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Abstract—In mobile wireless networks, dynamic allocation of
resources such as transmit powers, bit-rates, and antenna beams
based on the channel state information of mobile users is known
to be the general strategy to explore the time-varying nature
of the mobile environment. This paper looks at the problem of
optimal resource allocation in wireless networks from different
information-theoretic points of view and under the assumption
that the channel state is completely known at the transmitter and
the receiver. In particular, the fading multiple-access channel
(MAC) and the fading broadcast channel (BC) with additive
Gaussian noise and multiple transmit and receive antennas are
focused. The fading MAC is considered first and a complete char-
acterization of its capacity region and power region are provided
under various power and rate constraints. The derived results can
be considered as nontrivial extensions of the work done by Tse
and Hanly from the case of single transmit and receive antenna
to the more general scenario with multiple transmit and receive
antennas. Efficient numerical algorithms are proposed, which
demonstrate the usefulness of the convex optimization techniques
in characterizing the capacity and power regions. Analogous
results are also obtained for the fading BC thanks to the duality
theory between the Gaussian MAC and the Gaussian BC.

Index Terms—Broadcast channel (BC), capacity region,
convex optimization, delay constraint, fading, Gaussian noise,
multiple-access channel (MAC), multiple antennas, mul-
tiple-input–multiple-output (MIMO), power region.

I. INTRODUCTION

I NCREASING demand for higher data rates in mobile wire-
less systems with limited resources has motivated a great

deal of valuable scholarly work to assess the information-theo-
retic limits of the channels that model the mobile environment.
These channel models are often referred to as multiuser fading
channels. This paper inscribes itself into this framework and its
main goal is the derivation of the information-theoretic optimal
resource allocations in the fading Gaussian multiple-access
channel (MAC) and the fading Gaussian broadcast channel
(BC). These derivations are under the assumption that the
channel state information (CSI) is completely known at both
the transmitter and the receiver. This paper considers the
case where the base station and possibly each of the mobile
users are equipped with multiple antennas—the so-called
multiple-input–multiple-output (MIMO) channel—and demon-
strates how convex optimization techniques can be utilized
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to characterize the information-theoretic limits of the fading
Gaussian MIMO-MAC and MIMO-BC.

For single-user transmission systems, the information-theo-
retic limit of the fading channel is measured by the channel ca-
pacity which to date, has been well studied and is thoroughly
known (see [1] and references therein). As an example, con-
sider a block-fading additive white Gaussian noise (BF-AWGN)
channel that is assumed to be constant during transmission of
each code-block. This channel can be viewed as a collection of
parallel deterministic AWGN channels each corresponding to
a block transmission under a specific channel state. With full
availability of CSI, the capacity of the BF channel can be found
through optimal rate and power allocations into parallel AWGN
channels based on their individual channel states.

Allocation of power and rate in fading channels is usually
performed under some constraints imposed by practical con-
siderations. For instance, the power allocation often needs to
satisfy a long-term power constraint (LTPC) during the whole
phase of transmission. In addition, some regulations intended
for interference reduction may impose a short-term power
constraint (STPC) that needs to be satisfied during transmission
of each block [1]. There are also several well-adopted rate
constraints which are applicable to different kinds of data
traffic and are used to define various notions of the channel
capacity. More specifically, when the transmission delay is not
an issue and the data traffic admits variable-rate transmissions,
the transmitter will be able to adjust the data rate of each block
according to the channel state and attain the channel ergodic
capacity. This notion of capacity measures the maximum
long-term rate averaged over all the channel states. On the other
hand, some data traffics like voice transmission and real-time
video streaming may have strict delay constraints. One inter-
esting notion of capacity for this scenario is the delay-limited
capacity [2], defined as the maximum constant-rate that can be
transmitted reliably over any possible channel state. The power
and rate allocation schemes achieving the aforementioned
capacities in a BF-AWGN channel are known (see [3]–[5]) as
the variations of the well-known water-filling algorithm [6].

For multiuser transmission systems like the fading MAC and
the fading BC, the information-theoretic limits can be charac-
terized by the capacity region, that is defined as the convex-hull
of the union of all achievable rates for the users given their in-
dividual power constraints. The same types of power and rate
constraints considered in the single-user case are also appli-
cable to the power and rate of each user, therefore, each of the
capacity definitions in the single-user case can be generalized
to define the corresponding capacity region in multiuser sys-
tems. Another interesting concept to characterize the informa-
tion-theoretic limits of a multiuser system is its power region.
The power region consists of all power-tuples with each, a given
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rate-tuple is achievable. Similar to capacity region, various no-
tions of power region can be defined under different types of
rate constraints.

The fading MAC can be considered as a collection of parallel
deterministic MACs, each characterized by a joint channel
state for all the mobile users. For the case of single transmit
and receive antenna—also called single-input–single-output
(SISO)—channel, the ergodic capacity region has been studied
in [7] and completely established in [8] using the polymatroid
structure of the capacity region for a deterministic MAC. Also,
in [9], the delay-limited capacity region has been characterized
for the fading Gaussian SISO-MAC, based on the contra-poly-
matroid structure [8] of the power region of a deterministic
Gaussian SISO-MAC. Moreover, the case of transmission with
nonzero outage probability has been considered in [10] for the
fading Gaussian SISO-MAC.

The increasing importance of multiple transmit and receive
antennas in wireless systems has been accompanied by a rapid
pace of research on the information-theoretic characterization
of the fading Gaussian MIMO-MAC (see [11] and references
therein). Unlike the case of fading Gaussian SISO-MAC, in
the MIMO case, except for the maximum sum-rate points
considered in [12], generally, there is no closed-form analytic
solution to the optimal power and rate allocation problem.
Therefore, numerical optimization routines are usually needed
to achieve this end. There is another important difference
associated with the MIMO case as compared with the SISO
case: although the polymatroid structure of the capacity region
is still applicable to the MIMO case, the contra-polymatroid
structure of the SISO-MAC power region is nonexistent. As a
result, characterization of the power region for the Gaussian
MIMO-MAC remains not yet fully understood.

For the fading Gaussian SISO-BC, characterization of the
ergodic capacity region and the delay-limited capacity region
have been done in [13]–[15] and [16], respectively. The infor-
mation-theoretic characterization of a Gaussian MIMO-BC has
been a research challenge for awhile due to its “nondegraded”
nature [6]. However, recently, a successful progress has been
made which proves that the “dirty paper coding” (DPC) rate
region is indeed the capacity region (see [17] and references
therein). It is worth remarking here that the above result com-
bined with the duality theory between Gaussian MAC and BC
[18]–[20] has one important implication: the information-theo-
retic characterization for a MIMO-BC now becomes a relatively
easier task because it can be solved in its dual MIMO-MAC. For
instance, determination of the minimum sum-power required
to support a given rate-tuple for the Gaussian MIMO-BC has
been attempted by several authors (see [21]–[24]). However,
equipped with the duality theory, the solution to this problem
can be easily attained if the characterization of the associated
power region is available for the dual MIMO-MAC.

The remainder of this paper is organized as follows.
Section II describes the channel model and defines the capacity
and power regions. Section III studies the fading Gaussian
MIMO-MAC and characterizes its power and capacity regions
by formulating and solving a sequence of weighted sum-power
minimization and weighted sum-rate maximization problems
in Sections III-A and B, respectively. The admission problem
for determining whether a rate-tuple in demand is achievable
given a set of power constraints is considered and its solution

is provided in Section III-C. It is also shown in Section III-C
that the solution to the admission problem provides another ef-
fective means to characterize the power region and the capacity
region via the power-profile vectors and the rate-profile vectors,
respectively. Section IV proceeds to study the fading Gaussian
MIMO-BC and extends the solutions to problems considered
in the MAC case to analogous problems in the BC scenario
by using the duality theory. Section V presents numerical
examples which are used to demonstrate the usefulness of the
proposed algorithms in solving practical problems and finally,
a brief summary is given in Section VI.

Notation: This paper uses upper case boldface letters to de-
note matrices and lower case boldface letters to indicate vectors.
For a square matrix , , and are its determinant,
its inverse matrix and its trace, respectively. For any general ma-
trix , denotes its conjugate transpose. and indicate the
identity matrix and the matrix with all zero elements, respec-
tively. denotes statistical expectation. is the space of

matrices with complex number entries. denotes the
-dimensional real Euclidean space and is the non-nega-

tive orthant. The distribution of a Gaussian vector with the mean
vector and the covariance matrix is denoted by ,
and means “distributed as.” The sign denotes the general-
ized inequality [25] and for a square matrix , means

is positive semidefinite. is the indicator function which
takes the value of one if the event is true, and zero otherwise.

II. SYSTEM MODEL

We first consider a fading MAC with the base station
equipped with receive antennas and mobile users with

transmit antennas, respectively. Transmission from
each mobile user to the base station is assumed to be syn-
chronously on a time-block basis and the BF channel model
is assumed for each individual user, i.e., the channel remains
constant during each block transmission and possibly changes
from one block to another. Also, we assume the space of fading
states is discrete and finite and the fading process is stationary
and ergodic. Thus, at each state , the fading MAC can be
considered as a discrete-time channel represented by

... (1)

where denotes the received signal vector.
and denote, respectively, the transmitted

signal vector and the channel matrix of user , .
denotes the additive Gaussian noise at the re-

ceiver and it is assumed that . Furthermore,
is the index of channel fading state, which is

assumed to be finite.
With full availability of instantaneous CSI, the transmission

scheme can be adapted to the channel states. In this case, trans-
mitters can dynamically allocate their available powers among
different fading states to fully exploit the fading nature of the
channel. Let the covariance matrix of the transmitted signal of
user in state be , where the expec-
tation is taken over the code-book. Let be a random variable
taking the values of fading states, and have
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the same probability distribution as the stationary probability
distribution of fading states . Under the long-term power
constraints (LTPC) considered in this paper, any codebook for
user must satisfy

where is the vector of average-power
constraints for all the users. Given a fixed set of transmit covari-
ance matrices for and ,
it was shown in [26] that all the rate-tuples in the set described
below are achievable

where the expectation is taken over the distribution of . Fur-
thermore, with availability of CSI at the transmitters, the ergodic
capacity region was shown in [8] to be

Tr

Although the proof given in [8] is for the case of SISO-MAC, it
can be easily extended to the MIMO case with finite number
of states. As an alternative characterization, we can also de-
fine the power region for the fading MAC under different rate
constraints. For the average-rate constraints considered in this
paper, the power region is defined as

(2)

where denotes the vector of av-
erage-rate constraints. Fig. 1(a) illustrates the ergodic capacity
region of a fading MAC. As is shown in the figure, this re-
gion is obtain by taking the union over all constituting sets

. Fig. 1(b) shows the power region of
a fading MAC for a given set of rate constraints.

To characterize the capacity and power regions, we exploit the
fact that for a given set of transmit covariance matrices
for all users over all states, the set can
be represented in terms of capacity regions of various deter-
ministic MACs, each corresponding to a fading state. Recall
that for a deterministic Gaussian MAC with fixed channel
matrices and given transmit covariance matrices ,

, all achievable rate-tuples, belong to the fol-
lowing polyhedron [6]:

(3)

Fig. 1. (a) Ergodic capacity region of a general fading MAC or fading
BC. (b) Power region of a fading MAC for a given set of rate constraints.
(c) Characterization of the capacity region by weighted sum-rate maximiza-
tion and rate profile. (d) Characterization of the power region by weighted
sum-power minimization and power profile.

Using the polymatroid structure of the sets and , in
[8] it was shown that given any rate-tuple

, for each , there exists a
rate-tuple such that

Alternatively, given any set of rate-tuples,
for , be-

longs to . Thus, for any rate-tuple
in the ergodic capacity region, the rate of

user , , can be expressed as , for some set of
feasible transmit covariance matrices and rate-tuples

for . In other
words, is the average of some achievable rates for user

over all states. This observation enables us to express the
ergodic capacity region of a fading MIMO-MAC alternatively
as

(4)

Next, we consider the fading BC where the base station sends
independent information to each of the mobile users. Without
loss of generality, we consider a fading BC that is the dual
channel [20] of the fading MAC in (1) and can be modeled as

...
...

... (5)

where denotes the transmitted signal vector
from the base station. ,
and denote, respectively, the received
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signal vector, the channel matrix and the receiver AWGN
associated with user , where . Let
the covariance matrix of the transmitted signal during the
fading state be and the average
transmit power constraint of the base station be , i.e.,

. By the new capacity results in [17]
combined with duality of [19], for a deterministic Gaussian BC
with channel matrices and a total transmit power , all
achievable rate-tuples belong to a convex set
specified as below

Tr

(6)
Using this result, the ergodic capacity region for the fading BC
in (5) can be expressed by

(7)

Since the BC has only one power constraint for the base station,
characterization of its power region is equivalent to determina-
tion of the minimum power, , above which the average-rate
constraints are satisfied, i.e.,

(8)

III. FADING GAUSSIAN MIMO-MAC

In this section, the capacity and power regions for the fading
Gaussian MIMO-MAC are studied. Each region is characterized
by solving a series of convex optimization problems for which,
we provide efficient numerical algorithms.

A. Weighted Sum-Power Minimization

In this section, we characterize the boundary points of the
power region for the fading Gaussian MAC defined in (2) under
average-rate constraints. This is done via solving a sequence of
weighted sum-power minimization problems explained next.
Since the power region is a convex set, each boundary point
can be characterized by minimizing a weighted sum of the
powers for some weights given by the power-price vector,

. This is shown in Fig. 1(d) for a
two-user case and formulated in the following.

Problem 3.1:

(9)

(10)

(11)

In this problem, inequalities in (9) specify the average-rate con-
straints. Problem 3.1 is a convex optimization problem. The cost
function is linear and the constraints in (9) are affine inequal-
ities. Let denote the region specified by the remaining con-
straints (10) and (11). The set contains all admissible transmit
covariance matrices , and all achievable rates , for
user over all fading states . From
concavity of the function, it is easy to verify that the set

is also a convex set. Therefore, standard convex optimization
techniques can be employed to solve this problem.

In the following, we present an efficient algorithm to
achieve this end. For simplicity purposes, assume uniform
state distribution, for all . The Lagrangian
[25] of Problem 3.1 with the vector of dual variables

associated with the inequality
constraints in (9) is defined over domain as

(12)

Then, the Lagrange dual function defined as

(13)

serves as a lower bound on the optimal value of Problem 3.1 de-
noted by , i.e., . However, for a convex
problem where the Slater’s condition1 holds, the duality gap
is zero [25]. Note that by using large enough powers, the sets

can be made arbitrary large to contain
rate-tuple as an interior point. Thus, the Slater’s condition holds
and the duality gap is zero for the problem in hand. In other
words, , where is a maximizer
of the dual function and is not necessarily unique.

The above equality suggests that the optimal solution to
Problem 3.1 can be found by first minimizing the Lagrangian to
obtain the Lagrange dual function , and then maximizing

over all possible values of . Let and
be an optimal solution set for Problem 3.1 and be a dual op-
timal solution (a dual function maximizer). Since the problem
is convex and the duality gap is zero, Karush–Kuhn–Tacker
(KKT) optimality conditions state that any primal optimal
solution set minimizes and satisfies
inequality constraints given in (9) simultaneously [25]. Hence,
to solve this problem by exploiting the dual function, we ini-
tially need an efficient optimization algorithm to optimize the
dual function and find a . This dual optimal solution
may not be unique, however, any dual optimal solution satisfies
KKT conditions and suffices for our purpose. Then, we need
to find a set of and in that minimizes the
Lagrangian at and satisfies the average rate constraints.
By KKT conditions, this set will be an optimal solution set of
Problem 3.1.

1Slater’s condition requires the feasible set to have nonempty interior.
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1) Optimizing the Dual Function: As the first step, we need
to optimize . Since is a concave function of , standard
convex optimization techniques can be applied to achieve this
end. In general, the dual function may not be differentiable or
analytical expressions for its differentials may not exist. Hence,
optimization algorithms that exploit the function’s differentials,
such as Newton method, cannot be employed. An appropriate
choice here is the ellipsoid method [25] that is capable of han-
dling nondifferentiable convex functions. A detailed description
of this method can be found in Appendix I. As is explained in
the appendix, this method is an iterative algorithm and on each
iteration, it requires the dual function value and a subgradient
at the corresponding value of . To compute the dual
function, Lagrangian should be minimized. It is interesting to
observe that the Lagrangian in (12) can be rearranged as

(14)

This expression implies that the minimization of can be
decomposed into independent optimization problems—also
known as dual-decomposition method [27]—each given by

(15)

for . Here, denotes the subset of relevant to
a specific state defined by

This decomposition reduces the complexity of finding the dual
function by breaking the main problem into independent and
smaller size problems. By comparing (13)–(15), the Lagrange
dual function can be rewritten as

(16)

Each optimization problem introduced in (15) can be cast as the
following general problem:

(17)

(18)

(19)

To simplify the problem further, the following definition and
lemma borrowed from [8] are utilized to remove the constraint
in (18).

Definition 3.1: For a fixed set of transmit covariance matrices
and any permutation over , the rate-tuple

defined as

is a Vertex of the polymatroid in .
As can be seen from the definition, for a deterministic MAC

with channel matrices , is achievable by successive
decoding scheme with decoding order determined by the per-
mutation . The message of user is decoded first and the
message for user is decoded last [6].

Lemma 3.1: For any , the solution to the optimization
problem

is attained by a vertex , where is such that
.

Proof: Please refer to [8] and references therein.
Results of this lemma simplifies the optimization problem in

(17) to an optimization problem with twice continuously differ-
entiable cost function and only positive semidefinite constraints
given below

where is a permutation such that
. Since this problem is concave with twice dif-

ferentiable objective function, we can solve it numerically by
Interior-Point method to find the dual function at a given [25].
To complete the ellipsoid method requirements and find a sub-
gradient at this point, we rely on the following lemma.

Lemma 3.2: If and minimize the
Lagrangian over at , i.e., ,
then the vector defined as for

is a subgradient of at .
Proof: Since and are already in , for

any , we have

Note that any optimal solution of (13) corresponds to a sub-
gradient of the dual function and can be used in the ellipsoid
method.
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All the steps in the proposed method to optimize the dual
function are summarized in the following algorithm.

Algorithm 3.1:
• Given an ellipsoid , centered at and con-

taining the optimal dual solution ,2

• Set .
• Repeat

1) Solve the optimization problems defined in (15)
independently for each to obtain an optimal so-
lution set and that minimizes

over .
2) Update the ellipsoid based on and the sub-

gradient . Set as
the center of ellipsoid (see Appendix I).

3) Set .
• Until the stopping criteria for the ellipsoid method is met.
2) Finding the Primal Optimal Solution: So far, we

have proposed an algorithm to obtain an optimal dual so-
lution . Having in hand, it just remains to find a
primal optimal solution, , that minimizes

and also satisfies average-rate con-
straints given in (9). This problem seems like the same as
finding the dual function at , however, the optimal solution
obtained from the Interior-Point method may not satisfy the
inequalities in (9). The reason is, in the Interior-Point method,
depending on the order of elements of , we always choose
the same vertices of polymatroids as
the optimal rates on every state . Thus, their average will also
generate the same vertex of the polymatroid that corresponds
to the minimum weighted sum-power. However, the target rate

may not be a vertex of this polymatroid. See Fig. 2 for an
example of this situation. In the following, we address how to
modify the optimal solutions of (13) to satisfy the average-rate
constraints.

First, consider the case where all s are different and posi-
tive. Recall that can be viewed as the local sensitivity of the
optimal value of Problem 3.1 to perturbations made to the av-
erage-rate constraint of user . In a MAC, generally increasing
the target average rate of user , , requires more transmit
power to support. Therefore, we can assume s are positive
without loss of generality. For this situation, the following
lemma guarantees that the optimal rates, of problem
(15) for each state are unique and from the KKT conditions
they automatically satisfy the average rate constraints in (9).
This situation corresponds to the case where the target rate
lies on a vertex of the polymatroid that
has the minimum weighted sum-power.

Lemma 3.3: If for and for
all , then and , the optimal rates and the
optimal polymatroid solution of problem (17) are unique.

The proof of this lemma is given in Appendix II. Next, as-
sume some of the s are equal. As is shown in Fig. 2, this sit-
uation corresponds to the case where the target rate lies on
a surface (not necessarily a vertex) of the minimum weighted
sum-power polymatroid . In this case, , the optimal
rates of problem (17) for state are not necessarily unique and

2For a way to find this starting ellipsoid, see Appendix I.

Fig. 2. Achievable rates for a two-user MAC with N = 1, r = 4, and t =

t = 1. This region is plotted for p + p � 1 and each point on its boundary
requires at least unit transmit sum-power to be achieved. Dashed lines show
how two vertices of constructing polymatroids C sweep the region as power
allocation varies. As indicated, the target rate shown by � is not a vertex of any
C .

some might not satisfy the average-rate constraints in (9). How-
ever, the following lemma proves that under some conditions,
for each , the optimal polymatroid of
problem (17) is unique.

Lemma 3.4: Let be disjoint
subsets such that for each , and for all

, s be equal. Then, for the single transmit and mul-
tiple receive antennas (SIMO) case and for the MIMO case with

, the optimal polymatroid solution of problem
(17), , is unique.3

The proof of this lemma is given in Appendix III. As a corol-
lary of this lemma, the minimum weighted sum-power polyma-
troid of Problem 3.1, , is also unique.
Note that for problem (17) on state , there are ver-
tices of that are optimal. These vertices
are obtained by choosing different decoding orders on users of
each set . Furthermore, any optimal rate-tuple, , in-
cluding the one that satisfies the average-rate constraints lies on
the convex-hull of these vertices and for , satisfies
the following equalities:

Hence, the target rate-tuple must also lie on the corre-
sponding boundary portion of . This
portion is the convex-hull of vertices that are
obtained by averaging over the corresponding vertices in s.
Also, the target rate-tuple satisfies

3We believe that this lemma is true for a general MIMO-MAC, however, our
proof is not easily extendable to the case where t > r .
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for . Thus, once are found by solving
optimization problem (17) for every , the aforementioned ver-
tices of can be characterized. Since
lies on the convex-hull of these vertices, it can be expressed as a
convex combination of them with weights that can be obtained
by solving a system of linear equations.

In practice with finite arithmetic precision, the approximate
optimal dual solution obtained from the ellipsoid method may
not have equal components even if some of the s are equal. In
this case, sufficiently small threshold values may be employed
to detect the equal s and sets s. Also, least squares solution
may be used (instead of system of linear equations) to find the
approximate optimal rates.

To complete this section, we briefly discuss some important
aspects of Algorithm 3.1.

Delay Constraint: Problem 3.1 considers average-rate
constraints for each user over all fading states, and hence is ap-
plicable if transmission delay is not an issue. On the other hand,
for applications that may impose a strict delay requirement for
transmission, one useful measure of the information-theoretic
limit is the outage capacity [4]. This notion of capacity is
defined as the maximum constant-rate that can be reliably
transmitted given a prescribed outage probability. Outage
transmission for fading Gaussian SISO-MAC and the special
case of zero outage probability—or the so-called delay-limited
capacity—have been studied in [9] and [10],4 respectively.
Here, we show that Algorithm 3.1 can be easily modified to
characterize the power region of the fading MIMO-MAC with
delay-limited rate constraints. Let denote the individual
outage probability of user associated with the delay-limited
rate constraint, , for . The boundary points
of the associated power region can be attained by solving the
following problem.

Problem 3.2:

For the special case of for ,
Algorithm 3.1 can be employed to solve the above problem.
This is done by considering Problem 3.1 with and
applying it to each state of Problem 3.2. The case of nonzero
outage probability can be solved by combining the technique
developed in [10, Sec. D] and Algorithm 3.1 and the details are
omitted here.

Decoding Orders: For the case where s are all different,
on each state , the optimal rate-tuple, , is a vertex
of that is achievable by successive
decoding scheme. From Lemma 3.1, the optimal decoding
order among the users for state is determined by the order
of the optimal dual variables s. Since is identical to
all states, the decoding orders are the same for all . This

4Two notions of outage are defined in [10] including the common outage when
all the users declare the outage simultaneously and the individual outage when
each user declares the outage independently. In this paper, we adopt the notion
of individual outage, though, similar development can be done for the case of
common outage.

fact has an important implication on coding: users can use
either the “multiple-codebook variable-rate” [3] scheme or
the “single-codebook constant-rate” [28] scheme5 to attain the
same rate-tuple over the states. When some of the s
are equal, as was mentioned earlier, the target rate-tuple lies on
the convex-hull of some vertices each achievable by successive
decoding scheme and can be obtained by timesharing among
the codes achieving these vertices.

Complexity: Tse and Hanly [8, Sec. V] have considered
Problem 3.1 for the SISO case and proposed an iterative al-
gorithm [8, Alg. 4.2] for solving it. The algorithm in [8] that
optimizes the dual function can be modified to work for our
problem as well. However, Algorithm 3.1 introduced here has
significantly less amount of computational complexity com-
pared with the algorithm in [8], thanks to the ellipsoid method.
Ellipsoid method converges in iterations, where is
the number of variables. Hence, Algorithm 3.1 requires
dual function computations or equivalently runs of
optimization problem (17) to compute . As can be seen,
the complexity of the proposed algorithm is linear in since
complexity of problem (17) is independent of .

Auxiliary Power Constraints: From practical considerations,
there may be an auxiliary transmit power constraint , imposed
on transmission of user on each state, i.e., for

. Note that the set of auxiliary power constraints
are applied separately to each fading state. Therefore, if they are
added to Problem 3.1, Algorithm 3.1 only needs a modification
made to the function in (15) by including the associated
auxiliary power constraints for state . However, this modifi-
cation can be easily handled by the Interior-Point method. The
only caveat here is the feasibility of Problem 3.1 after addition
of these auxiliary power constraints.

B. Weighted Sum-Rate Maximization

In this section, we are interested in characterizing the
boundary points of the ergodic capacity region for the fading
Gaussian MAC defined in (4). Since this region is convex, each
boundary point can be found by maximizing a weighted sum
of the rates for some rate-rewards
as illustrated in Fig. 1(c). This problem can be mathematically
formulated as the following optimization problem.

Problem 3.3:

(20)

where inequalities in (20) specify the average-power con-
straints. All admissible values of and are also
contained in the domain , as specified in (10) and (11). Sim-
ilar to the power minimization problem, this problem is also a
convex optimization problem. Furthermore, it can be solved by

5Since the decoding order is the same for all states, the codeword of each
user is able to span over all N states when successive decoding is used at the
receiver.
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an algorithm similar to Algorithm 3.1, with the set of dual vari-
ables associated with the average-rate constraints in (9) being
replaced by , each corresponding to
one of the power constraints in (20). Thus, the detailed descrip-
tions of the algorithm for solving Problem 3.3 are omitted here
except that is a subgradient
of the dual function at .

C. Admission Problem

In preceding two sections, we have characterized the
power region and the capacity region for the fading Gaussian
MIMO-MAC through weighted sum-power minimization and
weighted sum-rate maximization problems, respectively. In
many practical situations, a more relevant question may be to
determine whether a given set of individual rate demands is
supportable for some given set of power constraints for the
users. This is usually referred to as the admission problem [9]
and it is equivalent to testify whether a chosen rate-tuple is
within the capacity region associated with a given set of power
constraints. For convenience, we assume again uniform state
distribution, for all . We first formulate the
above admission problem as the following feasibility problem.

Problem 3.4:

(21)

(22)

where and denote the average-rate demand and the av-
erage-power constraint for user , respectively, and all admis-
sible values of and belong to the set as specified
before. The admission problem can be answered based on the
solution set of Problem 3.4, if it is nonempty then the set of rate
demands is supportable otherwise it is not. Clearly, the feasible
set of Problem 3.4 is convex and in the following we will provide
an efficient algorithm to determine whether this set is empty or
not.

Similar to Section III-A, we introduce the vector of dual vari-
ables corresponding to average-
rate constraints in (21) and , corre-
sponding to average-power constraints in (22). We then express
the Lagrangian of Problem 3.4 as

and the Lagrange dual function as

(23)

The following lemma enables us to determine whether
Problem 3.4 is feasible by making use of its Lagrange dual
function.

Lemma 3.5: Problem 3.4 is infeasible if and only if there exit
such that .

Proof: First, we prove the only if statement. Let
and be a feasible solution set, then for any

or equivalently, . Therefore, if there exist
such that , then Problem 3.4 is infeasible

and are one certificate of infeasibility. To prove the if state-
ment, consider the power region of this MAC associated with
the given average-rates in . For a given , let
be the optimal transmit covariance matrices that minimize the
weighted sum-power, , and
support the rate-tuple . In solving Problem 3.1, we showed
that the primal-dual duality gap is zero. Therefore, for the given

, there exists such that

However, if the problem is infeasible, the power vector does
not lie in the power region corresponding to target average rates

, hence for some ,
. Equivalently, there exit such that

.
Similar as in (16), can be written in terms of

independent dual functions on each state and each of them
can be found by solving optimization problem (17). Note
that for any , . Therefore, if the
problem is infeasible, is unbounded from above and
if it is feasible . Furthermore,
in this case, are also optimal for any . This
observation is very useful in choosing the starting ellipsoid in
the following algorithm that is proposed to solve Problem 3.4.
Let .

Algorithm 3.2:
• Given an ellipsoid , centered at ,
• Set .
• Repeat

1) By solving (17) for each , calculate the dual func-
tion at . Let and minimize the
Lagrangian.

2) If , the problem is infeasible, exit the loop;
else, go to the next step.

3) Update the ellipsoid based on , and the sub-
gradient ,

. Set as the center
for .

4) Set .
• Until the stopping criteria for the ellipsoid method is met.
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If after running this algorithm, , the problem is infea-
sible, otherwise, it is feasible. Recall that the starting ellipsoid
can be chosen as an arbitrary small ellipsoid covering in
vicinity of the origin.

Having an efficient algorithm to solve Problem 3.4 enables us
to study further the two following interesting problems.

1) Characterization of the Power Region Based on the
Power-Profile: Suppose the rate demand vector , is in the
capacity region of a given set of power constraints . It is
usually desirable to find the power and rate allocation such that
the consumed average-power of each user to transmit at its rate
is proportional to its power constraint, i.e., a proportionally fair
[9] power allocation among users. The above problem can be
formulated as follows.

Problem 3.5:

(24)

(25)

(26)

where is the power-profile vector
chosen as .

Problem 3.5 can be solved by using the Algorithm 3.2
together with a bisection search over , as is explained in the
following algorithm. Note that is an error tolerance on the
optimal .

Algorithm 3.3:
• Initialize , ;
• Repeat

1) .
2) Run Algorithm 3.2 with as the average-power

constraints for . If the problem is fea-
sible, , otherwise .

• Until .
Note that this algorithm can be also used to characterize each
boundary point of the power region corresponding to a given
power-profile vector . Fig. 1(d) illustrates the characterization
of the power region through power-profile vectors as compared
with the characterization of this region through weighted sum-
power minimization of Section III-A.

2) Characterization of the Capacity Region Based on the
Rate-Profile: Similar to using the power-profile vector to char-
acterize the power region of the fading MAC, we can also use
the rate-profile vector to characterize the capacity region. Let

be the rate-profile vector. Then, each
boundary point of the capacity region can be found by solving
the following problem for some given rate-profile .

Problem 3.6:

(27)

(28)

(29)

By using an algorithm similar to Algorithm 3.3 with a bisection
search on , Problem 3.6 can be solved and the optimal solution
characterizes a boundary point of the ergodic capacity region
associated with the given rate-profile vector . This is depicted
in Fig. 1(c).

IV. FADING GAUSSIAN MIMO-BC

In this section, we consider the fading BC defined in (5) and
characterize the ergodic capacity region defined in (7) and the
minimum average-power under the average-rate constraints de-
fined in (8). Equipped with the duality theory [19], [20] between
the Gaussian MAC and BC restated in (6), the information-the-
oretic characterization of the fading BC becomes a relatively
easier task given all the results we have developed for the fading
MAC in Section III. In the following paragraphs, we briefly go
over the various problems considered for the fading MAC and
address the modifications needed to make the developed algo-
rithms work as well for the fading BC.

In Section III-A, we considered the weighted sum-power
minimization problem for the fading MAC under long-term
rate constraints. Based on duality, by setting the power prices,

, for in Problem 3.1, the optimal solution
will correspond to the minimum average-power for the fading
BC defined in (8). Analogous results on the delay constraint,
the encoding orders and the auxiliary power constraints can
also be obtained for the fading BC.

In Section III-B, we considered the weighted sum-rate
maximization problem for the fading MAC to characterize
the ergodic capacity region. By replacing the individual
average-power constraints in (20) by a sum-power constraint,

, Problem 3.3 can be used
to characterize the ergodic capacity region of the fading BC
defined in (7).

In Section III-C, we formulated the admission problem for the
fading MAC in Problem 3.4. By replacing the individual power
constraints in (22) with the average sum-power constraint for
the base station, Problem 3.4 can also be used for the fading
BC. Similar modifications can be done in Problem 3.6 to make
it work for characterizing the capacity region of the fading BC
with any given rate-profile vector.

V. POWER REGION COMPARISON WITH AND WITHOUT DELAY

CONSTRAINT IN FADING MIMO-MAC

In this section, we provide a numerical example to demon-
strate the usefulness of the proposed algorithms in character-
izing the information-theoretic limits of mobile wireless sys-
tems. We focus on a fading Gaussian MAC with a base station
equipped with receive antennas and two mobile users
with transmit antennas. It is assumed that the
number of channel states with equal probability and
the channel matrix, , associated with user and state , is
independently drawn from population of matrices with indepen-
dent zero-mean and unit-variance circularly symmetric complex
Gaussian (CSCG) elements. We are interested in comparing the
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Fig. 3. Power region comparison for a two-user fading MIMO-MAC with t =

t = 2 and r = 4 and under average-rate and delay-limited rate constraints.
User 1 and user 2 have a rate of 2 and 2.5 nats/complex dimension, respectively.

power region of the two-user MAC with and without transmis-
sion delay constraint. For both cases, user 1 and user 2 have
transmission rates of 2 and 2.5 nats per complex dimension, re-
spectively. These transmission rates need to be achieved in av-
erage over all fading states for the case without delay constraint,
while for the case with delay constraint, they need to be main-
tained for each fading state with probability one. Problem 3.1
and Problem 3.2 (with zero outage probability for all users)
are solved for the case without and with delay constraint, re-
spectively. The main goal of this example is to quantify the ul-
timate power saving attained by fully exploring the multiuser
channel dynamics under a complete relaxation of transmission
delay for both users. Fig. 3 shows the resultant power regions
for these two cases. It is observed that relaxing the delay con-
straint only reduces the weighted sum of powers by about 7%
on average. This observation may have an interesting conse-
quence: when multiple antennas are used, the rich diversity in
each user’s channel may render the dynamic resource allocation
less appealing in the energy/delay tradeoff as compared with
the case of single transmit and receive antenna. It is noted that
similar observations have been drawn in [29] and referred to as
the so-called channel-hardening effect for single-user MIMO
transmissions.

VI. SUMMARY

In this paper, optimal resource allocation problem is studied
for the fading MAC and the fading BC from two major informa-
tion-theoretic points of view. Especially, it is assumed that CSI
is completely known at both transmitter and receiver that are
equipped with multiple antennas. As the more general case, ca-
pacity and power region of a fading MAC under various power
and rate constraints are explored. Efficient optimization algo-
rithms are proposed to solve the convex optimization problems
characterizing these regions. By using the duality theory be-
tween the Gaussian MAC and BC, analogous results for the
fading BC are obtained.

APPENDIX I
DESCRIPTION OF ELLIPSOID METHOD

Ellipsoid method is an efficient optimization scheme when-
ever the cost and constraint functions are not continuously dif-
ferentiable or analytical expressions for their differentials do not
exist. Assume is a convex function defined over and
has finite minimum. Also, assume the minimum is attained. To
illustrate how ellipsoid method works, consider the following
unconstrained optimization problem:

For simplicity purposes, constraint functions are not consid-
ered here, however, they can be included in the algorithm easily.
The main idea in the ellipsoid method is to localize , the op-
timal solution, in a sequence of ellipsoids with vanishing
volumes. Thus, the centers of these ellipsoids , converge to

[27].
This algorithm is an iterative algorithm starting from an ini-

tial ellipsoid that contains . At each iteration ,
is chosen as the center of ellipsoid and a subgradient of

at , , is determined. Since is a subgradient,
for any , hence,

must be in the half-ellipsoid

For the next iteration, is set as the minimum volume
ellipsoid covering . Suppose

is the matrix describing as

and have the following simple formulas given
and . Define , then

It can be shown that volumes of these ellipsoids decrease expo-
nentially, , furthermore, the
algorithm converges in iterations. As a stopping criteria,

can be used.
Next, we will show how to choose in Algorithm 3.1

to contain . For any given , let
be chosen such that

(30)

One way to find , is to assume a fixed de-
coding order on users. Starting from the user decoded last, allo-
cate power for that user among different states in a water-filling
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fashion to support its assigned rate, while considering interfer-
ence from users with higher decoding orders as noise. Hence,
power allocation is done sequentially from the user decoded last
to the one decoded first. From the definition of the dual function,
we have

Also, , lies in the interval given below

Similar bounds can be found for all and can be chosen to
cover the resulting hypercube in .

APPENDIX II
PROOF OF LEMMA 3.3

Without loss of generality, assume . Let
and be two optimal solutions of problem (17).

Since s are all different, from Lemma 3.1, for any set of op-
timal , , 2, the unique vertex given below max-
imizes the cost function in (17)

Thus, the optimal value of (17), , is given by

Since the problem is convex, is also an
optimal solution for any and and achieves

. Consequently

However, is a concave function and
for all , therefore, the following equalities must hold for all

:

It is not hard to show that if for a given ,
for all ,

then . Note that is a twice continuously differen-
tiable function and for

Since , on the
(0,1) interval. Therefore, the positive semidefinite matrix

, has zero trace, and hence it must be zero.
Equivalently, , which results in

. Hence, for
that yield

Therefore, the optimal polymatroid is unique
and if we assume all s are full column rank matrices, the
optimal set of will be unique.

APPENDIX III
PROOF OF LEMMA 3.4

Let be an optimal solution to the optimization problem
in (17). Following the same steps as in the proof of Lemma 3.3,
for any other optimal solution , it can be shown that for

, and for
,

(31)

Let be one of these subsets. Note that each linear matrix
equality in (31) can be viewed as a set of linear equations in
terms of variables that are elements of for .
Hence, if this set has a unique solution, for will be
unique. Since in a MIMO system, users practically have inde-
pendent channels, if , then this set will corre-
spond to a set of independent linear equations that has more
equations than unknowns, . Hence, it will have

a unique solution and for . Unfortunately, for
the case of , this simple argument does not work,
and we need more sophisticated uniqueness proof. From (31),
we can conclude that for should be an optimal solu-
tion to the following optimization problem:

Uniqueness of for in (17) is equivalent to uniqueness
of the solution to the optimization problem given above. This
problem is a Semi-Definite Program (SDP) that under certain
conditions has a unique solution. These conditions if satisfied,
guarantee the uniqueness of the optimal solution to problem
(17). Characterizing all these conditions in general lies above
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the scope of this paper. However, for the case of SIMO, this
SDP reduces to a linear program (LP) that under very general
conditions has a unique optimal solution. Therefore, in the fol-
lowing, we provide a uniqueness proof for the SIMO case and
for the MIMO case, we content ourselves only with the proof
that was given for .

Assume and let and
denote the transmit power and the channel matrix

of user for this SIMO case. Redefine as an optimal
solution of (17) that has maximum number of nonzero elements
in . Let for every and for

. Without loss of generality, we can restrict our attention
to users in because any other optimal solution must be zero for

. Consider the following LP:

This LP is feasible ( is a feasible solution) and bounded,
therefore its dual LP is also feasible and bounded with zero du-
ality gap and the primal and dual optimal solutions satisfy the
KKT optimality conditions given below

(32)

(33)

(34)

where the complex Hermitian matrix is the dual variable as-
sociated with the equality constraint and are dual vari-
ables associated with non-negativity constraints. is a solu-
tion to these optimality conditions. Equalities in (34) suggest
that all s must be zero for this set of powers. Equalities in (32)
introduce linear equations in terms of degrees of freedom
(variables), . However, this set of linear equations has a so-
lution for arbitrary if the number of equations is less than or
equal to degrees of freedom, i.e., . Assume these equa-
tions are linearly dependent, then there exists for
such that

Hence, from (32), we should have . How-
ever, this is a very rare situation in practice since s are given
weights and are independently chosen from channel matrices
and problem data. Therefore, these equations are linearly inde-
pendent and equality in (33) has only one solution,
for all . Thus, the optimal solution is unique. The same
argument can be used for other subsets .
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