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Abstract

Waveform Relaxation has been widely used in circuit theory, for the solution of large systems of
ordinary differential equations and the solution of partial differential equations. In the past, clever
partitioning schemes have been used for circuit theory applications to enhance convergence. How-
ever, a drawback of the classical waveform relaxation algorithm is the non-uniform convergence over
the window in time for which the equations are integrated. We propose a new optimized waveform
relaxation algorithm which greatly accelerates the convergence by introducing new transmission
conditions. These conditions are responsible for the exchange of information between the subcir-
cuits. We use two RC circuit examples to illustrate the theory, as well as the improved convergence
behavior.

1 Introduction

The Waveform Relaxation (WR) algorithm was conceived originally [1] to speed up the solution of
large circuits as compared to conventional circuit solver methods [2, 3, 4]. After this quite a few
circuit solvers and experimental solvers where built based on the WR technique e.g. [5, 6, 7]. One of
the most challenging problems in the implementation of the WR algorithm has been the partitioning
of the circuits into sub-circuits or subsystems such that the efficiency of the algorithm is maximized
e.g. [8, 9, 10, 11]. In this paper we introduce a class of methods which improve the performance over
the classical WR algorithm with little computational overhead. We call these methods the optimized
WR algorithms since they involve an optimization process. The optimization concerns what we call
the transmission conditions. The function of the tramsmission conditions is to transport information
from each subsystem to its connected neighbor subsystems. The key advantage of the optimized WR
algorithm over the classical WR algorithm is its faster and much more uniform convergence which can
be translated into making the partitioning effort much simpler and the overall solution time faster.

It was shown in [12] that when applying the classical WR algorithm to Partial Differential Equa-
tions (PDEs), then the coupling between the sub-domains in physical space corresponds to Dirichlet
transmission conditions at the interfaces introduced between sub-domains. Recent work in PDEs
shows that these transmission conditions are far from optimal [13]. Importantly, it was shown that
much faster convergence can be obtained if additional derivative information is exchanged in the trans-
mission conditions. Here, we are applying the idea of improving the transmission conditions to the
circuit domain.

The state of the art for the application of the classical WR algorithm to circuit problems has been
summarized in a recent paper [14]. The classical WR algorithm exchanges only nodal voltage values
between subsystems. Here we propose new transmission conditions which exchange a combination of
voltages as well as currents. We show that the optimized WR approach leads to higher accuracy as
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Figure 1: A Small example RC circuit.

well as much more uniform convergence in very few iterations. We exemplify the application of the
new approach to the well known subclass of RC circuits. This type of circuit has been investigated for
the classical WR algorithm by several authors e.g. [15, 16, 17, 18]. The small example circuit analyzed
in the first part of this paper is shown in Figure 1. In the second part, we analyze the large circuit
shown in Figure 10, which leads to much larger subsystem circuits, and illustrates that the size of the
circuit does not have a major impact on the convergence of the optimized WR algorithm.

Nowadays, the circuit equations are usually specified in terms of the state or modified nodal
analysis equations (MNA) [3], in the form Cẋ(t) + Gx(t) = B u(t), where C contains the reactive
elements, G the other elements, while B is the input selector matrix, and u(t) represents the forcing
functions. For our model problems, consisting of series connected circuits only, we rewrite the MNA
circuit equation into a simplified tridiagonal form

ẋ =

















b1 c1

a1 b2 c2

a2 b3 c3

a3 b4
. . .

. . .
. . .

















x + f . (1.1)

The solution is sought for a given initial condition x(0) = x0 and the values ai, bi and ci for i = 1, 2, . . .
are given by the circuit.

In Section 2 we give details for a small circuit problem and we analyze the convergence of the
classical WR algorithm in Subsection 2.1. We then introduce in Subsection 2.2 the optimized WR
algorithm for the small circuit problem and give a detailed convergence analysis. In Section 3 we
introduce a larger circuit problem for which we investigate the convergence of both the classical and
the optimized WR algorithm. Finally, in Section 4 we extend the analysis to multiple subsystems and
conclusions are given in Section 5.

2 A Small RC Circuit Model Problem

In this section we analyze the classical and optimized WR algorithm for the RC example given in
Figure 1 which is our small circuit model problem. The circuit equations are specified in the form
of (1.1) as

ẋ =









b1 c1

a1 b2 c2

a2 b3 c3

a3 b4









x + f (2.1)
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with the vector of unknown waveforms x = (v1, v2, v3, v4)
T which represents a set of nodal voltage

values for this RC or diffusion circuit. The entries in the tridiagonal matrix are given by

ai =
1

Ri Ci+1
; bi =















−
(

1
Rs

+ 1
R1

)

1
C1

−
(

1
Ri−1

+ 1
Ri

)

1
Ci

, i = 2, 3

− 1
R3C4

,

ci =
1

Ri Ci

where the resistor values R and the capacitors C are for consistency strictly positive constants. The
source term on the right hand side is given by f(t) = (Is(t)/C1, 0, 0, 0)

T for some source function Is(t)
and we are also given the initial voltage values x(0) = (v0

1 , v
0
2 , v

0
3 , v

0
4)T at time t = 0.

2.1 Analysis of the Classical WR Algorithm

We partition the circuit into two sub-circuits or subsystems and we call the unknown voltages in
subsystem 1 u(t) and in subsystem 2 w(t). Then the classical WR algorithm applied to (2.1) with
two sub-circuits is given by

u̇k+1 =

[

b1 c1

a1 b2

]

uk+1 +

(

f1

f2

)

+

(

0
c2w

k
1

)

ẇk+1 =

[

b3 c3

a3 b4

]

wk+1 +

(

f3

f4

)

+

(

a2u
k
2

0

) (2.2)

with corresponding initial conditions uk+1(0) = (v0
1 , v

0
2)

T and wk+1(0) = (v0
3 , v

0
4)

T . To start the WR
iteration, we need to specify four initial waveforms u0(t) = (u0

1(t), u
0
2(t))

T and w0(t) = (w0
1(t), w

0
2(t))

T

for t ∈ [0, T ] where T is the end of the transient analysis interval. The Laplace transform is used for the
convergence study of the linear circuit considered here. It suffices to analyze the homogeneous problem
where the initial conditions, uk+1(0) = wk+1(0) = (0, 0)T , as well as source terms, f(t) = (0, 0, 0, 0)T ,
are zero. The Laplace transform for s ∈ C of (2.2) is given by

sûk+1 =

[

b1 c1

a1 b2

]

ûk+1 +

(

0
c2ŵ

k
1

)

, sŵk+1 =

[

b3 c3

a3 b4

]

ŵk+1 +

(

a2û
k
2

0

)

. (2.3)

Solving the first equation in (2.3) for ûk+1
2 we find

ûk+1
2 =

c2(s − b1)

(s − b1)(s − b2) − a1c1
ŵk

1 (2.4)

and similarly solving the second equation in (2.3) for ŵk+1
1 we get

ŵk+1
1 =

a2(s − b4)

(s − b3)(s − b4) − a3c3
ûk

2. (2.5)

Inserting (2.5) at iteration k into (2.4) we find a relation over two iteration steps of the WR algorithm,

ûk+1
2 = ρcla(s,a, b, c)ûk−1

2

with the convergence rate ρcla of the classical WR algorithm given after a short computation by

ρcla(s,a, b, c) =
c2(s − b1)

(s − b1)(s − b2) − a1c1
· a2(s − b4)

(s − b3)(s − b4) − a3c3
. (2.6)

The same result holds for ŵk+1
1 and by induction we find û2k

2 = (ρcla)
k û0

2 and ŵ2k
1 = (ρcla)

k ŵ0
1. For

convergence we need that |ρcla(s,a, b, c)| < 1 for ℜ(s) > 0 and for fast convergence the modulus of ρcla
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Figure 2: Convergence rate as a function of the frequency parameter ω for the classical WR algorithm
applied to the small RC circuit.

should be much smaller than 1, |ρcla| << 1. But ρcla is a fixed function of the circuit parameters in
the classical WR algorithm as is evident from (2.6). Thus the algorithm does not have any adjustable
parameters like the optimized WR algorithm below. Hence, we can only analyze for the classical WR
algorithm if the convergence test |ρcla| < 1 is satisfied. Checking for poles in (2.6) we find for the first
quotient in ρcla that the denominator vanishes if

s± =
1

2

(

b1 + b2 ±
√

(b1 − b2)2 + 4c1a1

)

with a similar result for the poles of the second quotient in ρcla given in (2.6). For RC circuits, the
inverse time constants are positive, ai, ci > 0, and we also have b1, b2 < 0. Hence the poles lie on the
real axis, and if in addition b1b2 ≥ a1c1 then they are negative, s± < 0. A similar evaluation of the
second factor shows that the poles are in the left half plane if b3, b4 < 0 and b3b4 ≥ a3c3. It should be
noted that this investigation is necessary since the transmission condition may introduce additional
poles which are not present in the original circuit in Fig 1, for which we know that the poles are on
the negative real axis.

Under the given conditions, the convergence rate ρcla is an analytic function for s = σ + iω
whenever σ > 0. Here ω is the angular frequency, ω ∈ R. By the maximum principle for complex
analytic functions, the modulus of ρcla takes its maximum on the boundary at σ = 0, e.g. [19]. To
find the location of the maximum, we separately investigate the two quotients in ρcla given in (2.6).
From an explicit computation we find that they both have their maximum at w = 0 for the circuit at
hand. Hence, the low frequencies, ω close to zero, or slow rise time aspects of the signals, converge
most slowly. An example for the convergence rate as a function of ω is given in Figure 2.

In general, the classical WR algorithm for this type of problems has a smoothing property due to
the low pass behavior of diffusive problems or circuits. The smoothing properties in space of classical
WR algorithms for parabolic problems have been used successfully in [20, 21] for multi-grid WR
algorithms. However, for a classical WR circuit solver the slow, low frequency, convergence dominates
the overall convergence behavior. This aspect of the classical WR algorithm is greatly improved in
the next Subsection by the optimized WR algorithm.

2.2 An Optimized WR Algorithm

The key improvements in our new WR algorithm are better transmission conditions than the ones
used for the classical WR algorithm. It is natural that the WR convergence will be slow if the
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information exchange at the interface between two subsystems is ineffective. We first recall the classical
transmission conditions employed in (2.2) which can be written explicitly as

uk+1
3 = wk

1 , wk+1
0 = uk

2 . (2.7)

From this we see that the voltages u3 and w0 are directly replaced in (2.2) by voltage sources. Hence,
this corresponds to exchanging voltages only at the boundaries of the partition between the two
subsystems. Once the WR iteration process is converged we obtain with the classical transmission
conditions

u∞
3 = w∞

1 , w∞
0 = u∞

2 . (2.8)

Under these conditions, the nodes at the subsystem boundaries assume the converged voltages, as
expected.

For the optimized WR algorithm we propose the new, more sophisticated transmission conditions

(uk+1
3 − uk+1

2 ) + αuk+1
3 = (wk

1 − wk
0) + αwk

1 , (wk+1
1 − wk+1

0 ) + βwk+1
0 = (uk

3 − uk
2) + βuk

2 . (2.9)

As can be ascertained by comparing (2.7) with the new transmission conditions (2.9) we also exchange
the voltages u3 and w0. However, they are multiplied with a weighting factor α while the voltage
difference between the nodal voltages (u3−u2) insures that the currents are also taken into account in
the transmission conditions since we could write the current as α−1(u3 − u2) where α can be viewed
as a resistor. It is evident from this that (2.9) attempts to match the interface voltages as well as
the currents at the interface between the subsystems. Of course, we have to show that the new
transmission conditions lead to the correct converged solution of the fundamental circuit equations.
This result is given in the following lemma.

Lemma 2.1 If the WR algorithm with the new transmission conditions (2.9) converges and if

(α + 1)(β − 1) + 1 6= 0 (2.10)

then the converged solution of the new WR algorithm is identical to the converged solution of the
classical WR algorithm with the transmission conditions (2.7).

Proof If the algorithm with the new transmission conditions converges, then the result from (2.9)
will be

(α + 1) (u∞
3 − w∞

1 ) − (u∞
2 − w∞

0 ) = 0
(u∞

3 − w∞
1 ) + (β − 1) (u∞

2 − w∞
0 ) = 0.

Hence, for this system to imply the classical transmission conditions the determinant needs to be
different from zero, which means (2.10).

For the optimized WR, the equivalent to the classical WR algorithm (2.2) is

u̇k+1 =

[

b1 c1

a1 b2 + c2
α+1

]

uk+1 +

(

f1

f2

)

+

(

0
c2w

k
1 − c2

α+1wk
0

)

ẇk+1 =

[

b3 − a2

β−1 c3

a3 b4

]

wk+1 +

(

f3

f4

)

+

(

a2u
k
2 + a2

β−1uk
3.

0

) (2.11)

where the values uk
3 and wk

0 are determined by the transmission conditions (2.9). Hence, the parameters
α and β enter the WR equations. Taking the Laplace transform as we did above, we find from the
circuit equation for the first subsystem, after some algebra,

ûk+1
2 =

(s − b1)c2

Nu

((α + 1)ŵk
1 − ŵk

0 ), Nu = (α + 1)(s − b1)(s − b2)− c1(s − b1)− (α + 1)a1c1 (2.12)
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and similarly from the circuit equation for the second subsystem

ŵk+1
1 =

(s − b4)a2

Nw

((β − 1)ûk
2 + ûk

3), Nw = (β − 1)(s− b3)(s− b4) + a2(s− b4)− (β − 1)a3c3. (2.13)

Next, we would like to obtain the convergence rate for the optimized WR algorithm in closed form,
similar to the result in (2.6) for the classical WR algorithm. We need to derive a relation between ûk+1

2

and ŵk
1 from (2.12) and similarly a relation between ŵk+1

1 and ûk
2 from (2.13). Using the transmission

condition
(α + 1)ûk+1

3 = ûk+1
2 + (α + 1)ŵk

1 − ŵk
0

we find together with (2.12) for the first subsystem

ûk+1
3 =

(

(s − b1)c2 + Nu

(α + 1)(s − b1)c2

)

ûk+1
2 (2.14)

and similarly for the second subsystem

ŵk+1
0 =

(−(s − b4)a2 + Nw

(β − 1)(s − b4)a2

)

ŵk+1
1 . (2.15)

Inserting (2.15) at the iteration step k into (2.12) we obtain

ûk+1
2 =

(s − b1)c2

Nu

(

(α + 1) −
(−(s − b4)a2 + Nw

(β − 1)(s − b4)a2

))

ŵk
1 (2.16)

and similarly for the second subsystem

ŵk+1
1 =

(s − b4)a2

Nw

(

(β − 1) +

(

(s − b1)c2 + Nu

(α + 1)(s − b1)c2

))

ûk
2 . (2.17)

Finally by inserting (2.17) at iteration k into (2.16) we get a relation over two iteration steps of the
optimized WR algorithm,

ûk+1
2 = ρopt(s,a, b, c, α, β)ûk−1

2 .

where the detailed convergence rate is found after replacing Nu and Nw from (2.12), (2.13)

ρopt(s,a, b, c, α, β) = − c2(s−b1)(β−1)+(s−b1)(s−b2)−a1c1
((s−b3)(s−b4)−a3c3)(β−1)+a2(s−b4) ·

−a2(s−b4)(α+1)+(s−b3)(s−b4)−a3c3
((s−b1)(s−b2)−a1c1)(α+1)+c2(b1−s) . (2.18)

The same result also holds for subsystem 2 and by induction we find as before û2k
2 = (ρopt)

k û0
2 and

ŵ2k
1 = (ρopt)

k ŵ0
1. From the convergence rate (2.18) we can derive the optimal values of the parameters

α and β as summarized in the following theorem.

Theorem 2.2 (Optimal Convergence) The optimized WR algorithm (2.11) converges in two iter-
ations if

α :=
−a3c3

(s − b4)a2
+

s − b3

a2
− 1, β :=

a1c1

(s − b1)c2
− s − b2

c2
+ 1, (2.19)

independently of the initial waveforms û0 and ŵ0.

Proof The convergence rate vanishes if we insert (2.19) into ρopt given by (2.18). Hence, û2
2 and ŵ2

1

are identically zero, independent of û0
2 and ŵ0

1.

This convergence result is optimal, because the resultant waveforms in each subsystem depend in
general also on the source terms fj in the other subsystem. Hence the minimum number of iterations
needed for any WR algorithm with two subsystems to converge in general is two: a first iteration
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where each subsystem incorporates the information of its source terms fj into its waveforms and then
transmits this information to the neighboring subsystems, and a second iteration to incorporate this
transmitted information about fj from the neighboring subsystems into its own waveforms. Here, we
analyze a Jacobi type iteration, but the Gauss-Seidel case is similar.

We observe that the optimal choice (2.19) is not just a parameter, but the Laplace transform
of a linear operator in time, since it depends on s. From the s−1 type frequency domain behavior,
we see that it corresponds to an integral operator in time. Such an operator would be expensive to
implement, it would require a convolution in the transmission condition. In this small model problem,
the integral operator could be avoided by multiplying the transmission conditions by (s − b4) and
(s− b1) respectively. This would lead to second degree polynomials in s which corresponds to second
degree time derivatives in the transmission conditions, since a multiplication with s in the frequency
domain corresponds to a time derivative. Time derivatives can be implemented at a similar cost as
simple voltage values in the transmission condition, since derivatives only require local information.
But we will see for the larger circuit considered below that the optimal transmission condition requires
an integral operator which can not be avoided. This is true for more general circuits as well and we
propose therefore an approximation of the best possible transmission condition, which applies for all
types of circuits. Specifically, in this paper we choose the approximation by a constant which leads to
a very practical algorithm.

2.3 Optimization of the WR Algorithm

The optimization process for the WR algorithm allows us to reduce the large ρcla(ω) of the classical
WR in Figure 2 and make it more uniform so that the overall convergence is faster. Mathematically,
we want |ρopt| << 1, which leads to the min-max problem

min
α,β

(

max
ℜ(s)≥0

|ρopt(s,a, b, c, α, β)|
)

. (2.20)

Again if ρopt is analytic then the maximum of its modulus is attained on the boundary, s = iω, by
the maximum principle. Therefore, the first step in the optimization is to ensure that the convergence
rate ρopt does not have any poles in the right half plane. The conditions for analyticity, with the
corresponding parameter range, are given in

Lemma 2.3 If bi < 0, ai, ci > 0, b1b2 > a1c1, b3b4 > a3c3 and

α >
c2|b1|

b1b2 − a1c1
− 1 =: α, β < − a2|b4|

b3b4 − a3c3
+ 1 =: β (2.21)

then the convergence rate ρopt in (2.18) is an analytic function in the right half of the complex plane.

Proof We only show the proof for the second quotient in ρopt and α, since the proof for the first
quotient and β is similar. The poles of the second quotient in ρopt are given by

s± =
(b1 + b2)(α + 1) + c2 ±

√
d

2(α + 1)
, d = ((b1 + b2)(α + 1) + c2)

2 − 4(α + 1)((b1b2 − a1c1) + c2b1).

If the discriminant is negative, d < 0, then the poles are in the left half plane, because the condition
on α in (2.21) implies

(b1 + b2)(α + 1) + c2 = −(|b1| + |b2|)(α + 1) + c2

<
−(|b1| + |b2|)c2|b1| + c2|b1||b2| − a1c1c2

b1b2 − a1c1

=
−|b1|2c2 − a1c1c2

b1b2 − a1c1
< 0.
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Figure 3: Left: Convergence rate |ρopt(α, ω)|; Right: Optimized convergence rate |ρopt(α
∗, ω)|.

If the discriminant is positive, d > 0, then the poles lie on the real line and with the condition on α
in (2.21) we get

(α + 1)(b1b2 − a1c1) + c2b1 >
c2|b1|

b1b2 − a1c1
(b1b2 − a1c1) + c2b1 = 0

which implies
√

d < |(b1 + b2)(α + 1) + c2|. Therefore, (b1 + b2)(α + 1) + c2 ±
√

d < 0 which implies
again s± < 0.

Since ρopt is analytic we can apply the maximum principle for analytic functions [19]. The max-
imum of |ρopt(s)| for s = σ + iω, σ > 0 is attained on the boundary at σ = 0. The above analysis
simplifies the optimization problem to

min
α>α,β<β

(

max
|ω|<ωmax

|ρopt(iω,a, b, c, α, β)|
)

(2.22)

where we truncated the frequency range at the largest practically relevant frequency for our problem.
The maximum frequency supported by the time discretization, independent of the input waveforms,
is ωmax = π/∆t, but for practical computations often ωmax is considerably smaller. Additionally, one
can show that the modulus of ρopt for s = iω depends on ω2 only, and it suffices to optimize for
positive frequencies, ω > 0.

To find the optimal solution of the min-max problem (2.22) in general, we need to resort to
numerical methods. In our case we know that the subsystems or subcircuits have very similar electrical
properties on both sides of the partitioning boundary as can be observed from Fig. 1. Further, in
the next Section 2.4 we will give the circuit element values which are the same for all internal circuit
elements to keep the optimization simpler. Hence, we choose β = −α where α is the single optimization
parameter. We show on the left hand side of Fig. 3 |ρopt(α, ω)| the result of the optimization with
respect to α. We can observe that the solution of the min-max problem occurs when the convergence
rate at ω = 0 and at ω = ωmax are balanced. Therefore, we use the equation

|ρopt(α
∗, 0)| = |ρopt(α

∗, ωmax)|

to determine the optimal parameter α∗. In this example if we choose ωmax = ∞ we find α∗ = 1
and from the symmetry assumption above we obtain β∗ = −1. Finally, this leads to the convergence
rate shown on the right hand side in Figure 3. We see a considerable improvement in magnitude
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Figure 4: Iteration waveforms for classical WR. Left: iteration 3; Middle: iteration 5; Right: iteration
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Figure 5: Iteration waveforms for optimized WR; Left: iteration 3. Middle: iteration 5; Right:
iteration 7

and uniformity for the convergence rate in comparison to the classical WR method in Figure 2. The
classical convergence rate has a maximum of 2/3 at ω = 0 while the optimized convergence rate has
a maximum of only 1/4 in this example.

2.4 Numerical Experiments for the Small Circuit

We next give a numerical example to illustrate the improvements in the convergence of the optimized
WR algorithm over the classical one. We assume the specific typical circuit parameters

Rs =
1

2
, R1 =

1

2
, R2 =

1

2
, R3 =

1

2
, C1 =

63

100
, C2 =

63

100
, C3 =

63

100
, C4 =

63

100
.

for the circuit in Figure 1. We chose for all the numerical computations the backward Euler method
with a time step of ∆t = 1/10. We first give the results for the classical WR in Figure 4. As a
reference we show in all the waveform graphs the four converged waveforms at nodes 1 to 4 with the
solid lines. Obviously, the highest solid voltage waveform corresponds to node 1. All the waveform
graphs show (left to right) the dashed voltages for WR iterations 3, 5 and 7. The highly non-uniform
convergence behavior of the classical WR is evident and the rapid convergence behavior early in the
time interval with the very slow convergence later on in the time interval is clearly visible. Hence,
good convergence behavior can only be achieved for very small windows in time [16]. However, this
severely limits the efficiency of the overall approach since it leads to the mandatory introduction of
small windows in time. Figure 5 shows the third, fifth and seventh iteration of the optimized WR
algorithm together with the exact solution. Clearly, the convergence towards the end of the time
interval, corresponding to low frequencies ω, is greatly accelerated. It is evident that the optimized
WR algorithm performs much better for low frequencies since the optimized WR algorithm greatly
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Figure 6: Iteration waveforms for classical WR. Left: iteration 3; Middle: iteration 5; Right: iteration
7
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Figure 7: Iteration waveforms for optimized WR; Left: iteration 3. Middle: iteration 5; Right:
iteration 7

reduces |ρopt(0)|. We started with zero initial waveforms and used an input step function with an
amplitude of Is = 1 and a rise time of 1 time unit.

We used the above wide-band frequency process which optimizes over all ω and led to α∗ =
−β∗ = 1, even though in this application low frequencies dominate, the solutions and iterates are
smooth. To simulate the case of a broader frequency range, we start the WR iteration with random
initial waveforms at all nodes in the circuit in Figure 1. This way we can also study the smoothing
properties of the iteration process. The waveforms for this case are shown in Figure 6 for classical
WR. From these Figures one can see how the classical WR algorithm exhibits smoothing properties
but the convergence is slow. This is different for the optimized WR algorithm, as the sequence of
images shows in Figure 7.

To contrast the difference in convergence between the two WR algorithms we finally show the
error as a function of the iteration in Figure 8. The remarkable improvement of the optimized WR
algorithm over the classical one is evident from this comparison.

As the last part of these numerical experiments we investigate how close the theoretically optimized
parameters from Subsection 2.2 are to the parameters that perform best in our numerical experiments.
In Figure 9 we varied α and β and computed the error after 20 iterations of the optimized WR. We
can see that the simple optimization of equilibrating the convergence rate at frequency ω = 0 and for
ω −→ ∞ leads to parameters which are close to the optimal numerical ones. The theoretical value
(α∗, β∗) is indicated by an asterisk while the numerically optimal value is located somewhere in the
10−9 island nearby.
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Figure 8: Convergence rates of classical versus optimized waveform relaxation.

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2

0

0.5

1

1.5

2

2.5

3
                                   

−
9

−9

−9

−9

−9

−9

−8

−8

−
8

−8

−8

−8

−7

−
7

−
7

−7

−7−7

−
6

−
6

−6

−6−6

−
5

−5

−5
−5

−5

−5

−
4

−
4

−4 −4 −4

−4

−
3

−3 −3 −3−2
−2

−2−1
−1

−1
0

0 0
1 1

α

β

Figure 9: Numerical and analytical optima compared. The level lines represent the log of the error
after 20 WR iterations.

11



PSfrag

C CCCCC C

R RRRR R

Figure 10: An infinitely long RC circuit chain

3 Analysis of a Large RC Circuit

So far we have concentrated on the analysis of the relatively small circuit in Figure 1. In this Section,
we investigate the impact of the circuit size on the performance of the optimized WR algorithm. In
fact, in the analysis below we take the limiting case where the number of sections, or the subsystem
size, is infinite as is indicated in Figure 10. This will show what the impact of the subsystem size is
on the convergence properties of the algorithm. The equations for the infinitely large circuit matrix
are

ẋ =













. . .
. . .

. . .

a b c
a b c

. . .
. . .

. . .













x + f . (3.1)

The vector of unknown waveforms is x = (. . . , v−1, v0, v1, . . .)
T and represents an infinite set of nodal

voltages. The constant entries in the tridiagonal matrix are given by

a =
1

R C
; b = −

(

2

R

)

1

C
; c =

1

R C
= a

where the circuit elements, R and C are assumed to be strictly positive and constant. The source
term on the right hand side is given by the vector of functions f(t) = (. . . , f−1(t), f0(t), f1(t), . . .)

T

and we need an initial condition x(0) = (. . . , v0
−1, v

0
0 , v

0
1 , . . .)

T . Since the circuit is infinitely large, we
have to assume that all voltage values stay bounded as we move towards the infinite ends of the circuit
to have a well posed problem.

3.1 The Classical WR Algorithm for the Large Circuit

We formulate a block partitioned version equivalent to (2.2) of the classical WR algorithm for the
circuit in Figure 10 with two sub-circuits,

u̇k+1 =







. . .
. . .

. . .

a b a
a b






uk+1 +







...
f−1

f0






+







...
0

awk
1







ẇk+1 =







b a
a b a

. . .
. . .

. . .






wk+1 +







f1

f2
...






+







auk
0

0
...







(3.2)

with the initial conditions uk+1(0) = (. . . , v0
−1, v

0
0)

T and wk+1(0) = (v0
1 , v

0
2 , . . .)

T . To start the WR
iteration, some initial waveforms u0(t) and w0(t) are used.

As in Subsection (2.1) it suffices to analyze the homogeneous problem, f(t) = 0 with zero initial
conditions x(0) = 0 for the convergence study. The Laplace transform yields in the s ∈ C domain

sûk+1 =







. . .
. . .

. . .

a b a
a b






ûk+1 +







...
0

aŵk
1






, sŵk+1 =







b a
a b a

. . .
. . .

. . .






ŵk+1 +







aûk
0

0
...






.

(3.3)
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Solving the first system of equations for ûk+1
j corresponds to solving the recurrence relation

aûk+1
j−1 + (b − s)ûk+1

j + aûk+1
j+1 = 0, j = 0,−1,−2, . . .

with the general solution
ûk+1

j = Ak+1λj
+ + Bk+1λj

−

where λ± are the roots of the characteristic polynomial of the recurrence relation,

λ± =
s − b ±

√

(s − b)2 − 4a2

2a
. (3.4)

To determine the constants Ak+1 and Bk+1 for the general solution, we need to use the transmission
condition at the subsystem interface and the boundedness condition at infinity. Some algebra shows
that for |b| ≥ 2a and s = σ + iω with σ > 0 we have |λ+| > 1 and |λ−| < 1 and by the boundedness
condition we obtain Bk+1 = 0. Further, we can determine Ak+1 from the last equation at the interface,

aûk+1
−1 + (b − s)ûk+1

0 = Ak+1(aλ−1
+ + b − s) = −aŵk

1

which leads to

Ak+1 = − aŵk
1

(aλ−1
+ + b − s)

.

Hence the general solution for ûk+1
j is given by

ûk+1
j = − aŵk

1

(aλ−1
+ + b − s)

λj
+. j = 0,−1,−2, . . . (3.5)

Similarly, solving the second subsystem for ŵk+1
j we obtain

ŵk+1
j = − aûk

0

aλ− + b − s
λj−1
− , j = 1, 2, 3, . . . (3.6)

Inserting this result at iteration k into (3.5) we find over two iteration steps the mapping

ûk+1
0 = ρcla(s, a, b)ûk−1

0

where the convergence rate ρcla is given by

ρcla(s, a, b) =
a2

(aλ−1
+ + b − s)(aλ− + b − s)

=
1

λ2
+

. (3.7)

To obtain the last equality on the right, we used the formula for λ± given in (3.4). Since the same
result holds for ŵk+1

1 we find by induction as usual û2k
0 = (ρcla)

k û0
0 and ŵ2k

1 = (ρcla)
k ŵ0

1. Hence, for
a large number of iterations the classical WR always converges, since |λ+| > 1. Also, the convergence
rate is analytic for s = σ + iω with σ > 0 under the condition 2a ≤ |b|. We again use the maximum
principle for analytic functions [19] to find the maximum of |ρcla| to be on the boundary of the right
half of the complex plane, at σ = 0. However, taking the limit on the boundary as ω goes to zero, we
find that

|ρcla| =
|b| −

√
b2 − 4a2

|b| +
√

b2 − 4a2
= 1 if 2a = |b|.

Unfortunately, often for RC type circuits, or diffusion type equations in general, the last equality is
satisfied. This implies that convergence will be very slow for low frequencies ω close to zero and the
mode ω = 0 will not converge. Fortunately, in a realistic transient analysis, the frequency ω = 0 can
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Figure 11: Convergence rate as a function of the frequency parameter ω for WR applied to the large
RC circuit with a lower bound on the frequencies, |ω| > ωmin.

not appear in the error, because the error at t = 0 is zero, since the initial condition is known. The
estimate for the lowest frequency occurring in the transient analysis depends on the length of the time
interval [0, T ]. Expanding the signal in a sine series sin(kπt/T ) for k = 1, 2, . . . leads to the estimate
ωmin = π/T for the lowest relevant frequency. If, for example, the transient analysis time is T = 20,
we get ωmin = π/20. The highest frequency ωmax depends again on the resolution of the discretization
in time, and we use as before ωmax = π/∆t which is the highest possible oscillation on a grid with
spacing ∆t.

In our numerical experiments for the large system we use a system with 100 nodes total and a
transient analysis time T = 20 with a time step ∆t = 1/20. The circuit elements are the same as
those used in the numerical experiments for the small circuit in Subsection 3.4. For this example the
dependence of the convergence rate on ω is given in Figure 11 for positive ω’s only due to symmetry.
By comparing the convergence rate for the small subsystem example in Figure 2 we observe that the
convergence behavior is very similar, low frequencies converge slowly and high frequencies converge
very fast.

3.2 The Optimal WR Algorithm for the Large Circuit

To obtain an optimized WR algorithm, we replace similarly to the small circuit case the classical
transmission conditions

uk+1
1 ≡ wk

1 , wk+1
0 ≡ uk

0

by the new transmission conditions given in (2.9),

(uk+1
1 − uk+1

0 ) + αuk+1
1 = (wk

1 − wk
0) + αwk

1 , (wk+1
1 − wk+1

0 ) + βwk+1
0 = (uk

1 − uk
0) + βuk

0 . (3.8)

Analogous to the small RC circuit case, these new transmission conditions imply the old ones at
convergence by Lemma 2.1. The partitioned infinite system with the parameters α and β for the
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optimized WR is given by

u̇k+1 =







. . .
. . .

. . .

a b a
a b + a

α+1






uk+1 +







...
f−1

f0






+







...
0

awk
1 − a

α+1wk
0







ẇk+1 =







b − a
β−1 a

a b a
. . .

. . .
. . .






wk+1 +







f1

f2
...






+







auk
0 + a

β−1uk
1

0
...







(3.9)

together with the transmission conditions (3.8) which define the values uk
1 and wk

0 . Taking the Laplace
transform s ∈ C as before and assuming that solutions stay bounded, we find the same type solution
for the recurrence relation as in the classical WR algorithm,

ûk+1
j = Ak+1λj

+, j = 1, 0,−1,−2, . . . ŵk+1
j = Bk+1λj−1

− , j = 0, 1, 2, 3, . . .

where the constants Ak+1 and Bk+1 are now different due to the new transmission conditions. Using
(3.8) we find

Ak+1 =
(α + 1) − λ−1

−

(α + 1)λ+ − 1
Bk, Bk+1 =

(β − 1) + λ+

(β − 1)λ−1
− + 1

Ak.

Applying the second relation at step k to the first one, we find

ûk+1
0 = ρopt(s, a, b, α, β)ûk−1

0

where the convergence rate ρopt, using that λ+ = 1/λ−, is given by

ρopt(s, a, b, α, β) =
(α + 1) − λ+

(α + 1)λ+ − 1
· (β − 1) + λ+

(β − 1)λ+ + 1
(3.10)

The same relation also holds for the other subsystem and by induction we find û2k
0 = (ρopt)

k û0
0 and

ŵ2k
1 = (ρopt)

k ŵ0
1.

Theorem 3.1 (Optimal Convergence) The optimized WR algorithm (2.11) converges in two iter-
ations for the choice of parameters

α̂ := λ+ − 1, β̂ := −λ+ + 1 (3.11)

independently of the guess for the initial waveforms.

Proof The proof is similar to the small circuit case in Subsection 2.2.

3.3 Optimization Process for the Large Circuit

The fundamental optimization process is clearly the same for the large circuit as it is for the small
one. Hence, we use the min-max criterion in (2.20) and the same fundamental overall approach to get
the best performance of the new WR algorithm. Equivalent to Lemma 2.3 we have

Lemma 3.2 The convergence rate ρopt in (3.10) is under the conditions

b < 0, a > 0, 2a ≤ −b (3.12)

α > 0, β < 0 (3.13)

an analytic function in the right half of the complex plane, s = σ + iω with σ > 0.
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Figure 12: Left: Convergence rate |ρopt(α, ω)|; Right: Optimized rate |ρopt(α
∗, ω)|.

Proof λ+ is an analytic function in the right half plane, since the argument under the square
root avoids the negative real axis under the conditions (3.12). Hence, it suffices to show that the
denominator does not have zeros. But with condition (3.13) and the knowledge that |λ+| > 1 poles
are excluded.
We again use the maximum principle to find the maximum in |ρopt(s)| for s = σ + iω, σ > 0 on the
boundary at σ = 0. This yields the optimization problem

min
α>0,β<0

(

max
ωmin<|ω|<ωmax

|ρopt(iω, a, b, α, β)|
)

where we truncated the frequency range by a minimal and maximal frequency relevant for our problem
as we did earlier. We again use the similarity of the subsystems as was done above in Section 2.3
for the small circuits. The subsystems in the large circuit are behaving identically on both sides of
the partition, so we again assume for simplicity that β = −α, although this may not give the best
possible solution. This assumption simplifies the optimization process and leads for the numerical
example in Subsection 3.4 to the surface for |ρopt(α, ω)| given in Figure 12 on the left. There we can
see that the solution of the min-max problem is obtained when the convergence rate at ω = ωmin and
the convergence rate at ω = ωmax are balanced, which gives the equation

|ρopt(α
∗, ωmin)| = |ρopt(α

∗, ωmax)|

to be solved for the optimal parameter α∗. For the example with ωmin = π/T and ωmax = π/∆t we
find α∗ = 0.73455 which leads to the convergence rate shown in Figure 12 on the right. The maximum
is about 0.33 and should be compared with the rate obtained by the classical WR with maximum
0.73, shown in Figure 11.

3.4 Numerical Experiments for the Large Circuit

We solve a model circuit with 100 nodes with the same fundamental parameters as we did for the
small circuit,

Rs =
1

2
, Ri =

1

2
, i = 1, . . . , 99 Ci =

63

100
, i = 1, . . . , 100.

The solution approach is again based on the backward Euler integration technique and our transient
analysis time is t ∈ [0, 20] with a time step of ∆t = 1/20. From this we find the error as a function
of the WR iterations where we use a random initial starting waveform to get a distributed spectrum.
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Figure 13: Convergence rates of classical versus optimized WR.
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Figure 14: Numerical and analytical optima compared.

The result for the optimized WR algorithm in Figure 13 show how strongly the convergence rate has
been improved by the optimization process compared to the classical WR algorithm. One can also
compare the result for the large subsystems with the error decay for the small subsystems in Figure 8
which shows that the convergence for both the classical and the optimized WR algorithms is similar,
in spite of the large difference in the subsystem size.

We finally investigated how close the theoretically optimal parameter α∗ is to the best possible
one for the numerical code. In Figure 14 we varied α and computed the error after 20 iterations of the
optimized WR algorithm. Again the simple optimization of equilibrating the convergence rate at the
lowest frequency ωmin and highest frequency ωmax leads to parameters which are close to the optimal
numerical ones as shown in Figure 14.

4 Multiple Subsystems

So far we investigated the local convergence of the optimized WR algorithm between two subsystems.
In real life applications the circuit needs to be partitioned into multiple subsystems to gain a speedup
advantage over a flat single matrix analysis. In this Section we investigate the impact of multiple
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subsystems on the convergence for the optimized WR algorithm. We work again with the large circuit
given in Figure 10. The circuit is partitioned into N subsystems with corresponding solutions un,
n = 1, 2, . . . N , and we assume that each subsystem has the number of nodal voltage values Mn. The
optimized waveform relaxation algorithm then becomes

u̇k+1
1 =







. . .
. . .

. . .

a b a
a b + a

α+1






uk+1

1 +







...
0

auk
2,2 − a

α+1uk
2,1







u̇k+1
n =















b − a
β−1 a

a b a
. . .

. . .
. . .

a b a
a b + a

α+1















uk+1
n +















auk
n−1,Jn−1−1 + a

β−1uk
n−1,Jn−1

0
...
0

auk
n+1,2 − a

α+1uk
n+1,1















, n = 2, 3 . . . N − 1

u̇k+1
N =







b − a
β−1 a

a b a
. . .

. . .
. . .






uk+1

N +







auk
N−1,JN−1−1 + a

β−1uk
N−1,JN−1

0
...







(4.1)
where n represents the subsystem number.

Note that we have not included a source term f in (4.1), because by linearity it suffices to analyze
the homogeneous system as before. We will consider a more typical case below, with a small number
of sources, after considering first the general result where each subsystem can have its own source.

Theorem 4.1 (Convergence in N iterations) If the optimal transmission conditions from (3.11)
are used, α := λ+ − 1 and β := −λ+ + 1, then the optimized WR algorithm (4.1) converges in N
iterations.

Proof Laplace-transforming each subsystem, we find the general solution on subsystem n like in the
case of two subsystems to be

ûk+1
n,j = Ak+1

n λj
+ + Bk+1

n λj
−, n = 1, 2, . . . N. (4.2)

In the first iteration we find on the first subsystem the constant B1
1 = 0, because the solution stays

bounded at infinity, and the first iterate on the first subsystem is û1
1,j = A1

1λ
j
+. This solution is now

used in the second iteration by the second subsystem in the transmission condition, and we find

aû1
1,J1−1 +

a

β − 1
û1

1,J1
= aA1

1λ
J1−1
+

(

1 +
1

β − 1
λ+

)

= 0

because of the special choice of β. Hence, a zero transmission condition is imposed on the second
subsystem on the left in the second iteration,

û2
2,1

(

s −
(

b − a

β − 1

))

− aû2
2,2 = 0.

Inserting the general form (4.2) of the solution into this transmission condition, we obtain, using
β = −λ+ + 1 and λ+λ− = 1

(A2
2λ+ + B2

2λ−)
(

s −
(

b − a
β−1

))

− a(A2
2λ

2
+ + B2

2λ2
−)

= A2
2(λ+(s − b) − a − aλ2

+) + B2
2(λ−(s − (b + a/λ+)) − aλ2

−)
= −A2

2(aλ2
+ + (b − s)λ+ + a) − B2

2λ−((b − s) + 2aλ−) = 0.

Now, the factor multiplying A2
2 vanishes identically, since λ+ is exactly a root of the quadratic equa-

tion. Since the factor multiplying B2
2 does not vanish, we must have B2

2 = 0 and the second iterate
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on the second sub-circuit is again of the form û2
2,j = A2

2λ
j
+ as the first iterate was on the first sub-

system. By induction at iteration N we have BN
n = 0 for all n = 1, 2, . . . N . A similar argument can

be applied in the other direction for the coefficients Ak
n and we find at iteration N that AN

n = 0 for
all n = 1, 2, . . . N as well. Hence we have ûN

n,j = 0 for all waveforms and the algorithm has converged.

It is important to note that this is again an optimal result. No other WR algorithm can converge
faster for the case of N sequential subsystems, where each system has a source associated with it. The
reason is that the solution for the last subsystem depends on the source terms in the first subsystem
and vice versa. If information is exchanged only between neighboring subsystems, as is the case for
classical Jacobi WR, then it can propagate at most by one subsystem for each iteration. Hence, there
are at least N iterations needed to propagate the information across N sequential subsystems. The
proof for a similar result for steady convection diffusion problems can be found in [22] and for the
wave equation in [23].

However, for circuit applications, where the sources are usually limited to a few subsystems, an
appropriate scheduling algorithm can be used which starts at the sources. In this case convergence
is obtained in a few iteration with the optimal transmission conditions (3.11) if for example a basic
schedule [10] is used. The subsystems at the sources are solved first and the other subsystems are
solved in sequence in a Gauss-Seidel WR fashion. For a simple chain circuit with the source at the
input e.g. Figure 1, the source term is at the leftmost subsystem. We start by solving this subsystem
first. It is important to observe that we immediately find the exact solution for the optimized WR
with conditions (3.11) since all the other sources in the other subsystems are zero. Finally, all the
other subsystems are solved sequentially according to the schedule. This leads to the exact solution for
each subsystem. Hence, we observe that the optimal transmission conditions transform the RC circuit
into a quasi one-way circuit [10]. In general, very few practical circuits have one-way properties. An
example is a chain of N ideal inverters without feeback capacitances. Of course, this circuit can be
solved in one iteration with a Gauss-Seidel scheme for both the classical and the optimized algorithms.

Finally, we would like to point out that the best possible transmission conditions for the optimized
WR algorithm with N > 2 subsystems are the same as the best transmission conditions for the
WR algorithm with two subsystems. The optimal transmission conditions require an expensive time
domain integral operator. To circumvent this problem, we propose to use the same optimization
introduced for the two sub-circuit case in Section 3.3 for practical applications. As we have shown,
the convergence is very fast for this approach.

5 Conclusions

We have shown that the convergence of the classical waveform relaxation algorithm can be drastically
enhanced by improving the data exchange between the partitioned subsystems. The new concept is
to exchange both voltage and current, or derivatives, rather than just voltage which was the principle
behind classical waveform relation. With these new exchange quantities, which we term transmission
conditions, we demonstrate rigorously that very uniform convergence can be achieved with very few
iterations for RC circuits which are well known to lead to much slower, non-uniform convergence
for classical waveform relaxation. This approach also makes the usually difficult partitioning process
simpler since more agressive partitioning strategies can be used. The computer experiments given
confirm the theoretical results.

The results shown in this paper for the two RC model circuits can be extended. A first extension to
a transmission line circuit is given in [24], where the performance of the classical waveform relaxation
algorithm is also greatly enhanced with the new transmission conditions. A second extension is to
circuits which have capacitors and resistors with variable values. In that case our analysis in Section
3 does not apply directly, but we propose to freeze the values of the circuit elements at the interface
and use the results of our analysis for these frozen coefficients. Extensive numerical experiments will
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appear elsewhere. For a formal proof of the optimality of the optimized parameters proposed in this
paper, see the recent masters thesis [25]. Finally to use the optimized waveform relaxation algorithm
for circuits with more complicated connections will involve a careful local analysis of the types of
connections, which we are currently working on.
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