1

and the third QR decomposition of the matrix M
is computed

R3DRQ3
QR
= M

Just like in the second step, the Q-less QR decom-
position can be used. R3 ∈ R

r,r is an upper trian-
gular matrix with a unitary diagonal and DR∈R

r,r

is a diagonal matrix.

5. In the last step, the final integration by the L oper-
ator is performed and the decomposition is trans-
formed to the form analogous to the preceding

method

R = D̂RT
3 (DDR)

−1

D = D̂DR

U =
(

R−1
3 QT

2

)T
(Forward-substitution)

V = AUD−1

V̂ = (PL−TV)T (Back-substitution).

Since the definitions of the matrices U, D and V̂ are now
consistent with the notation in the sSVD algorithms, the
regularized solution can be estimated by formula (12).
The arguments used for the analysis of the computa-
tional complexity of the sSVD method are valid here as
well. In the sQR algorithm the most expensive step is
the first RRQR decomposition requiring O(nm2 + m3)
operations39. The other steps have a O(nm) complexity
or even lower. Since the asymptotic complexities of both
algorithms are identical, it is necessary to assess these
algorithms by a direct comparison of the computation
time.

C. Computational effort

In addition to the algorithms introduced in the previ-
ous section, also the GEV method30 based on the GEV
routine for sparse Hermitian matrices from the ARPACK
library41 and GSVD33 were included in the investigation
in this section, because both are regularly used for the
solution of the generalized Tikhonov problem. The com-
parison was performed for a variable number of pixels n
and with a fixed number of m = k = 200 detectors. The
number of the non-zero elements in the projection matrix
was about 5% and the anisotropic regularization opera-
tor used had all non-zero elements regularly aligned in
nine diagonals. All computation tests were run in a sin-
gle thread on an Intel Core i5-2540M processor to allow
a fair comparison of these methods. An algorithm based
on the direct inversion of the Tikhonov problem by the
sparse Cholesky solver12 was used as reference method.
The measured computation times are shown in Fig. 3
with dashed lines indicating the asymptotic complexity.
The fastest method is based on the sQR decomposi-

tion and it takes about 34ms for a moderate resolution
40×60 pixels. sQR is followed by the sSVD algorithm,
which is 30% slower. Both algorithms show a linear
time complexity in the number of pixels n, which tails
off for n . 5m. Other algorithms based on the GEV
and the GSVD are, for a reasonable range of n, signifi-
cantly slower than the direct inversion. The time mea-
sured for the algorithm based on the sparse GEV are have
a quadratic complexity in n, but with a rather large mul-
tiplication factor. Finally, GSVD based on sine-cosine
decomposition42 is not able to efficiently take advan-
tage of the matrix sparsity and, thus the computing time
scales as O(n3). The decomposition methods even fur-
ther outperform the direct solvers because at least 3−10
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inversions are necessary to solve the inner loop of the MFI
algorithm and find the optimal regularization parame-
ter. But, once the decomposition is available, the inner
loop can be solved almost instantaneously in ≈ 1ms with
O(mk) complexity. The numerical accuracy of all algo-
rithms solving Eq. (7) was better than 10−12, except for
sQR, which provides inversion with a difference of 10−3.
This is still well below the experimental uncertainties.
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Figure 3. Computation times of different decomposition
methods were compared to the direct inversion algorithm
based on the sparse Cholesky decomposition12. The asymp-
totic complexity is indicated by the dashed lines.

The sSVD and sQR decomposition methods are very
efficient especially in the case of a low-rank projection
matrix. The direct inversion is faster only if the rank r is
comparable with n or at very low resolution n ≪ 103

as was shown in Refs. 43 and 44. Since the large
scale changes in the emissivity profile usually evolve on
much slower timescales than the sampling frequency, it is
not necessary to evaluate a decomposition for each time
frame separately, but instead the discharge can be di-
vided into short blocks reconstructed at once. In such
cases, it is possible to compute roughly 200 frames/s at
a moderate resolution of 40×60 px.

V. THE OPTIMAL CHOICE OF THE
REGULARIZATION PARAMETER

One of the key issues related to the Tikhonov regular-
ization is the proper selection of the regularization pa-
rameter. The optimal parameter λopt minimizes the dif-
ference between the reconstructed and the original pro-
file. Since the original radiation distribution is not avail-
able in the experiment, this parameter must be deter-
mined purely from the measurements and a priori knowl-
edge. Moreover, the optimal estimator of λopt should be
robust, reliable, and the computation complexity should
be polynomial in m, independent of the number of pixels
n. Hence, the optimal solution must be found without
the explicit evaluation of gλ.
Many different methods have been proposed for the

choice of the regularization level. Commonly used meth-
ods include the Morozov’s discrepancy principle (DP)7,45,
the curvature of the L-curve46, the generalized cross-
validation (GCV)28,32, the predicted sum of squares
(PRESS)47, the corrected Akaike information criterion
(AICC)

48 and the quasi-optimality criterion49,50. How-
ever, with the exception of DP, these methods are not reg-
ularly used in SXR plasma tomography. Since the behav-
ior of these methods significantly depends on the investi-
gated problem, the only way to identify the most suitable
one is to perform a comparison on artificial and experi-
mental measurements. Tests of these methods on the ar-
tificial radiation profiles allowed for identification of the
most promising methods, namely PRESS, AICC, GCV,
and DP. Due to the highly ill-posed character of SXR
tomography, the corner of the L-curve is insignificant or
missing on real measurements. The quasi-optimality cri-
terion is not able to provide a single, reliable and unique
optimum even for simple artificial profiles. Finally, the
compatibility of the remaining methods with the nonlin-
ear MFI needs to be investigated.
The regularization level in the following section will be

quantified by the quantile qλ in the set {D2
i } equal to λ.

Compared to the regularization coefficient λ itself, whose
value does not have a direct meaning and depends on the
normalization of the H and T matrices, qλ roughly cor-
responds to the fraction of degrees of freedom removed
by the regularization. A value close to one results in very
high regularization, almost completely ignoring the mea-
surements, while a value of about zero causes negligible
regularization.

A. Discrepancy principle

For the choice of the optimal regularization parameter,
the Morozov’s discrepancy principle (DP) is the most
common method used by plasma physicists11,12,36,43,45.
The regularization parameter is chosen such that the
residual norm for the solution gλ satisfies

‖Tgλ − b‖22 − ‖ǫǫǫ‖
2
2 = 0, (14)

where ǫǫǫ is the estimated noise level. This condition
together with the minimization of the regularization
functional leads to a constrained quadratic optimization
problem, easily solvable by an iterative root-solver. A
unique solution satisfying the condition (14) exists if

‖b−UUTb‖2 < ‖ǫǫǫ‖22 and ‖b‖22 > ‖ǫǫǫ‖22, which is always
fulfilled if the projection matrix T has full rank and the
measurements exceed the noise level. For the decompo-
sition methods introduced earlier, the residuum can be
expressed in the following form

‖Tgλ − b‖22 =
m
∑

i=1

(

(1− fi,λ)U
T
i b
)2

, (15)

where fi,λ are the filtering factors introduced in Eq. (12),
fi,λ = 0 for i ≥ r andUmust be multiplied by the matrix
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R from the right for the sQR method. The root in λ can
be found with a mere O(mk) complexity. The choice of
Eq. (14) was motivated by the fact that if the Tikhonov
regularization is correctly weighted by the statistical un-
certainties, while an approximately normal noise distri-
bution is assumed, then the residuum will have a χ2

distribution with p degrees of freedom. The expected
value of χ2 is also p and it can easily be checked that

p = m− k +
∑k

i=1(1− fi)
2. Since the existence of the

root is not generally guaranteed, we assume p ≡ m, which
leads to Eq. (14) and tends to a slight overestimation of
the regularization parameter.
The discrepancy principle strongly depends on a re-

liable estimate of the uncertainty level for each signal
and time frame and such knowledge is usually not di-
rectly available. We have estimated the statistical vari-
ance from the temporal and spatial characteristics of the
measured signals. However, the systematic errors are un-
known, and they can also depend on the profile or the
energy spectrum of the radiation. For these reasons, dif-
ferent methods depending solely on the measured data
must be considered as well.

B. PRESS - Predicted residual error sum of squares

The method called predicted residual error sum of
squares (PRESS)51 is based on the basic leave-one-out
cross-validation. The model minimizing the PRESS score
should have the best predictive capability. Over-fitted
models tend to fit noisy features in the data, reducing
their predictive capability. On the other hand an over-
regularized model is not able to follow real features in
the measurements, leading to an increase of the PRESS
as well. The value of the PRESS score can be expressed
by the following formula

P(λ) = m−1
m
∑

l=1

[(

Tg
(l)
λ

)

l
− bl

]2

where g
(l)
λ is the solution in which the l-th detector was

removed. A simplified solution was found for the decom-
position based methods52

P(λ) =
1

m

m
∑

k=1

(

∑r
j=1

∑m
l=1(1− fj)UkjUljbl

∑r
j=1(1− fj)U2

kj

)2

(16)

and the optimum can be found with O(mr) complexity.
The first comparison of the PRESS method and the GCV
method, presented by Iwama47, showed the superiority of
the GCV, because if the hat matrix

Âλ ≡ T(TTT+ λH)−1TT , (17)

is close to diagonal, the PRESS method is not able to
provide a reliable estimate due to a lack of redundancy in
the model. But this is not the case for SXR tomography,
where the assumption of smoothness and a large number
of overlapping LOSs guarantee sufficient redundancy.

C. GCV - Generalized cross-validation

The underlying principle in the generalized cross-
validation (GCV) is very similar to the PRESS method.
GCV was first introduced by Wahba53 and further de-
veloped by Golub54 for the ridge regression and used for
plasma tomography by Iwama28,55 later. The GCV score
is defined as

G(λ) ≡
‖(Im − Âλ)b‖

2
2

Tr(Im − Âλ)2
.

Using a decomposition (12) we obtain

G(λ) =
‖Tgλ − b‖22

(r −
∑r

i=1 fi)
2 (18)

and the residuum in the numerator is evaluated from
Eq. (15). The existence of a global and unique opti-
mum of the GCV curve is not guaranteed. Consequently,
we have observed on real measurements that the proper
minimum is not the global one, but, if it was present at
all, the local minimum with the highest regularization.

D. AICC - Corrected Akaike information criterion

An alternative way of selecting the optimal regulariza-
tion parameter is a negative entropy minimizing principle
called the corrected Akaike information criterion (AICC),
originally proposed by Hurvich in Ref. 48. AICC is a
modification of the well known AIC56 method corrected
for finite size samples. AICC is defined by the following
formula:

Ac(λ) = ‖Tgλ − b‖22 +m(ln(2π) + 1) +
2(p+ 1)m

m− p− 2

where p denotes the number of parameters. The effective
number of parameters of the Tikhonov regularization is
determined as57 p = Tr(Âλ) =

∑

fi. Because Ac(λ) is
not a homogeneous function of the residuum, the position
of the minimum will depend on the estimated absolute
level of the noise. This means that under real experimen-
tal conditions a systematic error may be introduced.

E. Effect of the nonlinear MFI iterations

Since the quality of the sQR and the sSVD method is
almost the same, all further reconstructions will be per-
formed only by the sSVD method. The convergence
and the final solution of the MFI depend also on the
choice of the regularization parameter in the intermedi-
ate steps. The decomposition {U(i),D(i),V(i)}, obtained
in each iteration by the sSVD or the sQR method, is bet-
ter adapted to describe the solution than the previous
one. This is illustrated by the reconstruction of a rather
peaked phantom (artificial profile) in Fig. 4, where the
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optimal GCV reconstruction is shown in the upper row
and the energy spectrum of the i-th iteration defined as
(U(i)b)2j is in the lower row. In the 0-th MFI iteration,
equivalent to the 1st order Tikhonov regularization, the
energy spectrum is broad, the signal is mixed with the
noise and separation of the dimensions dominated by the
random variability is possible only for i > 150. However,
in the first and the second iteration the spectrum is sig-
nificantly compressed, and the dimensions dominated by
the noise can now be clearly separated for i > 70.

The effects of the MFI iteration on different regular-
ization selection methods is summarized in Tab. I. The
first column contains the regularization level for each it-
eration described by qλ and the second column is the
relative deviation of the tomogram gλ from the known
phantom g:

δ = ‖gλ − g‖2/‖g‖2. (19)

Clearly, the optimal regularization level increases with
each iteration, while δ decreases for all methods. At the
same time, the optima for the GCV, PRESS, and AICC

methods becomes more pronounced and easier to distin-
guish due to the better signal/noise separation in the
energy spectrum (Fig. 4). The GCV and the PRESS
methods provide the best estimates of the regularization
level with the final relative deviation δ only higher than
the optimum by 1%. The discrepancy principle and the
AICC method have both selected slightly over-regularized
solutions.

Moreover, we have observed that using all of the meth-
ods described above in the intermediate iteration steps
leads to a significant increase in the failure rate of the
tomography on the experimental signals and the conver-
gence is slowed down. Therefore, we have set the reg-
ularization to a fixed value qλ = 75%, which is above
the typical regularization level in AUG and the optimal
regularization is selected only in the last iteration.

Table I. The performance of different regularization selecting
methods on the peaked radiation phantom shown in Fig. 4
during MFI iterations. Artificial noise of 5% was added to
the measurements. The value of the optimum regularization
was determined as the position of the minimum deviation
between reconstruction and the phantom. The regularization
level is described by qλ defined as a quantile of the set {D2

i }
being equal to λ.

0. step 1. step 2. step

Method qλ(%) δ(%) qλ(%) δ(%) qλ(%) δ(%)

optimum 4 (12) 15 (8) 37 (7)

GCV 13 13 37 10 56 8

PRESS 28 21 38 10 52 8

DP 22 18 54 14 76 12

AICC 12 22 56 14 71 11

Table II. Performance comparison of different regularization
methods on various artificial SXR profiles. The score was
measured as a relative deviation [%] with respect to the phan-
tom (Eq. (19)). The first line corresponds to the ideal choice
of regularization parameters that minimize the difference to
the phantom.

Gaussian Peaked Hollow Complex

Method δ (%)

optimum (1.3) (3.6) (4.6) (10.7)

GCV 1.4 5.9 5.2 11.2

PRESS 1.9 5.8 5.8 11.6

DP 1.3 6.7 8.9 12.8

AICC 1.3 6.9 7.5 12.7

F. Comparison of the regularization methods using
artificial data

A common way to assess the performance of a tomog-
raphy method is to reconstruct phantom profiles. We
have prepared a set of phantoms with increasing com-
plexity, changing from a simple Gaussian function to a
very peaked one, sharply hollow one and finally to a com-
plex hollow-peaked asymmetric profile as is shown in a
upper row of Fig. 5. The reconstructions were evaluated
with a resolution of 100×150 using the anisotropic MFI
regularization. The added noise level, based on real dis-
charge noise, was on average equal to 2% of the signals
in each LOS.
The performance of the methods are summarized in

Tab. II and a reconstruction using the GCV method is
shown in the lower row of Fig. 5. The differences be-
tween the various regularization methods, applying them
to all of the artificial profiles, were insignificant, because
each regularization was always close to the optimal value.
Therefore, in Fig. 5 only the reconstructions from GCV
are depicted. The difference between the phantoms and
the reconstructions are most obvious on the sharp edges
of the hollow and complex profile, which are smoothed
in the reconstruction due to a finite spatial resolution of
the diagnostic. Generally, DP and AICC provide slightly
over-smoothed solutions with a higher residuum. The di-
versity of the methods on the real measurements is sub-
stantially larger then on the presented phantoms as will
be shown in Sec. VID.

VI. RECONSTRUCTION UNCERTAINTY

A common question of experimentalists related to to-
mography is how to estimate the uncertainty of the re-
construction and the derived quantities. The answer is
complicated by the significant contribution of the regu-
larization bias. The contribution of the bias and variance
to the relative mean square error (MSE) of the phantom
profile is shown in Fig. 6. Obviously, the bias can repre-
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sent the majority of the MSE. In this section, the com-
ponents of the MSE will be examined and an analytical
formula for the covariance matrix of the solution will be
proposed. Additionally, we will describe a way to treat

the systematical errors.
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Figure 6. (top) The score of the GCV, PRESS, AICC and DP
are plotted as a function of the regularization level qλ. The
minima of these functions and the root for DP are indicated
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son by the phantom with the reconstruction is shown by the
black thick line. Two components of the MSE - the variance
and bias are then indicated by a red dashed and green dash-
dotted line, respectively. The vertical black line indicates the
position of the MSE minimum. (bottom) The second figure
shows the mean energy spectrum 〈(Uib)

2〉 of the measured
data averaged over time (black thick line) and spectrum of
noiseless data (black thin line). The GCV optimal filter fac-
tors fi = (1 + λ/D2

i )
−1 are plotted in red and blue dashed

indicates the unfolding amplification factor 1/Di.

A. Statistical and regularization error

The regularized solution of Eq.(7) yields the following
expression for the mean square error (MSE) in gλ:

〈

(gλ − g∗)
2
〉

k
=

r
∑

i=1

f2
i,λ

V2
ki

D2
i

+ (20)

+

(

m
∑

i=1

(1− fi,λ)
UT

i b
∗

Di
Vki +

((

In −VVT
)

g∗
)

k

)2

,

where 〈·〉 indicates averaging over the fluctuating part,
g∗ is the accurate, but unknown, radiation profile and
b∗ = Tg∗ is the accurate measurement, also unknown.
The first term on the right side describes the variance

caused by statistical uncertainty in the data. The error
distribution is assumed to have zero mean and a standard
deviation normalized to one. The term in the brackets
represents the bias of our solution. The left term is the
regularization error caused by suppressing small features
in the measurement b∗. Finally, the last term is a conse-
quence of the rank deficiency of the projection matrix T

and we will call it singularity error. Although the regu-
larization error and the singularity error cannot be esti-
mated without knowledge of the real radiation profile g∗

and the brightness b∗, we can perform a test on a class of
the expected radiation profiles to estimate the influence
of the bias on the reconstructed quantities. When only a
weak regularization is applied, all filtering factors fi will
be close to one and the statistical error will dominate the
overall error. On the other hand, if strong regularization
is used, most of the fi values vanish, and the error is
dominated by the regularization error. The singularity
error can be reduced only by including a priori knowl-
edge more consistent with the solution (like anisotropic
smoothing) and by better angular and spatial diagnostic
coverage of the projection space (cf. Fig. 2).
The resolution of our reconstruction was assumed to be

high enough to keep the pixel discretization error negli-
gible. Moreover, the systematic errors in the geometry
of the LOSs, their calibration, and other imperfection in
the model were not included, because they can be signif-
icantly reduced as will be shown in Sec. VIC. Finally,
the regularization parameter λ is subject to statistical
uncertainty as well. Nevertheless, close to the optimal
regularization level, i.e the value of λ minimizing MSE
(see Fig. 6), the total MSE is only weakly sensitive to
the perturbations in λ.
The statistical uncertainty in the reconstructed pro-

file can be assumed as a lower bound for the real un-
certainty. Based on the standard uncertainty propaga-
tion approach, the covariance matrix of the solution gλ

is given by

Σg
ij = 〈(gi − 〈gi〉)(gj − 〈gj〉)〉 =

r
∑

k=1

f2
k

VikVjk

D2
k

., (21)

where V and D are matrices introduced in the sSVD and
sQR methods. Our tests of the phantom reconstructions
indicate that the statistical variance is usually about half
of the total MSE. Fig. 7a shows a zoom-in of a reconstruc-
tion of an artificial profile. The variances Σg

ii associated
with each pixel i can be imaged as is demonstrated in
Fig. 7b. Further, Fig. 7c shows the correlation of a single
pixel indicated by the black cross with the neighboring
pixels determined from the corresponding row of the co-
variance matrix. The width and shape of the correlation
peak provide an estimate of the local spatial resolution.

B. Discretization error

The linear complexity of the decomposition methods
allows for the calculation of the reconstructions on a very
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Figure 7. a) The SXR emissivity in the plasma core recon-
structed from a phantom by the anisotropic MFI method
and GCV regularization. The white contours indicate the
normalized poloidal flux. b) The relative standard devia-

tion δi =
√

〈g2i − 〈gi〉2〉/〈gi〉 of the reconstruction is shown.
This is estimated from the diagonal of the covariance matrix√
Σii/gi. c) The correlation of the pixel j, indicated by the

black cross, to the surrounding pixels determined from the
i-th row of the covariance matrix Σji/Σjj . The same pixel j
is also marked in (a) and (b) of the figure.

fine grid. However, since only ∼200 measurements are
available, one could expect that increasing the resolu-
tion above some limit will lead only to smoother recon-
structions without increasing their accuracy. This limit
should depend on the size of the smallest features visible
to the diagnostics. In order to tackle this question, we
will examine the reconstruction error as function of the
grid size. First, the brightness of a phantom is evalu-
ated with a resolution of 200 × 300 pixels to minimize
the discretization error. Then a tomographic reconstruc-
tion was performed for various reduced resolutions after
adding 2% noise. Finally, the solution was interpolated
by a 2D spline to the original grid and compared with
the high resolution phantom.
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Figure 8. The dependence of the relative deviation δ
(Eq. (19)) versus the number of pixels n is presented. The
full symbols correspond to 2% noise added to the artificial
data while the open symbols are without noise.

The reconstruction errors for the four phantoms intro-
duced earlier are shown in Fig. 8. The simple Gaussian
profile can be well described already with n ∼ 1000 pixel.
But the reconstruction of sharp features in the other pro-
files requires a higher resolution, up to n ∼ 104 pixels.
The number of pixels necessary for the reconstruction
can be reduced by using a variable grid size and local
B-spline basis instead of pixels as was shown in Ref. 24
and 31.

C. Systematic errors

The unavoidable limitation of the experimentally
achievable accuracy is given by the systematical uncer-
tainties in the geometry and calibration of the SXR cam-
eras. Small deviations of the diode positions with re-
spect to the camera slit in combination with a short fo-
cal length have a strong influence on the LOS positions
and their etendue. The deviation of a diode position of
a mere 0.2mm leads to a roughly 2 cm shift of the LOS
in the plasma core and consequently up to 20% discrep-
ancies in the measured brightness in the regions of the
steep SXR radiation.
The position and calibration errors may be diagnosed

within the multi-camera SXR system10,11,58,59, because a
large number of viewing angles provide sufficient redun-
dancy of the measurements and the discrepancies can be
identified and corrected. In the following the corrections
applied in the present work are presented.

1. Relative cross-calibration of the sensitivity

The relative calibration of the SXR cameras at AUG
was evaluated for every discharge in an iterative manner.
First, the initial calibration factors were used to perform
a reconstruction of the whole discharge. Then, a sin-
gle correction factor for each camera was obtained in or-
der to minimize the deviation between measure data and
back-projected brightness. This procedure was repeated
until convergence, which was typically achieved in the
first step. Tests on the artificial profiles indicate that the
cross-calibration can provide estimates with an accuracy
well below 0.1%. The evolution of the cross-calibration
factors for five experimental campaigns is shown in Fig. 9.
The scatter for the core heads is rather low, about 1-
2% within a single campaign. Higher variations are ob-
served in J3 and K1 during the first examined campaign
probably caused by a deviation of the Be filters thick-
ness, which was retrospectively measured to be up to
20µm different from the designed thickness of 75µm.
The higher scatter found in the side heads (shown green
in Fig. 9) is caused by a low signal level, residual errors
in the positioning of these cameras and uncertainties in
the sensitivity and etendue of the off-axis LOSs. Neutron
degradation60 may also be present since the total fluence
over the AUG campaign is about 5 · 1016 neutrons/m2.
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However, no signatures of the neutron damage in the rel-
ative calibration were observed.
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Figure 9. Relative calibration factors for each of 12 regularly
used SXR camera heads evaluated for 758 discharges between
2011 and 2016; the blue points indicate factors for core heads,
while the green correspond to the side heads. Vertical lines
indicate vents of the chamber, replacing of the diodes arrays
or Be filters and an extension of the viewing angles for cameras
G, L and M.

2. Adjustments of the viewing geometry

The self-consistent calibration of the head positions
was obtained in a set of discharges with negligible cen-
trifugal asymmetries and significant variation in the
peaking of the radiation profile. The shape of the mag-
netic flux surfaces was verified by a comparison be-
tween the CLISTE code61 and the TRANSP equilibrium
solver62 constrained by the kinetic profiles. The devia-
tion in the position of the flux-surfaces in the selected
discharges was smaller than 5mm. The optimal posi-
tion correction was identified by a gradient descent al-
gorithm iteratively modifying the poloidal tilt for each
of the 13 heads, to minimize the residuum between the
measured brightness and the back-projection. New cross-
calibration factors matching the actual geometry had to
be estimated in every step. The regularization level was
fixed to reduce the number of the nested optimization
loops and increase the stability. Additionally, since no
poloidal asymmetries were expected in the selected dis-
charges, the solution was kept constant on the flux sur-
faces by the projection matrixP introduced in the section
III B. In the end, the optimal tilt was estimated as a me-
dian over the set of tested discharges. The variation in

the tilt corrections was about 0°3′ for the core heads and
0°12′ for the side heads. The estimated tilts corrections
from campaign 2015 are specified in the following table:

Camera F G H1 H2 H3 I2

Tilt [°] -0.26 -0.99 -0.68 -0.46 0.10 -0.82

Camera J1 J2 J3 K1 K2 L M

Tilt [°] -1.43 -1.28 1.12 -1.59 -0.32 1.67 1.23

No significant changes in these correction factors were
observed during the campaign of 2015. However, manip-
ulation of the cameras during the maintenance events of
tokamak chamber has often resulted in small position de-
viations. The proper cross-calibration and self-consistent
positioning of the camera heads has reduced the recon-
struction residua by an order of magnitude. Further,
the suppression of the systematic errors has significantly
enhanced the stability and reliability of all regulariza-
tion selection methods when used on the experimental
measurements. Finally, the measurement accuracy of the
small stationary poloidal asymmetries in the SXR radia-
tion was also significantly improved.

D. Robustness of the regularization methods for real
datasets

The crucial criterion for the choice of the optimal reg-
ularization method is their reliability and robustness for
the real measurements. All regularization methods have
shown an excellent performance on the artificial profiles;
the failure rate was zero, and the estimated regulariza-
tion had never been far from the optimal value minimiz-
ing MSE. However, the real data present additional chal-
lenges. We have performed a test on 100 randomly chosen
discharges representing together 130 000 time-points. In
contrast to the phantom based tests the original emissiv-
ity, called also ground truth, is unknown. Therefore, our
investigation aims to identify the number of clearly over-
or under-regularized tomograms, where the regulariza-
tion method has failed to identify a meaningful solution.
The comparison between the regularization methods is
presented in Tab. III. The most robust is the PRESS
method, working in 99.85% of the analyzed time-points.
Since the GCV regularization is less conservative, the
regularization level is usually lower and suffers from a
higher number of under-regularized time-points. Most
of the failures occurred in time-points with a low sig-
nal to noise ratio (SNR), while a performance similar to
the PRESS method was observed in the hotter plasmas
with a better SNR, which are usually considered for the
SXR tomographic reconstructions. Finally, the DC and
AICC methods provides a comparable level of regulariza-
tion that is even higher than the estimate from PRESS.
The advantage of AICC is higher stability and lower pre-
disposition for extreme values of the regularization pa-
rameter than DC. Nevertheless, both these methods are
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still limited by considerable uncertainty in the estimation
of the real level of the noise in the signal.

Table III. The results of the stability test performed with var-
ious regularization methods on 130 000 frames corresponding
to 100 real plasma discharges. The first two columns contain
the fraction of over- and under-regularized frames and the last
column is the average difference of the regularization level qλ
with respect to the PRESS method.

Method over-fitted over-smoothed 〈∆qλ〉
GCV 6% 0.1% -15%

PRESS 0.1% 0.05% —%

DC 3% 19% 13%

AICC 0.4% 10% 13%

VII. POLOIDAL ASYMMETRIES OF THE SXR
RADIATION

The purpose of this section is not to provide an ex-
tensive overview of all poloidal asymmetries observed at
AUG or introduce new physics; the aim is to demonstrate
the capabilities of the new tomographic procedures intro-
duced at ASDEX Upgrade. Recent studies of the poloidal
asymmetries accomplished at the Alcator C-Mod toka-
mak (see Refs. 63 and 64) motivated an increased interest
in the measurements of the impurity distribution on the
flux surfaces. Well understood physics and sufficiently
accurate measurements could provide valuable informa-
tion about the fast particle distribution, plasma composi-
tion and the plasma position because all these quantities
have a strong impact on the observed asymmetry. The
stationary poloidal asymmetry can be characterized by
the first angular Fourier components of the stationary
emissivity on the magnetic flux surface

g(ρ, θ) = a0(ρ) (1 + ac(ρ) cos(θ) + as(ρ) sin(θ) + . . .) ,

where ρ and θ represent the radial coordinate and the
geometrical poloidal angle, ac will be referred to as in-

out and as as up-down asymmetry. In-out asymmetries
in the poloidal distribution of high-Z impurities are com-
monly produced by the centrifugal force65, and in special
cases also by fast particles with a highly anisotropic dis-
tribution function63. The neoclassical friction force64 is
expected to be responsible for the up-down asymmetry.
The capabilities of the developed tomographic proce-

dure will be demonstrated for plasma discharge #30812
at 4.40 and 4.65 s. These two cases were selected for the
analysis because of a significant variation in the poloidal
asymmetry caused by the centrifugal force in the first
timepoint and by the trapped minority ions produced by
the ion cyclotron resonance heating (ICRH) in the sec-
ond case. Additionally, both cases were selected shortly
before a sawtooth crash when the peaking of the kinetic
profiles and of the W density are maximal.

At 4.40s, the deuterium plasma was heated by 2.5MW
of neutral beam injection (NBI) and the core ion tem-
perature reached Ti = 4.5 keV, the core electron temper-
ature was Te = 2.5 keV, the electron density was low at
3 ·1019 m−3 and the deuterium Mach number (defined as

MD =
√

mDv2φ/(2kBTi)) in the plasma core was equal

to ∼0.33. At 4.65s, an additional 4.3MW of ICRH power
was applied (ICRH started at 4.60s), introduced with an
outboard side resonance. The ion and electron temper-
ature increased to Ti = 6.0 keV and Te = 4.1 keV, while
the electron density stayed rather low at 4 · 1019 m−3.
The Mach number was equal to 0.21 in the core, causing
a non-negligible centrifugal force. The estimated hydro-
gen minority concentration was roughly 5% and the ef-
fective ionic charge, Zeff , was approximately 2.0. Since
the measured W concentration was of the order of 10−3,
more than 90% of the core SXR radiation was emitted
by tungsten ions.

Figure 10. Depicted quantities are the measured bright-
nesses from the discharge #30812@4.40 s (horizontal crosses
with error bars indicating estimated uncertainty), back-
projections values from the tomographic reconstruction (di-
agonal crosses), cut through projection space in Fig. 2 av-
eraged over the width of VOS (smooth black line), removed
points (red dots) and crosses close to the zero line are residua
between measurements and back-projections. The positive
values of the normalized poloidal flux ρθ correspond to the
outboard side of the plasma.

For t = 4.40s, the measured SXR brightnesses from
all SXR LOSs are shown in Fig. 10. For the reconstruc-
tion, all available cameras were used except H2, which
had with a broken biasing connector, and I1, I3, which
had different Be filter thickness. The smooth black line
with diagonal crosses indicates the back projected bright-
ness from the tomographic reconstruction. Already the
shape of the raw data suggests a complex profile with a
significant outboard asymmetry. The corresponding to-
mographic reconstruction using sSVD method combined
with GCV, evaluated at a resolution of 100×150 points
is shown in Fig. 11a. The chosen pixel size of 13×13mm2
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is safely below the scale of any features resolvable by the
AUG SXR diagnostic. Figure 11b shows a cut through
the horizontal midplane of this profile, indicating an evi-
dent increase of the outboard SXR emissivity (blue) com-
pared to the inboard emissivity (red). Finally, in Fig. 11c
we have evaluated the centrifugal force (CF) radiation
asymmetry (red) as expected from W radiation and low-
Z ions bremsstrahlung. The model results are compared
with the experimental observation (black).
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Figure 11. a) The tomographic reconstruction of SXR radi-
ation profile from discharge #30812 at 4.40 s evaluated at a
resolution of 100×150 pixels with residuum χ2/m = 0.6 and
regularization level qλ = 55% estimated by GCV is presented.
b) The emissivity profile at the mid-plane is a cut through
the tomogram (a), where the full blue line represents the out-
board profile and the red dashed line the inboard profile. The
scattered points indicate the presence of higher harmonics. c)
Experimental asymmetry profile shown by the full black line
with the gray confidence region is compared to the calculated
CF asymmetry in red.

The confidence interval of the experimental asymmetry
profile was estimated from the covariance matrix (Eq. 21)
of the reconstruction and the assumption of 5mm uncer-
tainty in the plasma position. The magnetic equilibrium
was obtained by the equilibrium solver in the TRANSP
code constrained by the pressure profile. Both profiles
of the asymmetry match reasonably well. The only sig-
nificant deviation occurs at ρθ = 0.25 corresponding to
the valley between the central peak and the outer ring,
which is probably caused by the finite radial resolution
of the tomography.

The SXR profile before the next sawtooth crash at
4.65 s is very different. Figure 12 shows the experimental
data and an elevated level of inboard radiation in cam-
eras F, G, H, L and M is already visible in the measured
brightness profiles. The tomographic reconstruction is
presented in Fig. 13a. The reconstruction of the emis-
sivity distribution shows an inboard accumulation of W
highlighted by a hollow radiation profile. Fig. 13b rep-
resents a mid-plane cut through the described emissivity

profile. In this figure an additional outboard asymme-
try in the outer regions of the plasma is visible. Finally,
in Fig. 13c the experimentally obtained asymmetry is
compared to the CF asymmetry, which describes the out-
board region well. A clear deviation is present around the
resonance position of the ICRH, caused by the trapped
minority ions. However, a detailed analysis and compar-
ison with ICRH models goes beyond the scope of this
work and will be addressed in future publications.
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Figure 12. The SXR brightness obtained in discharge #30812
at 4.65 s during the ICRH phase. Labelling and color scheme
used in these plots is the same as in Fig. 10.
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Figure 13. a) The reconstruction of the SXR radiation
profile from discharge #30812 at 4.65 s with the residuum
χ2/m = 2.4 and the regularization level qλ = 49% determined
by GCV is shown. The vertical dashed line indicates the po-
sition of the ICRH resonance. b) A midplane cut through the
SXR emissivity profile shows a significant inboard accumula-
tion of W in the core and outboard asymmetry in the outer
regions. c) The asymmetry profile obtained from the tomo-
graphic reconstruction (black) is compared to the expected
centrifugal asymmetry.
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VIII. CONCLUSIONS

We have described the modern multi-head SXR system
of the ASDEX Upgrade tokamak (AUG). This diagnostic
provides excellent coverage of the plasma with 208 lines
of sight from 7 different viewing positions. In order to
take advantage of this diagnostic also for the measure-
ment of the stationary poloidal asymmetries in the SXR
radiation, improvements in the precision of the measure-
ment and the reconstruction algorithm were necessary.
We have shown that small deviations, e.g. in geometry,

radiation filters thickness and amplification factors of the
SXR diagnostic, represent a common limitation of the to-
mography reconstruction accuracy. Due to the high SXR
radiation intensity from tungsten at AUG, the statistical
variance is often negligible compared to these systemati-
cal errors. We have presented a self-consistent calibration
process involving a variation of the diagnostic geometry
and a cross-calibration reducing residua between the data
and the model by an order of magnitude. Also, the appar-
ent reconstruction artifacts were suppressed, the spatial
resolution was enhanced, and the stability of the regular-
ization selecting methods was improved.
To access the full potential of this diagnostic, a new

reconstruction algorithm was developed that performs a
fast tomographic reconstruction with an excellent recon-
struction quality. The inversion method was based
on the generalized Tikhonov regularization minimizing
the data fidelity and anisotropic Minimum Fisher in-
formation (MFI). First, multiple methods for the solu-
tion of this optimization problem were compared. The
fastest reconstructions were obtained by the improved
sparse QR method, followed closely by the sparse sin-
gular value decomposition (sSVD) method. Both algo-
rithms have linear complexity in the number of pixels
of the reconstruction, but the advantage of the sSVD
method is the less complicated algorithm, more suitable
for further development. The direct inversion, sparse
generalized eigenvalues method, and generalized singular
value method were substantially slower.
A critical issue of the Tikhonov regularization is the

selection of the best regularization parameter. We have
compared four methods – PRESS, AICC, GCV, and DP,
that are the most suitable for our problem. At first,
the performance of these methods was investigated us-
ing artificial profiles where all methods provided an ex-
cellent estimate of the regularization parameter. How-
ever, tests on real data revealed significant differences.
The most stable and reliable was the method based on
the minimization of the predicted residual error sum of
squares (PRESS). The stability of the generalized cross-
validation (GCV) is comparable to that of PRESS only
for discharges with high signal to noise ratio (SNR). Oc-
casionally the GCV minimum was not present, which
led to significant over-fitting of the low SNR discharges.
The unsatisfying performance of the discrepancy princi-
ple and the method based on the Akaike information cri-
terion was probably caused by deviations in the estimate

of the absolute uncertainty level in the real data. Addi-
tionally, we have proposed an analytical formula for the
mean square error and the covariance matrix of the re-
construction. The covariance was used to determine the
local statistical variance of the reconstruction and also to
estimate the local spatial resolution of the tomography.

Finally, the performance of the AUG tomography was
demonstrated on the reconstruction of two time slices
of a discharge showing large poloidal asymmetries. In
the first case, a low-density plasma heated by a neutral
beam exhibits a significant centrifugal asymmetry that
corresponds well to the value calculated from the par-
allel force balance. In the second case, the application
of ion cyclotron heating on the outboard midplane led
to a change in the asymmetry. Close to the resonance
position a significant increase of the inboard SXR ra-
diation occurred. The asymmetry, overcoming the still
present centrifugal force, was caused by the trapped fast
minority particles with a highly anisotropic temperature
distribution. Since there are not many alternative diag-
nostics measuring highly energetic minority particles at
the place of their origin, accurate measurements and a
solid understanding of the physics of poloidal asymme-
tries can improve our knowledge about the fast ions.
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