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Optimized Unequal Error Protection Using
Multiplexed Hierarchical Modulation

Seok-Ho Chang, Member, IEEE, Minjoong Rim, Pamela C. Cosman, Fellow, IEEE, and
Laurence B. Milstein, Fellow, IEEE

Abstract—With progressive image or scalable video encoders,
as more bits are received, the source can be reconstructed with
progressively better quality. These progressive codes have gradual
differences of importance in their bitstreams, which necessitates
multiple levels of unequal error protection (UEP). One practical
method of achieving UEP is based on a constellation of nonuni-
formly spaced signal points, or hierarchical constellations. How-
ever, hierarchical modulation can achieve only a limited number
of UEP levels for a given constellation size. Though hierarchical
modulation has been intensively studied for digital broadcasting or
multimedia transmission, most work has considered only two lay-
ered source coding, and methods of achieving a large number of
UEP levels for progressive transmission have rarely been studied.
In this paper, we propose a multilevel UEP system using multi-
plexed hierarchical quadrature amplitude modulation (QAM). We
show that multiple levels of UEP are achieved by the proposed
multiplexing method. When the BER is dominated by the min-
imum Euclidian distance, we derive an optimal multiplexing ap-
proach which minimizes both the average and peak powers. We
next propose an asymmetric hierarchical QAM which reduces the
peak-to-average power ratio (PAPR) of the proposed UEP system
without any performance loss. Numerical results show that the per-
formance of progressive transmission over Rayleigh fading chan-
nels is significantly enhanced by the proposed methods.

Index Terms—Cross-layer, hierarchical modulation, multimedia
communications, progressive image, scalable video, unequal error
protection, wireless video.

I. INTRODUCTION

W
HEN a communication system transmits messages over

mobile radio channels, they are subject to errors, in part

because mobile channels typically exhibit time-variant channel-

quality fluctuations. For two-way communication links, these

effects can be mitigated using adaptive methods [1]–[3]. How-

ever, the adaptive schemes require a reliable feedback link from
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the receiver to the transmitter. Moreover, for a one-way broad-

cast system, those schemes are not appropriate because of the

nature of broadcasting. When adaptive schemes cannot be used,

the way to ensure communications is to classify the data into

multiple classes with unequal error protection (UEP). The most

important class should be recovered by the receiver even under

poor receiving conditions. Hence, strong error protection is used

for the important data all of the time, even though sometimes

there is no need for it. Less important data is always protected

less even though sometimes it cannot be recovered successfully.

Theoretical investigation of efficient communication from a

single source to multiple receivers established the fundamental

idea that optimal broadcast transmission could be achieved by

a superposition or hierarchical transmission scheme [4]–[6].

Since the theoretical and conceptual basis for UEP was ini-

tiated by Cover [4], much of the work has shown that one

practical method of achieving UEP is based on a constellation

of nonuniformly spaced signal points [7]–[10], which is called

a hierarchical, embedded, or multi-resolution constellation.

In this constellation, more important bits in a symbol have

larger minimum Euclidian distance than less important bits.

Hierarchical constellations were previously considered in

[11], and intensively studied for digital broadcasting systems

[7], [9], [10]. Ramchandran et al. [7] designed an overall

multi-resolution digital HDTV broadcast system using hierar-

chical modulation under a joint source-channel coding (JSCC)

framework. Calderbank and Seshadri [9] considered the use of

hierarchical quadrature amplitude modulation (QAM) as the

adaptive constellations for digital video broadcasting. More-

over, the Digital Video Broadcasting (DVB-T) standard [12],

which is now commercially available, incorporated hierarchical

QAM for layered video data transmission, since it provides

enhanced system-level capacity and coverage in a wireless en-

vironment [13], [14]. Pursley and Shea [15], [16] also proposed

communication systems based on hierarchical modulation

which support multimedia transmission by simultaneously

delivering different types of traffic, each with its own required

quality of service.

Another well known and obvious method to achieve UEP

is based on channel coding: more powerful error-correction

coding is applied to a more important data class. Block codes

for providing UEP were studied by Masnick and Wolf [17],

and Suda and Miki [18]. The use of rate-compatible punctured

convolutional (RCPC) codes to achieve UEP was suggested by

Cox et al. [19]. These UEP methods based on error-correction

coding have been widely used for layered video or image

transmission [20]–[23]. Sometimes, UEP approaches based

on hierarchical modulation and error-correction coding were

0018-9448/$26.00 © 2012 IEEE
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Fig. 1. Hierarchical 16 QAM constellation.

jointly employed in a system [8], [9], [12], [15], [23]. For

example, in the DVB-T standard [12], two different layers of

video data are channel encoded with corresponding coding

rates, and then they are mapped to hierarchical 16 or 64

QAM constellation. Pei and Modestino [23] showed that when

error-correction coding approach for UEP and hierarchical

modulation are jointly used, more efficient and flexible UEP

is achieved. Hierarchical modulation has other desirable prop-

erties in addition to performance considerations. The amount

of UEP can be adjusted in a continuous manner by modifying

the spacing between signal points of the constellation [8], and

different levels of protection are achieved without an increase

in bandwidth compared to channel coding [24].

Progressive image or scalable video encoders [25]–[30],

which are expected to have more prominence in the future,

employ a mode of transmission such that as more bits are

received, the source can be reconstructed with better quality at

the receiver. In other words, the decoder can use each additional

received bit to improve the quality of the previously recon-

structed images. Since these progressive transmissions have

gradual differences of importance in their bitstreams, multiple

levels of error protection are required. However, unlike channel

coding for UEP, hierarchical modulation can achieve only a

limited number of UEP levels for a given constellation size.

For example, hierarchical 16 QAM provides two levels of UEP,

and hierarchical 64 QAM yields at most three levels [31]. In

the DVB-T standard, video data encoded by MPEG-2 consists

of two different layers, and thus the use of hierarchical 16 or

64 QAM meets the required number of UEP levels. However,

if scalable video is to be incorporated in a digital video broad-

casting system, hierarchical 16 or 64 QAM may not meet the

system needs. Most of the work about hierarchical modulation

up to now has been restricted to consideration of two layered

source coding, and methods of achieving a large number of

levels of UEP for progressive mode of transmission have rarely

been studied.

In this paper, we propose a multilevel UEP system using mul-

tiplexed hierarchical modulation for progressive transmission

over mobile radio channels. We propose a way of multiplexing

hierarchical QAM constellations, and show that arbitrarily large

number of UEP levels are achieved by the proposed method.

These results are presented in Section II. When the BER is

dominated by the minimum Euclidian distance, we derive an

optimal multiplexing approach which minimizes both the av-

erage and peak powers, which is presented in Section III. While

the suggested methods achieve multilevel UEP, the PAPR typi-

cally will be increased when constellations having distinct min-

imum distances are time-multiplexed. To mitigate this effect,

an asymmetric hierarchical QAM constellation, which reduces

the PAPR without performance loss, is designed in Section IV.

In Section V, we consider the case where multiplexed constel-

lations need to have constant power, either due to the limited

capability of a power amplifier, or for the ease of cochannel in-

terference control. In Section VI, the performance of the sug-

gested UEP system for the transmission of progressive images

is analyzed in terms of the expected distortion, and Section VII

presents numerical results of performance analysis.

II. MULTILEVEL UEP BASED ON MULTIPLEXING

HIERARCHICAL QAM CONSTELLATIONS

A. Hierarchical 16 QAM Constellation

First, we analyze hierarchical 16 QAM as a special case.
Fig. 1 shows a hierarchical 16 QAM constellation with Gray
coded bit mapping [12]. The 16 signal points are divided into
four clusters and each cluster consists of four signal points.
The two most significant bits (MSBs), and , determine one
of the four clusters, and their minimum Euclidian distance is

. The two least significant bits (LSBs), and , determine
which of the four signal points within the cluster is chosen,
and their minimum Euclidian distance is . The distance ratio

determines how much more the MSBs
are protected against errors than are the LSBs. Hierarchical 16
QAM has one embedded QPSK subconstellation consisting of
four clusters, and thus is denoted by 4/16 QAM.

We consider multiplexing hierarchical 16 QAM constella-
tions, all of which have distinct minimum distances. The av-
erage power per symbol of all the multiplexed constellations

is given by

(1)

where is the average power per symbol of constellation .
For hierarchical 16 QAM, is given by

(2)
where and are minimum distances for the MSBs and
LSBs of constellation , respectively. The BERs of the MSBs
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Fig. 2. Multilevel UEP system using multiplexed hierarchical 16 QAM constellations. (a) The system based on Corollary 2: dashed lines. (b) The system based
on Corollary 9: dotted lines (note that solid lines are for both Corollaries 2 and 9).

and LSBs of hierarchical 16 QAM constellation , denoted by
and , respectively, are given by [31]

(3)

where is given by (1) and (2), is the signal-to-noise ratio

(SNR) per symbol, and .
The following theorem states that levels of UEP can be

achieved by multiplexing hierarchical 16 QAM constella-
tions.

Theorem 1: For hierarchical 16 QAM constellations,
and , given by (3), satisfy

(4)
for all SNR if

(5)

Proof: We will first show that, for

(6)

Since is a monotonically decreasing function, from (3),
we have

(7)

If , from (3) and (7), we have

(8)

We next show that, for and
,

(9)

Consider two constellations and among hierarchical
constellations ( ). From (3), we have

if and .
Lastly, we show that for and

,

(10)
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Fig. 3. Hierarchical 64 QAM constellation.

We define a function as

(11)

is a monotonically decreasing function of and
, since

(12)

From (3) and (11), it is seen that

. Hence, from (12),

we have

if and
(13)

Finally, (4) and (5) are derived from (6), (9) and (10).

Theorem 1 tells us that levels of UEP are achieved by
multiplexing hierarchical 16 QAM constellations having the
minimum distances satisfying (5).

Corollary 2: Suppose that there are unequally important
data classes to be transmitted, and class is more important than
class for . Let denote the BER of data
class . Then,

(14)

is satisfied for all SNR if the following conditions hold:
i) Class and class are mapped to the MSBs and LSBs

of constellation , respectively, .
ii) The minimum Euclidian distances of the constellations

satisfy (5).

Proof: If i) is satisfied, is given by

and (15)

If ii) is satisfied, we have
from Theorem 1.

Fig. 2(a) depicts the multilevel UEP system using multiplexed
hierarchical 16 QAM constellations based on Corollary 2 for
eight data classes ( ).

B. Hierarchical QAM Constellation

Next, we consider multiplexing hierarchical
QAM constellations. As an example, Fig. 3 depicts a hierar-
chical 64 QAM constellation ( ). The two MSBs and

determine the quadrant of the first cluster, and their minimum
Euclidian distance is . The second two MSBs and de-
termine the quadrant within the first cluster, and their minimum
distance is . Lastly, the third two MSBs (or LSBs) and
determine the symbol within the second cluster, and their min-
imum distance is . Hierarchical 64 QAM has two embedded
subconstellations, and thus is denoted by 4/16/64 QAM. The hi-
erarchical 64 QAM operates as QPSK when channel conditions
are poor, and it operates as 16 or 64 QAM when channel quality
gets better. The BER of hierarchical QAM, , is given
by a recursive expression in [31].

In the following lemma, the BERs of hierarchical QAM
are derived under some assumption based on the fact that for hi-
erarchical constellations, minimum distance for more important
bits is greater than that for less important bits.

Lemma 3: Let denote the minimum distance for the
th MSBs . Note that the distance ratio of

the hierarchical constellation, , is greater than unity
( ). If the SNR of interest for the th MSBs is suf-
ficiently large so that the probability of the noise exceeding the
Euclidian distance of is insignificant compared

to that of the noise exceeding , the BER of the th MSBs
( ), , becomes

(16)

where denotes the largest integer less than or equal to ,

and is the average power of
a hierarchical QAM, where the are constants. Note that
for the MSBs (i.e., ), the top line of (16) is the exact BER
expression when is set to unity (i.e., ).

Proof: See Appendix A.

is numerically evaluated for hierarchical 64 and 256
QAM in Appendix B as an example. For both constellations,

is shown to be close to the exact BER
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within 0.001 dB for even at the lower bound of the
distance ratio (i.e., ). Note that for reference,
the distance ratio of hierarchial 16 and 64 QAM in the DVB-T
standard [12] is 2 or 4.

For multiplexed hierarchical QAM constellations, the
average power per symbol of constellation is given by

(17)

where is the minimum distance for the th
MSBs of constellation , and the are constants.
When the condition of Lemma 3 is satisfied, from (1), (16), and
(17), the BER of the th MSBs ( ) of a hierarchical

QAM constellation , , becomes

for

(18)

Note that the top line of (18) is the exact BER expression when
is set to unity (i.e., ).

Theorem 4: For hierarchical QAM constellations,
, given by (18), satisfy

(19)

if

(20)

Proof: We will first show that, for

if

(21)

From (18), can be expressed as shown
in (22), shown at the bottom of the page. Equation (22) can be
rewritten as (23), shown at the bottom of the page. From (23),
since and are integers for , we
have

(24)
From (23), for , we have

(25)
From (24) and (25), (23) can be rewritten as shown in (26) at the
bottom of the next page. Setting ,

, given by (26), can be expressed as (27), shown at the
bottom of the next page. From (18),
can be rewritten as (28), shown at the bottom of the next page.
From (27) and (28), for , we have

if

(29)

From (18), is given by

(30)

(22)

(23)
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From (18) and (30), we have

(31)

From (29) and (31), (21) is derived.
We next show that

if

(32)

We define a function as

(33)

The is a monotonically decreasing func-
tion of , due to (34), shown

at the bottom of the page, for (i.e., for
). From (18) and (33), it is seen that for

(35)

From (34) and (35), for , we have

(36)

From (18), for , we have

if and

(37)

(26)

(27)

(28)

(34)
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From (36) and (37), the following is derived:

(38)

With , (38) leads to (32). Finally, from (21)
and (32), (19) and (20) are derived.

Theorem 4 tells us that, by multiplexing hierarchical
QAM constellations having the minimum dis-

tances satisfying (20), levels of UEP are achieved under
the assumption that the SNR of interest for the th MSBs
( ) is reasonably large so that the condition of
Lemma 3 is satisfied. We note that there are counter examples
showing that levels of UEP is not achieved for a very low
SNR, even when the minimum distances satisfy (20).

III. OPTIMAL MULTIPLEXING OF HIERARCHICAL

QAM CONSTELLATIONS FOR HIGH SNR

In this section, we define high SNR as an SNR which is suf-
ficiently large so that the BER is dominated by the -function
term having the minimum Euclidian distance.

A. Hierarchical QAM Constellation

Hierarchical QAM refers to a specific kind of hier-
archical constellations which provide two levels of UEP. Typ-
ical examples are hierarchical 4/16 QAM (i.e., hierarchical 16
QAM) and 4/64 QAM which are employed in DVB-T standard.
Similar to Section II, we first analyze a hierarchical 16 QAM as
a simple example. For high SNR, from (3), the BERs of a hier-
archical 16 QAM constellation are given by

and

(39)

Theorem 5: Suppose that there are multiplexed hierar-
chical 16 QAM constellations, and the minimum distances satis-
fying (5) are given. Also suppose the given minimum distances
can be permuted such that for the MSBs can
be arbitrarily combined with for the LSBs. After
the distances are permuted, the resultant minimum distances for
the MSBs and LSBs of constellation , denoted by and ,
respectively, can be expressed as

and (40)

where is the index of the constellation to which is
permuted. Then, with the permuted distances given by (40), the
BERs of the data classes satisfy

(41)

for high SNR if class and class are mapped to the MSBs
of constellation and the LSBs of constellation , respec-
tively .

Proof: After distances are permuted, from (39), (40) and
the mapping condition below (41), the BERs of data classes are
given by

and

(42)
for . Since from (5), and from
(42), we have . Since and

from (5), and from (42), we have

and (43)

Since , and from (43), it follows that
.

In contrast with Theorem 1 and Corollary 2, Theorem 5 tells
us that levels of UEP are achieved for high SNR even after
the minimum distances satisfying (5) are arbitrarily permuted.

Corollary 6: From Theorem 5, when the minimum dis-
tances and are permuted for
high SNR, the BERs of the data classes, , are
unchanged.

Proof: From (42), it is seen that is not
dependent on the choice of .

Theorem 7: After the distances are permuted as described in
Theorem 5, the average power of all the multiplexed hierarchical
16 QAM constellations, , given by

(44)
is minimized if and only if distances are permuted such that
is combined with in the same constellation. That is

and (45)

Proof: We will prove the following by induction on the
number of hierarchical constellations: For given distances

and

(46)

is the minimum of .

Consider two constellations (i.e., ). For given
and , the distances can be permuted such that
is combined with either or . The two possible

values of are given by

(47)

The difference between and is given by

(48)



CHANG et al.: OPTIMIZED UNEQUAL ERROR PROTECTION 5823

because and . From (48), it is seen
that is the minimum. For , given by (46) is equal
to .

Suppose that (46) holds when there are constellations (i.e.,
). In other words, for given and

,

is the minimum of . Consider constellations
(i.e., ). For given and

, we will prove that if is minimized,
should be combined with in the same constellation by
contradicting the following assumption: is minimized with

and not being combined. By the assumption,
and (for some in the range of ) are combined
in some specific constellation, and and (for some

in the range of ) are combined in another
constellation. The corresponding , denoted by , is
given by

(49)

where the other minimum distances, except ,
and , are arbitrarily combined. We modify such
that and are combined, and and are com-
bined. The modified is denoted by

(50)

The difference between and is given by

(51)

because and . From (51), ,
given by (49), cannot be the minimum of , and thus the
above assumption is false. We have thus showed that the largest
distance for the MSBs, should be combined with the
smallest distance for the LSBs, . The other minimum
distances, except and , are given by

and
(52)

By the induction hypothesis, the following is the minimum for
distances given by (52):

(53)

Thus, the minimum of is given by

(54)

Setting in (46), we obtain

, and this is identical to (54). Hence,
(46) holds for .

Corollary 6 and Theorem 7 indicate that the average power
of all the multiplexed constellations is minimized by permuting
distances according to (45), while the BERs are unchanged for
high SNR.

Next, we consider the peak signal power of the multiplexed
hierarchical constellations. If we assume that all the hierarchical
constellations are time-multiplexed, the peak power of all the
multiplexed constellations, , is given by

(55)

where denotes the maximum element of the set , and
is the peak power of a hierarchical constellation . For

hierarchical 16 QAM, is given by

(56)

Theorem 8: After the distances are permuted as described in
Theorem 5, the peak power of all the multiplexed hierarchical
16 QAM constellations, , given by

(57)

is minimized if the distances are permuted according to (45) of
Theorem 7.

Proof: When (45) is satisfied, the corresponding , de-
noted by , is given by

(58)

for some in the range of . We will contradict the fol-
lowing assumption: When distances are permuted in some way
other than (45), the corresponding , denoted by , is
smaller than . Let be the distance with which
is combined (for some in the range of ) when
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the distances are permuted in a different manner from (45). The
possible values of can be classified into

(59)

i) For , . To see this,
note that

(60)

where the strict inequality follows from
(since ).

ii) For , since
.

iii) For , . This
is proved as follows: Since is combined with ,
other distances should be
combined with . Note that

and

(61)

where denotes the cardinality of the set , and the
equality of the second expression follows from

. Since in (61), at least one
element of should be combined with
one element of . Suppose that

is combined with for some
and . Then, we have

(62)

where the strict inequality follows from the fact that
and (since and

).
From i), ii), and iii), it is seen that there is no possible way

of permuting distances which makes smaller than
. Therefore, the assumption below (58) is false.

Theorems 7 and 8 tell us that the permutation of the distances
that minimizes the average power of all the multiplexed hier-
archical constellations also, coincidentally, minimizes the peak
power. Note that from (5) and (45), these optimally permuted
distances satisfy

(63)

Corollary 9: When the distances are optimally permuted ac-
cording to (45) of Theorem 7, the BERs of the data classes sat-
isfy for high SNR if class and class

are mapped to the MSBs and LSBs of constellation
, respectively ( ).

Proof: The proof is similar to the proof of Corollary 2.

Fig. 2(b) depicts the multilevel UEP system using multi-
plexed hierarchical 16 QAM constellations based on Corollary
9 for eight data classes ( ).

Next, we generalize to hierarchical
QAM constellations. Recall that denotes the minimum
distance for the th MSBs ( ) of a hierarchical

QAM constellation . Hierarchical QAM has two
distinct minimum Euclidian distances such that [31]

for

for .
(64)

The average power of a hierarchical QAM constella-
tion can be expressed, from (17) and (64), as the
following:

(65)

Lemma 10: For high SNR, the BERs of a hierarchical
QAM constellation are given by

for

for

(66)
where is given by (1) and (65).

Proof: The BERs of a hierarchical QAM constellation
, , given by (18), can be rewritten as

(67), shown at the bottom of the next page. From (67), we have

(68)

where the first inequality follows from in (67). From
(67) and (68), it is clear that the first -function term of (67)
is the only term having the minimum distance of for the

th MSBs ( ). Also, for (i.e., )
given by (18), it is clear that the first -function term is the only
term having the minimum distance of . From the condi-
tion of approximation described in Lemma 3, it follows that the

-function term having the minimum distance in , given
by (18), is the same as that in , the exact BER. Therefore,
from (64) and (67), (66) is derived.

From (66), the average BER for th MSBs of
constellation , denoted by , is given by

(69)
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where . Likewise, the average BER
for th MSBs of constellation , denoted by

, is given by

(70)
where . Similar to the average

power given by (65), the peak power of a hierarchical
QAM constellation can be expressed as

(71)

where the are constants.

Theorem 11: Theorems 5, 7, and 8, and Corollaries 6 and 9
hold for hierarchical QAM when

i) and are replaced by and , respec-
tively, and and are replaced by and

, respectively.
ii) Equation (2) and (56) are replaced by (65) and (71), re-

spectively.
Proof: From (69) and (70), , since

(72)

Hence, Theorem 5 and Corollary 6 hold for hierarchical
QAM.

Since , and

of (65) are coefficients, just as 1/2,
1, and 1 of (2) are coefficients, Theorem 7 holds for
hierarchical QAM. Likewise, ,

, and of (71) are
coefficients, just as 1/2, 2, and 2 of (56) are coefficients, and
thus Theorem 8 holds for hierarchical QAM.

Fig. 4. Asymmetric hierarchical 16 QAM constellation.

IV. ASYMMETRIC HIERARCHICAL QAM CONSTELLATION

While the proposed methods provide a large number of levels
of UEP, the peak-to-average power ratio (PAPR) typically will
be increased when hierarchical constellations having distinct
minimum distances are time-multiplexed. To mitigate this ef-
fect, we design an asymmetric hierarchical QAM which reduces
the PAPR without performance loss. From here onwards, we
refer to conventional hierarchical QAM, which has been pre-
sented in Sections II and III, as symmetric hierarchical QAM,
in order to distinguish it from asymmetric hierarchical QAM.

A. Asymmetric Hierarchical QAM Constellation

For an asymmetric hierarchical QAM, the minimum dis-
tances for the inphase and quadrature components are different
from each other. Similar to the previous sections, we first present
asymmetric hierarchical 16 QAM, depicted in Fig. 4, as a simple
example. The MSB for the inphase component determines
the first cluster, and its minimum distance is . The MSB

for the quadrature component determines the second cluster
within the first cluster that determined, and its minimum dis-
tance is . The LSB for the inphase component deter-

mines the third cluster, and its minimum distance is , and

(67)



5826 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 9, SEPTEMBER 2012

the LSB for the quadrature component determines the spe-
cific signal point within the third cluster, and has minimum dis-
tance . Asymmetric hierarchical 16 QAM has three em-
bedded subconstellations, and it provides four levels of UEP if

, which will be shown below in
Corollary 13.

In order to provide levels of UEP, we consider multi-
plexing ( is assumed to be even) asymmetric hierarchical
16 QAM constellations instead of symmetric hierarchical 16
QAM constellations. The average power per symbol of all the
multiplexed asymmetric constellations, , is given by

(73)

where is the average power per symbol of asymmetric

constellation . For asymmetric hierarchical 16 QAM, is
given by

(74)

where and are the average powers per symbol for
the inphase and quadrature components of asymmetric constel-
lation , respectively, and , , , and are the
minimum distances for the inphase MSB and LSB, and quadra-
ture MSB and LSB, respectively. Note that the BERs of rectan-
gular QAM are derived from those of the corresponding PAMs
since the inphase and quadrature components are separated at
the demodulator [31], [33]. Let , , , and
denote the BERs for the inphase MSB and LSB, and quadra-
ture MSB and LSB of asymmetric hierarchical constellation ,
respectively ( ). From (3), (73), and (74), they are
derived as (75), shown at the bottom of the page.

Theorem 12: Suppose there are multiplexed symmetric
hierarchical 16 QAM constellations whose minimum distances
are given by and . Also suppose
there are asymmetric hierarchical 16 QAM constellations,

and the minimum distances for the inphase and quadrature com-
ponents of asymmetric hierarchical constellation are the same
as those of two distinct symmetric hierarchical constellations

and , respectively ( ). In other words

(76)

where and satisfy

(77)

With the minimum distances given by (76), the average power
and BERs of multiplexed asymmetric hierarchical 16
QAM constellations are the same as those of multiplexed
symmetric hierarchical 16 QAM constellations, regardless of
the choice of and satisfying (77).

Proof: From (74) and (76), can be expressed as

(78)

where the second equality follows from (2). From (73) and (78),
is given by

(79)

From (77), (79) can be rewritten as

(80)

where the second equality follows from (1). We next compare
the BERs of asymmetric and symmetric constellations. From
(3), (75) and (76), we have

(75)
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and

(81)

From (77) and (81), a set of BERs for multiplexed
asymmetric constellations satisfy

(82)

Hence, a set of BERs for multiplexed asymmetric con-
stellations is the same as that for multiplexed symmetric con-
stellations.

Corollary 13: Suppose that the minimum distances of the
multiplexed symmetric hierarchical 16 QAM constellations sat-
isfy (5) of Theorem 1. Then, with the minimum distances given
by (76), multiplexed asymmetric hierarchical 16 QAM
constellations also provide levels of UEP.

Proof: Since and satisfy (5), and sat-
isfy (4) by Theorem 1. From (82), it follows that mul-
tiplexed asymmetric hierarchical 16 QAM constellations also
provide levels of UEP.

As an example, suppose that there is single asymmetric hi-
erarchical 16 QAM (i.e., ), and and satisfying
(77) are chosen as and . From (76) and (81),
(4) and (5) of Theorem 1 lead to the following:

if (83)

Next, we consider the peak power of all the multiplexed
asymmetric hierarchical constellations, , which is given
by

(84)

where is the peak power of an asymmetric hierarchical

constellation . For asymmetric hierarchical 16 QAM, is
given by

(85)

where and are the peak powers of the inphase
and quadrature components of asymmetric hierarchical constel-
lation , respectively.

Theorem 14: Suppose that the minimum distances of the
multiplexed symmetric hierarchical 16 QAM satisfy (5) of The-
orem 1. With the minimum distances given by (76), the peak
power of all multiplexed asymmetric hierarchical 16 QAM
constellations, , given by (84) and (85), is less than that
of all multiplexed symmetric hierarchical 16 QAM, ,

given by (55) and (56), regardless of the choice of and
satisfying (77).

Proof: From (76) and (85), is given by

(86)

where the second equality follows from (56). From (84) and
(86), is given by

(87)

for some in the range of . Since
from (77), we have

(88)

where the second equality of the first expression follows from
(55). From (5) and (56), the peak powers of each symmetric
hierarchical 16 QAM constellation satisfy

(89)

From (77), (88), and (89), , and satisfy ei-
ther of the following:

or

(90)

From (87) and (90), we have

(91)

Theorems 12 and 14 tell us that when asymmetric hierarchical
16 QAM is used instead of symmetric hierarchical 16 QAM, the
PAPR is reduced without performance loss.

The following theorem states how to choose and
satisfying (77) to minimize the PAPR of

all the multiplexed asymmetric hierarchical constellations.

Theorem 15: Suppose that the minimum distances of the
multiplexed symmetric hierarchical 16 QAM satisfy (5) of

Theorem 1. Also suppose the minimum distances of mul-
tiplexed asymmetric hierarchical 16 QAM are given by (76).
Then, from (84) and (86), is given by

(92)
and this is minimized if and satisfying (77) are chosen
as

and (93)

Proof: The proof is similar to the proof of Theorem 8.
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Next, we generalize to asymmetric hierarchical

QAM. Let and denote the minimum distances of
the th MSB ( ) for the inphase and quadrature
components of asymmetric hierarchical QAM constellation

. From (17), the average power of asymmetric
hierarchical QAM constellation , , can be expressed
as

(94)

where and are the average powers for the inphase
and quadrature components of asymmetric constellation .

Let and denote the BERs of the th MSB (
) for the inphase and quadrature components of asym-

metric hierarchical QAM constellation .
Recall that denotes the BER of the th MSBs (

) of symmetric hierarchical QAM constellation
.

Theorem 16: Suppose that there are multiplexed sym-
metric hierarchical QAM whose minimum distances are
given by . Also suppose that
the minimum distances of multiplexed asymmetric hierar-
chical QAM satisfy

and

(95)

where and satisfy (77). Theorem 12 holds for asym-
metric hierarchical QAM when

i) and are replaced by ;

and are replaced by ; and
are replaced by .

ii) and are replaced by ;

and are replaced by ;
and are replaced by .

iii) Equation (76) is replaced by (95).
Proof: We omit the proof for conciseness, but it can be

found in [32].

We next consider the peak power for asymmetric hierarchical
QAM. In the following, we rewrite the peak power of sym-

metric hierarchical QAM constellation ,
, given by (71)

(96)

From (96), the peak power of asymmetric hierarchical
QAM constellation , , can be expressed as

(97)

where and are the peak powers for the inphase
and quadrature components of asymmetric constellation .

Theorem 17: Theorems 14 and 15 hold for asymmetric hier-
archical QAM when

i) and are replaced by ;

and are replaced by ; and
are replaced by .

ii) given by (56) is replaced by (96).
iii) given by (85) is replaced by (97).
iv) Equation (5) of Theorem 1 is replaced by (20) of Theorem

4.
v) Equation (76) is replaced by (95).

Proof: We omit the proof for conciseness, but it can be
found in [32].

We note that, like other rectangular QAM constellations, the
asymmetric hierarchical QAM can be easily generated as
two PAM signals impressed on the inphase and quadrature car-
riers, and possesses the distinct advantage of being easily de-
modulated. Hence, it does not increase any decoding complex-
ities, compared to conventional hierarchical or nonhierarchical
rectangular QAM constellations.

V. MULTILEVEL UEP BASED ON MULTIPLEXING

HIERARCHICAL QAM CONSTELLATIONS

HAVING CONSTANT POWER

In this section, we consider the case where it is desirable for
the multiplexed hierarchical QAM constellations to have the
same average power (i.e., constant power), either due to the lim-
ited capability of a power amplifier, or for cochannel interfer-
ence control.

A. Symmetric Hierarchical QAM

Constellation

Theorem 18: When multiplexed symmetric hierarchical
16 QAM constellations are required to have constant power,
there exist minimum distances satisfying

(98)
Proof: The proof of this theorem as well as the proofs of

all other theorems in this section are not included here for con-
ciseness, but they can be found in [32].

From (63) and (98), it is seen that even if symmetric hier-
archical 16 QAM constellations have constant power, the sug-
gested UEP system, depicted in Fig. 2(b), can provide levels
of UEP for high SNR.

Theorem 18 holds for symmetric hierarchical
QAM, when and are replaced by and

, respectively.

B. Asymmetric Hierarchical QAM Constellation

Theorem 19: Suppose that multiplexed asymmetric hi-
erarchical 16 QAM constellations are required to have constant
power, and their minimum distances are given by (76). If
and are chosen according to (93) of Theorem 15, there exist
minimum distances satisfying both (5) of Theorem 1 and (76).
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From Corollary 13 and Theorem 19, it follows that even if
asymmetric hierarchical 16 QAM constellations have constant
power, levels of UEP can be achieved.

Theorem 19 holds for asymmetric hierarchical
QAM, when

i) and are replaced by .
ii) Equation (76) is replaced by (95).

iii) Equation (5) of Theorem 1 is replaced by (20) of Theorem
4.

Theorem 20: Suppose that multiplexed asymmetric hi-
erarchical QAM constellations are required to
have constant power. Then the performance of the system stays
the same or degrades compared to the case where multiplexed
constellations are not required to have constant power.

VI. THE PERFORMANCE OF THE PROPOSED UEP SYSTEM

FOR PROGRESSIVE BITSTREAM TRANSMISSION

In this section, we analyze the performance of the proposed
UEP system for progressive image source transmission over
Rayleigh fading channels. We first consider the UEP system
depicted in Fig. 2(a). The system takes successive blocks
(data classes) of the compressed progressive bitstream, and
transforms them into a sequence of channel codewords of fixed
length [22] with error detection and correction capability.
Then, the coded classes are mapped to the multiplexed sym-
metric hierarchical 16 QAM constellations. At the receiver,
if a received class is correctly decoded, then the next class is
considered by the decoder. Otherwise, the decoding is stopped
and the image is reconstructed from the correctly decoded
classes. We assume that all decoding errors can be detected.

Let be an error correction code rate for class
, and be a pair of minimum dis-

tances of some specific constellation to
which class is mapped. From Corollary 2,

is given by

for

for
(99)

where and satisfy (5) of The-
orem 1 to achieve levels of UEP. Let denote
the probability of a decoding error of class . Then, the proba-
bility that no decoding errors occur in the first classes with an
error in the next one, is given by

(100)

for . Note that is
the probability of an error in the first class, and

is the probability that all classes
are correctly decoded. The end-to-end performance can be
measured by the expected distortion given by

(101)

where is the reconstruction error using the first classes (
), and is a constant. For the case of an uncoded

system, is given by , where denotes the
operational rate-distortion function of the source coder. Also,
for the uncoded system, the probability of a decoding error of
class , , can be obtained analytically

(102)

Recall that , a function of and , is the BER of data class
. is given by (3) and (15) of Corollary 2.

We define a frame as a group of constellation symbols to which
one image bitstream is mapped. We assume the channel expe-
riences slow Rayleigh fading such that the fading coefficients
are nearly constant over a frame. With this channel model, from
(100)–(102), the expected distortion for the uncoded system is
given by

(103)

where is the Rayleigh-distributed envelope of complex
channel coefficients and is the Rayleigh-distributed
probability density function of . Note that for a given SNR
of , is the conditional expected distortion. In situ-
ations when exact SNR information is not available at the
transmitter, one can find the minimum distances,
(or and ), which minimize the
expected distortion over a range of expected SNRs using the
weighted cost function

(104)

where in is the weight function. For example,
can be given by

for

otherwise.
(105)

VII. NUMERICAL RESULTS

We evaluate the performance of the proposed UEP system
using multiplexed hierarchical 16 QAM constellations for the
progressive source coder SPIHT [26] as an example. We provide
the results for the standard 8 bits per pixel (bpp) 512 512 Lena
image with a transmission rate of 0.375 bpp. To compare the
image quality, we use peak-signal-to-noise ratio (PSNR) defined
as

(106)
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Fig. 5. PSNR performance of UEP system using multiplexed symmetric hierarchical 16 QAM (H-16QAM denotes hierarchical 16 QAM).

where 255 is due to the 8 bpp image, and is given by (103).
We present the PSNR performance for the uncoded case

by numerically evaluating (103)–(106) as follows: We first
compute (104) for the block Rayleigh fading channel using
the expected distortion given by (103), and the weight
function given by (105). Next, with (or

and ) obtained from (104), we
evaluate PSNR using (103) and (106) over a range of expected
SNRs given by (105).

Fig. 5 shows the PSNR performance of the multiplexed sym-
metric hierarchical 16 QAM constellations. For reference, it
also shows PSNRs for single symmetric hierarchical 16 QAM,
as well as uniformly-spaced QPSK and 16 QAM constellations.
The PSNR of single symmetric hierarchical constellation is
evaluated in the same way as that for multiplexed symmetric
hierarchical constellations. From Fig. 5, it is seen that mul-
tiplexed symmetric hierarchical constellations improve the
performance more than does single symmetric hierarchical
constellation. It is also seen that 32 multiplexed symmetric
hierarchical 16 QAM constellations, which provide 64 levels
of UEP, have almost saturated performance in this evaluation.
However, by optimally permuting the minimum distances ac-
cording to Theorem 7 , an additional SNR gain of more than 0.5
dB is achieved. Note that the performance of multiplexed
asymmetric hierarchical constellations is the same as that of
multiplexed symmetric hierarchical constellations ( ,16,
32) as stated by Theorem 12, though the former is not depicted
here.

Table I shows the PAPRs of the multiplexed symmetric or
asymmetric hierarchical 16 QAM constellations. For reference,
the PAPRs of single symmetric hierarchical 16 QAM and uni-
formly spaced 16 QAM constellations are also listed in Table II.
From Tables I and II, it is seen that when symmetric hierar-
chical 16 QAM constellations are time-multiplexed, they have

TABLE I
PAPR OF MULTIPLEXED SYMMETRIC OR

ASYMMETRIC HIERARCHICAL 16 QAM

TABLE II
PAPR OF UNIFORMLY SPACED 16 QAM AND SINGLE

SYMMETRIC HIERARCHICAL 16 QAM

larger PAPR than does uniformly spaced 16 QAM as well as
single symmetric hierarchical 16 QAM constellation. Table I
also shows that PAPR is reduced when asymmetric hierarchical
constellation is used, as stated by Theorem 14.

Fig. 6 shows the PSNR performance of the multiplexed
asymmetric hierarchical 16 QAM constellations having con-
stant power. It is shown that the performance is degraded when
constellations are required to have constant power, which is
consistent with Theorem 20 . However, as seen from Table I,
this scheme provides PAPR smaller than uniformly spaced
QAM, and a high PAPR problem is solved.
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Fig. 6. PSNR performance of UEP system using multiplexed asymmetric hierarchical 16 QAM having constant power (H-16QAM denotes hierarchical 16 QAM).

VIII. CONCLUSION

Progressive image or scalable video encoders employ pro-
gressive transmission, so that encoded data have gradual differ-
ences of importance in their bitstreams, which necessitates mul-
tiple levels of UEP. Though hierarchical modulation has been
intensively studied for digital broadcasting or multimedia trans-
mission, methods of achieving a large number of levels of UEP
for progressive mode of transmission have rarely been studied.

In this paper, we proposed a multilevel UEP system using
multiplexed hierarchical modulation for progressive transmis-
sion over mobile radio channels. Specifically, we proposed a
way of multiplexing hierarchical QAM constellations
( ) and proved that levels of UEP are achieved, under
the assumption that the SNR of interest for the th most im-
portant bits is reasonably large so that the probability of noise
exceeding the Euclidian distance of is insignif-

icant compared to that of noise exceeding , where
and are the minimum distances for the th and th
important bits, respectively ( ). This assumption is
based on the fact that for hierarchical constellations, the min-
imum distance for more important bits is greater than that for
less important bits (i.e., ). As a special case, for
hierarchical 16 QAM ( ), we showed that levels of
UEP are achieved without the assumption.

When the BER is dominated by the -function term having
the minimum Euclidian distance, we derived an optimal multi-
plexing approach which minimizes both the average and peak
powers for hierarchical QAM ( ) constel-
lations (typical examples are 4/16 QAM and 4/64 QAM which
are employed in the DVB-T standard). While the suggested
methods achieve multiple levels of UEP, the PAPR typically
will be increased when constellations having distinct minimum
distances are time-multiplexed. To mitigate this effect, an
asymmetric hierarchical QAM constellation, which reduces
the PAPR without performance loss, was proposed. We also

considered the case where multiplexed constellations need to
have constant power, and showed that multilevel UEP can be
achieved while the performance stays the same or degrades in
this case. Numerical results showed that the proposed multilevel
UEP system based on multiplexed modulation significantly
enhances the performance for progressive transmission over
Rayleigh fading channels without any additional system band-
width or transmit power.

APPENDIX A
PROOF OF LEMMA 3

A. Gray Coded Bit Mapping Vector for Hierarchical

PAM: For a hierarchical PAM constellation, let denote
the Gray code for the th MSB ( ) assigned to the
th signal point ( ) from the left. Then, it can be

shown that the -tuple Gray coded bit mapping vector,
, for the th MSB is given by

for

for
(107)

where is a -tuple all zero vector, and is a -tuple all one
vector.

B. Euclidian Distance Between Adjacent Signal Points

for Hierarchical PAM: Let and

denote the th signal point from the left
for hierarchical and PAM constellations, respectively.

Also, let and

denote minimum distances for the th MSB of hierarchical
and PAM constellations, respectively. Fig. 7 shows how
hierarchical PAM is constructed from hierarchical
PAM. There are two rules with regard to the construction of
hierarchical PAM from hierarchical PAM:
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Fig. 7. The construction of hierarchical � PAM from hierarchical �
PAM.

i) The th signal point for PAM, , is replaced by the

th and th signal points for PAM,

and , which satisfy

for (108)

where is the Euclidian distance between two
signal points, and .

ii) If the distance between and for PAM is

, then the distance between and for

PAM is . That is, for and

if
(109)

As an example, Fig. 8 depicts hierarchical 4 and 8 PAM con-
stellations.

We will prove the following by induction: For hierarchical
PAM ( ), the Euclidian distance between adjacent signal
points is given by

(110)

for and . Consider hierarchical 4
PAM. From Fig. 8, it is seen that

and

(111)

If we let in (110), we have

(112)

for and . From (112), for , we
have

for

(113)

where denotes and are identical. From (112), for
, we have

(114)

It is seen that (113) and (114) are identical to (111). Suppose
that (110) holds for PAM. That is

(115)

for and . Consider hierarchical
PAM. Equation (109) can be rewritten as

if (116)

for and . From (115) and (116), it can
be shown that

(117)

for and . Equation (108) can be
rewritten as

(118)

From (118), (117) can be extended to the case . That is

(119)

for and . If we let in
(110), it is identical to (119). Hence, (110) holds for hierarchical

PAM.
For convenience, from here onwards, we use and in-

stead of and for hierarchical PAM. For integers

in the range of and , we define
a function as

for

otherwise.
(120)

From (120), it can be shown that (110) is expressed as

(121)

C. BER of the MSB for Hierarchical PAM: Fig. 9 de-
picts a hierarchical PAM constellation with the bit mapping
vector for the MSB given by (107). The system model for hi-
erarchical PAM is shown in Fig. 10. The transmitted signal
is given by

(122)

where , denotes the sign of the real number,
is the Euclidian distance between the origin and th
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Fig. 8. Hierarchical 4 and 8 PAM constellations.

signal point , and is the transmit pulse
defined as

elsewhere
(123)

where is the symbol duration. is zero-mean additive
white Gaussian noise having a power spectral density of .
At the receiver, the decision statistic is given by

(124)

where the standard deviation of is . From Fig. 9,
since the decision boundary for bits 0 and 1 is the origin, the
probability of correct decision for a signal point assigned for bit
1, , is given by

(125)

From (125), the probability of correct decision for the MSB is
given by

(126)

and the BER for the MSB, , is given by

(127)

From (110), for , we have

(128)

Since the hierarchical PAM constellation is symmetric with re-
spect to the origin, from (128), we have

(129)

For , can be expressed as

(130)

where the second equality follows from (129). From (129) and
(130), the BER of the MSB, given by (127), can be rewritten as

(131)

From (121), in (131) can be rewritten
as

(132)



5834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 9, SEPTEMBER 2012

From (120), it can be shown that is expressed as

(133)

for and . From (133), (132) can be
rewritten as

(134)

From (134), the second term of given by (131) can be ex-
pressed as

(135)

Let . Then (135) can be rewritten as

(136)

For , we have

and

(137)

For , we have

and

(138)

where the second equality of the first expression follows from
in (136). From (137) and (138), the second

term of , given by (136), can be rewritten as

(139)

Fig. 9. Hierarchical � PAM constellation with the bit mapping vector � for
the MSB.

Fig. 10. System model for hierarchical PAM.

Since for , from (139), the

BER of the MSB given by (131) can be expressed as

(140)

Note that (140) is the exact BER expression for the MSB of
hierarchical PAM.

D. BER of the th MSB for

Hierarchical PAM:

D-1. Classification of Signal Points Into Mu-

tually Exclusive Groups: We first find every pair of adjacent
signal points which are separated by a Euclidian distance greater
than (i.e., ): For given in the
range of , let
in (110). Then, we have

and (141)

It can be shown that is identical to

and .
Hence, every pair of adjacent signal points which are separated
by a Euclidian distance greater than , given by (141), can
be expressed as

for (142)

Next, we classify signal points into mutually ex-
clusive groups such that the Euclidian distance between adja-
cent signal points of the same group is smaller than or equal to

. From (142), the signal points of the th group can be de-
rived as

(143)
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Fig. 11. The � � �, � and � � �th groups with the bit mapping vector for � � ���.

for . We rewrite (110) in the following: For
hierarchical PAM ( ), the Euclidian distance between
adjacent signal points is given by

(144)

for and . From (143) and (144), it can
be shown that the Euclidian distance between adjacent signal
points of the th group is given by

(145)

for , , and
. Let . Then, (145) can be

rewritten as

(146)

for , , and .

Notation Change: Let denote for
convenience. Then, every pair of adjacent signal points which
are separated by a Euclidian distance greater than (i.e.,

), given by (142), can be rewritten as

(147)

The signal points of the th group, given by (143), can be ex-
pressed as

for (148)

Lastly, the Euclidian distance between adjacent signal points of
the th group, given by (146), can be rewritten as

(149)

for , , and .
D-2. Probability of Correct Decision for Signal Points of

the th Group: From (148), for , the signal
points of the , , and th groups are given by

th group th group

(150)

From (107), the bit mapping vector for the th MSB (
) of the , and th groups is derived as

for even
(151)

From (150) and (151), , , and th groups with the
bit mapping vector for are shown in Fig. 11, where

, , and denote the decision boundaries for
bits 0 and 1 in the , , and th groups, respectively. In
the following, we will derive the probability of correct decision
for signal points of the th group ( ):

i) Signal Points Assigned for Bit 0 When is Odd in the

Range of : We here assume that for
, a signal point of the th group which is assigned

for bit 0, the probability of correct decision can be calculated
without considering the other groups except for the , , and

th groups (we will later show that the assumption is correct
if the SNR condition of this lemma is satisfied). Fig. 12 shows

the correct decision area for under the
above assumption. From Fig. 12, it follows that the probability

of correct decision for based on the
system model depicted in Fig. 10 is given by

(152)

where the first and second terms follow from the correct decision
areas #1 and #2 shown in Fig. 12, respectively. Equation (152)
can be rewritten as

(153)
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Fig. 12. The correct decision area for � �� � � � � � when � � ���.

From Fig. 12, in the second term of (153) can
be expressed as

(154)

From (149), for , we have

(155)

From the fact that

and (155), (154) can be rewritten as

(156)

From (147), we have

(157)

From (157), , given by (156), satisfies

(158)

Since for , we have

(159)

Likewise, from Fig. 12, in the third term of
(153) can be expressed as

(160)

Since and from
(155), (160) can be rewritten as

(161)

From (157), satisfies

(162)

We have and

for . Hence,

satisfies

(163)

From (159) and (163), it follows that the second and third terms
of , given by (153), are insignificant when the condition of

this lemma is satisfied. Since , , and belong to

the th group, in the first

term of is the combination of
from (149), and thus the first term is not affected by the con-
dition of this lemma. Hence, if the condition of this lemma is
satisfied, , given by (153), becomes

(164)

which is identical to the probability of correct decision calcu-
lated only by considering signal points of the isolated
th group. Since the and th groups have no effect

on the correct decision probability for signal points of the th
group due to the condition of this lemma, the other groups (i.e.,

th groups), which are separated by
larger Euclidian distances from the th group than are the
and th groups, also have no effect. Hence, the assumption
above (152) is correct.

ii) Signal Points Assigned for Bit 1 When is Odd in the

Range of : It can be shown that the proba-

bility of correct decision for
based on the system model depicted in Fig. 10 is given by

(165)
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where in the second term of (165) satis-
fies1

(166)

and in the third term of (165) satisfies

(167)

From (165)–(167), if the condition of this lemma is satisfied,
, given by (165), becomes

(168)

which is identical to the probability of correct decision calcu-
lated only by considering signal points of the isolated
th group.

iii) Signal Points Assigned for Bit 0/1 When is Even in

the Range of : From (151), the bit mapping
vector for is just the complement of that for .
Hence, for , and are given by (165) and
(153), respectively, and the results of i) and ii) hold for the case

is even.
iv) Signal Points Assigned for Bit 0/1 When (Odd):

From Fig. 12, it follows that for is given by

(169)

The only difference between (153) and (169) is that (169) does
not have the second term of (153), and thus the result of i) holds
for the case . In a similar way, it can be shown that for bit
1, the result of ii) holds for the case .

v) Signal Points Assigned for Bit 0/1 When

(Even): In a similar way to iv), it can be shown that the result
of iii) holds for the case .

From i)–v), it is seen that if the SNR condition of this lemma
is satisfied, the BER of the th MSB can be calculated only
by considering signal points of the isolated th group
given by (148).

D-3. BER of the th MSB for the

Isolated th Group: We derive the BER of the th MSB for
the isolated th group of PAM from that of the MSB for

PAM.
i) For hierarchical PAM, from (144), the Eu-

clidian distance between adjacent signal points is given
by

(170)

1Since the analysis of ii) is similar to that of i), we omit the detailed steps.

for and . Let
and . Then, (170) can be rewritten

as

(171)

for and . From (149) and
(171), it is seen that, if in (171) is set equal
to , the Euclidian distance between adjacent signal
points for PAM is the same as that for the th
group of PAM.

ii) For hierarchical PAM, from (107), the bit map-
ping vector for the MSB is given by

(172)
For the th group of hierarchical PAM, from (151),
the bit mapping vector for the th MSB is given by

for even

for odd.
(173)

It is seen that (173) is the same as or the complement of
(172).

From i) and ii), it follows that the BER of the MSB for
PAM is the same as that of the th MSB for the

isolated th group of PAM, if for PAM
is set equal to (i.e., is set equal to ). From

(140), the BER of the MSB for hierarchical PAM
( ) is derived as

(174)

Let . Then (174) can be rewritten as

(175)

As stated above (174), by setting equal to in
(175), the BER for the th MSB ( ) of the
isolated th group can be derived as

(176)
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Fig. 13. BER for hierarchical 64 QAM: The distance ratio � �� � � (i.e., the lower bound) or 2.

Fig. 14. BER for hierarchical 256 QAM: The distance ratio � �� � � (i.e., the lower bound) or 2.

Note that the BER expression for the th MSB (
) of hierarchial PAM, given by (176), holds if the

condition of this lemma is satisfied.
E. BER of the th MSB (or LSB) for Hierarchical PAM:

For the th MSB (or LSB), we define the signal points of the
th group as

(177)

which is identical to (148) with . If we let
in (147), every pair of adjacent signal points which are separated
by Euclidian distances greater than is given by

(178)

Also let in (149). Then, for ,
the Euclidian distance between adjacent signal points of the th
group can be derived as

and

(179)

From (107) and (177) – (179), it can be shown that if the con-
dition of this lemma is satisfied, the BER of the th MSB be-
comes2

(180)

2Since the analysis for the �th MSB is similar to that for the � th MSB
(� � � � � � �), we omit the detailed steps but they can be found in [32].
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From (140), (176), and (180), the BER of the th MSB (
) for hierarchical PAM can be expressed as

(181)
Note that (181) is the exact BER expression for the MSB, but
for th MSB, (181) holds if the condition of this
lemma is satisfied. Lastly, it can be shown that the BER of the
inphase or quadrature components for hierarchical QAM
is the same as that for hierarchical PAM. For hierarchical

QAM, let denote the average energy of the
transmitted signal. Setting
in (181), (16) is derived.

APPENDIX B
NUMERICAL EVALUATION OF THE BER EXPRESSION (16)

Figs. 13 and 14 show the numerical evaluation of the BER
expression given by (16) for hierarchical 64 and 256 QAM when
the distance ratio is 1 or 2.
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