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Abstract— Today, parallel processing is necessary for the solu-
tion of large systems of ordinary differential equations (ODEs)
as they are obtained from large electronic circuits or from
discretizing partial differential equations (PDEs). Using a fine
mesh in the discretization of these problems also leads to large
compute times and large storage requirements. The waveform
relaxation (WR) technique, which is ideally suited for the use of
multiple processors for problems with multiple time scaleshas
been used to solve such problems on parallel processors for such
large systems of ODEs. However, applying the so-called classical
WR techniques to strongly coupled systems leads to non-uniform
slow convergence over a window in time for which the equations
are integrated. In this paper, we present a so-called optimized WR
algorithm applied to transmission line circuit problems based on
the longitudinal partitioning into segments. This greatly improves
the convergence for strongly coupled RLCG transmission line
(TL) type circuits. The method can be applied to other similar
circuits. The method is based on optimal parameters that lead
to the optimal convergence of the iterations. Here, we present a
practical optimized WR algorithm which is easy to use and is
computationally inexpensive.

I. I NTRODUCTION

The approach we use for decomposing large systems of
ODEs into smaller decoupled subsystems is thewaveform
relaxation (WR) algorithm which consists of decoupling the
system into smaller dynamical subcircuits. The WR method
was first introduced for time-domain analysis of nonlinear
dynamical systems, in particular, very large-scale integrated
(VLSI) circuits in Lelarasmeeet. al. [1] and [2]. The WR
technique has the potential to become a very useful approach
for the transient analysis for VLSI MOSFET and other types
of circuits, due to the favorable numerical properties and the
potential speed and accuracy improvements. Early surveys
of the so-called classical algorithms with emphasis on the
simulation of VLSI circuits can be found in [3] and [4].
Since then the WR algorithms have evolved to the solution of
circuits and PDEs in parallel. The WR approach was applied
to a multitude of problems in the circuit theory area, see for
example [4]–[6], and in the partial differential equationsof
evolution type area, see for example [7]–[9] and references
therein. In all of the WR techniques, the processors exchange
appropriate waveforms between subsystems or subcircuits,
and the natural coupling between blocks of components of
the circuit (system) is preserved by so-called transmission
conditions. However, as we will show, the convergence of

the WR algorithm depends on the transmission conditions.
Further, the work on PDEs shows that the classical transmis-
sion conditions are far from optimal. For challenging, highly
coupled problems, more efficient transmission conditions are
required which exchange additional information. For PDEs,
the work by Ganderet. al. in [10]–[13] and references therein
has led to an important optimization process. In the circuit
domain, improvement has been pursued since the original
WR work using techniques such as overlap, etc., to enhance
the transmission of information across the interfaces between
subcircuits, e.g. [14]. However, none of them included the
optimization process which was introduced originally in the
PDEs work. Gander and Ruehli were the first to introduce
optimized transmission conditions for the circuit domain.This
was an essential step for the convergence of the WR algorithm
for strongly coupled circuits such as directly coupled TL
circuits. They demonstrated that this new technique can be
applied effectively to diffusive circuits in [15] and to TL
circuits in [16], without overlapping subcircuits. These new
techniques are calledoptimizedwaveform relaxation (oWR)
algorithms since they are based on an optimization process.

In recent work on TL circuits [17] and references therein,
overlapping subcircuits, which relate to overlapping subdo-
mains in domain decomposition, e.g., [12], were considered.
Also, practical oWR algorithms were proposed, leading to
further convergence improvements. Further, the oWR approach
was applied in [18], [19] to electromagnetic and circuit prob-
lems which shows that a multitude of circuit problems can
be solved. For Maxwell’s equations in the frequency domain,
see [20]–[24]. Also, the classical WR has been applied to
new problems. New work on TL circuits [25] shows that
the cWR approach leads to major improvements for multiple
coupled transmission lines by transverse partitioning using
cWR. In this case, the weak and limited line-to-line coupling is
exploited. It is clear that these works are only the beginning of
problems which can be solved using WR. So far, longitudinal
and transverse partitioning have not been applied togetherfor
TLs. In [17], only single TLs were considered. However, all
the TL work lays the foundation for further work in this area.
In [17], the authors considered a transverse electro-magnetic
(TEM) mode type TL model in which the conductanceG
was ignored. Today, such losses are important especially for
high performance circuits. For example, for VLSI designs [26],



RLC models are incomplete if the dielectric leakageG is not
included. Hence, in this paper we extend the oWR technique
to RLCG models. In Section 2 we introduce cWR and oWR
algorithms for the RLCG model problem. We give numerical
experiments in Section 3, and we conclude in Section 4.

II. WR A LGORITHMS FORRLCG TRANSMISSION L INES

We analyze in this section WR algorithms applied to the
RLCG TL model circuit shown in Fig. 1. Assuming the RLCG
TL model circuit hasn sections per unit length and that the
circuit is infinitely long, the modified nodal analysis (MNA)
circuit equations can be simplified to the system of ODEs
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where the solution vectorx = (. . . , x−1, x0, x1, . . . )

T is
ordered in a form such that nodal voltages alternate with
currents. The odd index rows, which havec and b̃ elements,
correspond to voltage unknowns, whereas the even index rows,
which havea andb elements, correspond to current unknowns.
The constant entries of the matrix are given bya = 1

Li

,
b = −Ri

Li

, b̃ = −Gi

Ci

, and c = − 1
Ci

, where the characteristic
electronic component parameters areRi = R

n
, Li = L

n
,

Ci = C
n

, and Gi = G
n

, and the circuit elements per unit
length,R, L, C, andG, are positive constants. The source
term on the right hand side is given by the vector of functions
f(t) = (. . . , f−1(t), f0(t), f1(t), . . . )

T , and we need an initial
condition x(0) = (. . . , x0

−1, x
0
0, x

0
1, . . . )

T . Since the circuit
is infinitely large, we need to assume that all unknowns are
bounded as we move towards the ends of the circuit to have a
well posed problem. We partition the circuit at an odd index
row, i.e., at a row corresponding to a voltage unknown, into
two subcircuits (subsystems) with overlap which ensures that
both types of variables are covered. We call the unknowns
in the first subsystemu(t) and in the second subsystem, we
call them w(t) for t ∈ [0, T ], whereT is the end of the
transient analysis interval. It should be noted that similar WR
algorithms could be developed for other choices of partitioning
and overlap. The cWR algorithm is given by

u̇k+1 =







.. .
. . .

. . .
a b −a

−c b̃






uk+1 +







...
f−2

f−1






+







...
0

cwk
0






,
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with corresponding initial conditionsuk+1(0) andwk+1(0).

To start the WR iteration, some initial waveformsu0(t) and

w0(t) are used. We replace now the classical transmission
conditions,uk+1

0 = wk
0 , w

k+1
−2 = uk

−2, by the new ones

uk+1
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which implies the classical transmission conditions at con-
vergence ifα 6= β, see [16]. Using the new transmission
conditions, the new oWR algorithm is given by
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Comparing the new transmission conditions with the classical
ones, we can see that the new ones exchange more information
by exchanging a combination of voltage and current in both
directions. Further, the new ones have weighting factorsα

andβ which are part of the WR equations and can be used
to optimize the performance of the new WR algorithm. By
linearity of the above systems of ODEs, we consider the
homogeneous problem,f(t) = 0 andx(0) = 0. Based on the
Laplace transform with parameters = σ + iω ∈ C, and the
maximum principle for analytic complex functions, we have
done a mathematical analysis, which is beyond the scope of
this short paper, for the convergence study. This analysis leads
to the convergence factors

ρcla =

{

µ2
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µ2
+, |µ+| < 1,
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for the cWR and oWR algorithms, respectively, andµ± are
given by

µ± =
2a|c|+(|b̃|+s)(|b|+s)±

√
(2a|c|+(|b̃|+s)(|b|+s))2−4a2|c|2

2a|c| .

For convergence, one needs the modulus of the convergence
factors, |ρcla| and |ρopt|, be less than one forR(s) ≥ 0,
and for fast convergence one needs|ρcla| ≪ 1 for the cWR
algorithm, and|ρopt| ≪ 1 for the new WR algorithm. Clearly,
ρcla is a fixed function of the circuit elements and thus the
cWR algorithm does not have any adjustable parameters to
be chosen in order to improve the performance. Therefore,
we can only analyze for the cWR algorithm if|ρcla| < 1
is satisfied. In contrast,|ρopt| includes parametersα and β
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Fig. 1. Single RLCG TL model.

that can be chosen to greatly accelerate the convergence of
the new WR algorithm. The optimal values forα andβ that
make the convergence factorρopt vanish and lead to an optimal
convergence in two iterations are

α = (s−b̃)µ−

c(1−µ−) , β = − c(1−µ−)

(s−b̃)µ−

, |µ+| > 1,

α = (s−b̃)µ+

c(1−µ+) , β = − c(1−µ+)

(s−b̃)µ+

, |µ+| < 1.
(II.4)

As one can see, the aforementioned optimal choices are very
complex and they are expensive to be used. Therefore, we look
for approximations of the optimal values which are easy to use
and inexpensive. We approximateα andβ by constants. The
key point now is how to chooseα andβ so that the obtained
new WR algorithm converges fast and much faster than the
cWR algorithm that is known to be very slow for transmission
line problems. Mathematically, we wantα and β that make
|ρopt| ≪ 1. To do so, we have solved the optimization problem

min
α,β

(

max
R(s)≥0

|ρopt(s, a, b, b̃, c, α, β)|
)

.

From the optimal choice (II.4) one can see thatβ = − 1
α

, and
since the circuit considered here behaves identically in both
sides of the partition, we simplify the optimization process by
takingα = − 1

β
. Further, using the fact thatρopt is analytic in

the right half of the complex plane providedα < 0 andβ > 0,
by the maximum principle we have that the maximum of|ρopt|
is on the boundary, i.e., atσ = 0. Moreover, the modulus of
the convergence factorρopt is symmetric about the real axis,
and hence, it is sufficient to consider non-negative frequencies.
Therefore, our min-max problem can be reduced to

min
α<0

(

max
0≤ω<∞

|ρopt(iω, a, b, b̃, c, α)|
)

. (II.5)

Our extensive numerical experiments have shown that the
solution of the min-max problem (II.5) occurs when|ρopt|
at ω = 0 and that atω = ω are balanced, whereω is the
interior maximum of|ρopt|. Therefore,α∗ is characterized by
the equation

|ρopt(0, a, b, b̃, c, α∗)| = |ρopt(ω, a, b, b̃, c, α∗)|, (II.6)

independently of the transient analysis timeT . It should
be noted that for the RLC circuit case considered in [17],
there was a dependence onT when solving the min-max
problem analyzed there. In Fig. 2, we give an example for the
modulus of the classical convergence factor and the optimized
convergence factor from the numerical section, using the
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Fig. 2. Optimized convergence factor versus classical one.

optimized valueα∗ = −0.5426. The equioscillation inρopt
at ω = 0 andω = ω is clear from Fig. 2. Further, one can
see that|ρcla| is not uniform and has a maximum of about
0.9317. Whereas|ρopt| shows a remarkable improvement in
magnitude and uniformity and has a maximum of only about
0.4272.

III. N UMERICAL EXPERIMENTS

We consider in this section two examples. The first one is
a small RLCG TL model which is1 cm long with 4 sections,
in order to show that the proposed oWR algorithm works
well for small TLs. The second example is a large RLCG
TL model, where we choose a10 cm long TL circuit with
200 sections. We use the source termIs(t) = 10t mA, for
0 < t < 0.1 ns, andIs = 1 mA for t ≥ 0.1 ns, and the
analysis time interval ist ∈ [0, T ], with transient analysis
time T = 20 ns. For the circuit elements per unit length,
we useR = 0.25 Ω/cm, L = 4 nH/cm, C = 1.6 pF/cm,
and G = 2 mho/cm. The load and termination resistances
are chosen to be50 Ω. To integrate the equations in time,
we use the backward Euler method with500 time steps, i.e.,
∆t = T

500 . We use zero initial conditions and random initial
waveforms. The optimized parametersα∗ = −0.5426 and
β∗ = − 1

α∗
are used in the oWR algorithm. To illustrate

the difference in convergence between the cWR and oWR
algorithms analyzed in this paper, we show in Fig. 3 the error
as a function of iterations measured in infinity norm between
the converged solution computed using the entire circuit, i.e.,
by a conventional Spice type approach, and the iterates. We
show the error for the small circuit example on the left while
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Fig. 4. The first and last voltage values, the exact values in solid line, and
in dashed line on the top, the iterates 3 and 10 for cWR algorithm, and on
the bottom for oWR algorithm.

we give the results for the large circuit on the right. We can
observe better convergence for the new oWR algorithms than
the cWR algorithm which has difficulties to converge in both
examples. Note that we include on the right of Fig. 3 the error
of the oWR using the optimized parametersα∗ = −0.3651
and β∗ = − 1

α∗
from [17] for comparison purposes. It is

clear that the new oWR algorithm presented here is better
than the one introduced in [17] when the TL model is the
RLCG type model. We finally show in Fig. 4 the first and
last voltage values over time. The solid line represents the
converged solution in all graphs. On the top, we show the
results from the cWR algorithm with dashed lines, while the
bottom represents the oWR algorithm. We observe that the
convergence for the cWR algorithm is slow, and much faster
convergence is obtained by the new oWR algorithm, where
an accurate result is obtained in about 10 iterations without
subdivision of the time into time windows.

IV. CONCLUSIONS

In this paper, we included the shunt loss G in the trans-
mission line model for the oWR approach for the difficult
longitudinal partitioning problem. We presented a practical
oWR algorithm that is inexpensive and easy to use. Also,
it greatly improves the convergence for a single RLCG line
type circuit. It could also be directly applied to multiple
lines in conjunction with the transverse partitioning technique.
The results show the better performance of the new oWR
algorithm for an RLCG model over the cWR. To the best
of our knowledge, this is the first time that such algorithms
have been proposed and analyzed for TL models with shunt
resistencesG.
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