Optimized Waveform Relaxation Solution of RLCG
Transmission Line Type Circuits

Mohammad D. Al-Khaleel
Yarmouk University
Jordan
Email: khaleel@yu.edu.jo

Abstract— Today, parallel processing is necessary for the solu-

tion of large systems of ordinary differential equations ((DES)
as they are obtained from large electronic circuits or from
discretizing partial differential equations (PDEs). Usirg a fine
mesh in the discretization of these problems also leads torige
compute times and large storage requirements. The waveform
relaxation (WR) technique, which is ideally suited for the wse of
multiple processors for problems with multiple time scaleshas
been used to solve such problems on parallel processors fanch
large systems of ODEs. However, applying the so-called ckisal
WR techniques to strongly coupled systems leads to non-uioifm
slow convergence over a window in time for which the equatios
are integrated. In this paper, we present a so-called optinzied WR
algorithm applied to transmission line circuit problems based on
the longitudinal partitioning into segments. This greatlyimproves
the convergence for strongly coupled RLCG transmission lie
(TL) type circuits. The method can be applied to other simila
circuits. The method is based on optimal parameters that leé
to the optimal convergence of the iterations. Here, we prese a
practical optimized WR algorithm which is easy to use and is
computationally inexpensive.
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the WR algorithm depends on the transmission conditions.
Further, the work on PDEs shows that the classical transmis-
sion conditions are far from optimal. For challenging, hygh
coupled problems, more efficient transmission conditiones a
required which exchange additional information. For PDEs,
the work by Gandeet. al.in [10]-[13] and references therein
has led to an important optimization process. In the circuit
domain, improvement has been pursued since the original
WR work using techniques such as overlap, etc., to enhance
the transmission of information across the interfaces betw
subcircuits, e.g. [14]. However, none of them included the
optimization process which was introduced originally ire th
PDEs work. Gander and Ruehli were the first to introduce
optimized transmission conditions for the circuit domdihis

was an essential step for the convergence of the WR algorithm
for strongly coupled circuits such as directly coupled TL
circuits. They demonstrated that this new technique can be
applied effectively to diffusive circuits in [15] and to TL
circuits in [16], without overlapping subcircuits. Thesewn
techniques are calledptimizedwaveform relaxation (0WR)

The approach we use for decomposing large systemsaddorithms since they are based on an optimization process.

ODEs into smaller decoupled subsystems is teveform

In recent work on TL circuits [17] and references therein,

relaxation (WR) algorithm which consists of decoupling theoverlapping subcircuits, which relate to overlapping subd
system into smaller dynamical subcircuits. The WR methadains in domain decomposition, e.g., [12], were considered
was first introduced for time-domain analysis of nonlineaklso, practical oWR algorithms were proposed, leading to
dynamical systems, in particular, very large-scale irdtggt further convergence improvements. Further, the oWR aggbroa
(VLSI) circuits in Lelarasmeeet. al. [1] and [2]. The WR was applied in [18], [19] to electromagnetic and circuit pro
technique has the potential to become a very useful approdams which shows that a multitude of circuit problems can
for the transient analysis for VLSI MOSFET and other typese solved. For Maxwell’'s equations in the frequency domain,
of circuits, due to the favorable numerical properties amel tsee [20]-[24]. Also, the classical WR has been applied to
potential speed and accuracy improvements. Early surveysy problems. New work on TL circuits [25] shows that
of the so-called classical algorithms with emphasis on tlilee c(WR approach leads to major improvements for multiple
simulation of VLSI circuits can be found in [3] and [4].coupled transmission lines by transverse partitioninqiaisi
Since then the WR algorithms have evolved to the solution o¥WR. In this case, the weak and limited line-to-line couglis
circuits and PDEs in parallel. The WR approach was appliedploited. It is clear that these works are only the begigih

to a multitude of problems in the circuit theory area, see f@roblems which can be solved using WR. So far, longitudinal
example [4]-[6], and in the partial differential equatioos and transverse partitioning have not been applied togéther
evolution type area, see for example [7]-[9] and referencégs. In [17], only single TLs were considered. However, all
therein. In all of the WR techniques, the processors exaharthe TL work lays the foundation for further work in this area.
appropriate waveforms between subsystems or subcircuits[17], the authors considered a transverse electro-nigne
and the natural coupling between blocks of components @GfEM) mode type TL model in which the conductancé
the circuit (system) is preserved by so-called transmissiavas ignored. Today, such losses are important especially fo
conditions. However, as we will show, the convergence digh performance circuits. For example, for VLSI desigri]][2



RLC models are incomplete if the dielectric leakagas not w°(t) are used. We replace now the classical transmission
included. Hence, in this paper we extend the oOWR techniquenditions,uf ! = wf, w4 = u*,, by the new ones
to RLCG models. In Section 2 we introduce cWR and oWR,
algorithms for the RLCG model problem. We give numericéfo
experiments in Section 3, and we conclude in Section 4. \yhich implies the classical transmission conditions at-con
vergence ifa # 3, see [16]. Using the new transmission
conditions, the new oWR algorithm is given by

We analyze in this section WR algorithms applied to the
RLCG TL model circuit shown in Fig. 1. Assuming the RLCG
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II. WR ALGORITHMS FORRLCG TRANSMISSIONLINES
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TL model circuit hasn sections per unit length and that the % = a b —a w
circuit is infinitely long, the modified nodal analysis (MNA) —cb—ca f=1
circuit equations can be simplified to the system of ODEs .
: + 0 ,
; c(wg + owk )
a b —I;a bJr% c I (11.3)
T = —c a g a x+ f, wkt! = a b —a wht! 4+ fo
—¢ b c P
—5(ufy + Buly)
(11.1) + 0
where the solution vector = (...,z_1,79,21,...)7 is :

ordered in a form such that nodal voltages alternate with ) o . . .
currents. The odd index rows. which havendb elements. comparing the new transmission conditions with the classic

correspond to voltage unknowns, whereas the even index rof/2€S: We can see that the new ones exchange more information

which haves andb elements, correspond to current unknown8Y €xchanging a combination of voltage and current in both
1 directions. Further, the new ones have weighting facters

The constant entries of the matrix are given by= +-, ) ;
R 7 G 1 i . and g which are part of the WR equations and can be used
b=—7,b= -2, andc = —=, where the characteristic - .
| Li Ci Ci ; to optimize the performance of the new WR algorithm. By
electronic component parameters afe = Li = 3, _linearity of the above systems of ODEs, we consider the

Ci = 5, andG; = 7, and the circuit elements per unity ;o qqeneous problenf,t) = 0 andz(0) = 0. Based on the
length, R, L,_C, and G,_are_ positive constants. The SOUC nlace transform with parameter= o + iw € C, and the
term on the right hand side is giver by the vector of functionga imum principle for analytic complex functions, we have
@) = (..., f-a(t), fo(t), f1(t),...)", and we need an initial 4510 5 mathematical analysis, which is beyond the scope of

iy N 0o T o -
.Co.nd!t"_)n x(0) = (-..,22,,2g,27,...)". Since the circuit g ghort paper, for the convergence study. This analgsidd
is infinitely large, we need to assume that all unknowns AL the convergence factors

bounded as we move towards the ends of the circuit to have a

well posed problem. We partition the circuit at an odd inde _ {/1’2—7 | > 1,
row, i.e., at a row corresponding to a voltage unknown, into oo s | < 1
two subcircuits (subsystems) with overlap which ensures th

n

both types of variables are covered. We call the unknowns (s=b)ptoec(u--1)  e(-p)+Bls=Bu= |, |~ 1
. . ; — (s=b)+ac(l—p-) c(p——1)+B(s=b) ’ ’
in the first subsystenu(¢) and in the second subsystem, wepopt (s—B)ip+ac(is—1)  c(1—pi)4-B(s—b)ps i
call themw(t) for t € [0,T], whereT is the end of the (s=b)tac(l—py)  clpr—1)+B(s=b) ’ | <1,

transient analysis interval. It should be noted that SiMM&R o the cWR and oWR algorithms, respectively, and are
algorithms could be developed for other choices of partitig  given py

and overlap. The cWR algorithm is given by

— 211\0\+(|5|+S)(|b\+S)i\/(2a\0\+(|5|+S)(|b\+8))2—4a2ICIQ_

Mt = 2alc|
aktl — o wktl 4 ) + : For convergence, one needs the modulus of the convergence
a b —a foo 0 )
e} i cwk factors, |pcia| and |popt|, be less than one foR(s) > 0,
P ; -1 0 and for fast convergence one neégds,.| < 1 for the cWR
. Z ~1 TCU-2 algorithm, andp,,:| < 1 for the new WR algorithm. Clearly,
a —a

W= whtt | o]+ 0 v pea IS a fixed function of the circuit elements and thus the
e : : cWR algorithm does not have any adjustable parameters to
(II.2) be chosen in order to improve the performance. Therefore,
with corresponding initial conditiona**+1(0) andw”**1(0). we can only analyze for the cWR algorithm fif.;,| < 1
To start the WR iteration, some initial waveform$(¢) and is satisfied. In contrasip,,:| includes parameters and 3



Fig. 1. Single RLCG TL model.

1

that can be chosen to greatly accelerate the convergence of ' ' ' ' =
the new WR algorithm. The optimal values farand g that

© o
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make the convergence factay,; vanish and lead to an optimal osf
convergence in two iterations are o}
_ (s=bpu_ _c(l—p-) 06}

@ = /"‘ )7 6 (S—E)Hf ) |:LL+| > ]‘5 (”4) osk

o= 6 - M7 |M+| <L 0.4f

1 “+ )’ (s=b)p+
As one can see, the aforementioned optimal choices are very

complex and they are expensive to be used. Therefore, we look o

0.3f !
.

for approximations of the optimal values which are easy ® us oaf " iy
and inexpensive. We approximateand 5 by constants. The o — e — m -~ -
key point now is how to choose and$ so that the obtained w

new WR algorithm converges fast and much faster than the
cWR algorithm that is known to be very slow for transmission
line problems. Mathematically, we want and 3 that make
lpopt| < 1. To do so, we have solved the optimization prObIeertimized valuea*

Fig. 2. Optimized convergence factor versus classical one.

= —0.5426. The equioscillation inp,,;
atw = 0 andw = w is clear from Fig. 2. Further, one can

) see that|p.,| is not uniform and has a maximum of about
0.9317. Whereas|p,,:| shows a remarkable improvement in

From the optimal choice (II.4) one can see that —2, and magnitude and uniformity and has a maximum of only about
since the circuit considered here behaves identlcally ith bqy 4979.

sides of the partition, we simplify the optimization proséxy
takinga = — 2. Further, using the fact that,,; is analytic in I1l. NUMERICAL EXPERIMENTS
the right half of the complex plane provided< 0 and3 >0, e consider in this section two examples. The first one is
by the maximum principle we have that the maximum®f:| a small RLCG TL model which i cm long with 4 sections,
is on the boundary, i.e., at = 0. Moreover, the modulus of in order to show that the proposed oWR algorithm works
the convergence factqr,,;: is symmetric about the real axis,well for small TLs. The second example is a large RLCG
and hence, it is sufficient to consider non-negative freqi#sn TL model, where we choose B) cm long TL circuit with
Therefore, our min-max problem can be reduced to 200 sections. We use the source tefiy(t) = 10t mA, for
0 <t<0.1ns,andl, = 1 mA for t > 0.1 ns, and the
) (I.5)  analysis time interval ig € [0, 7], with transient analysis
time 7" = 20 ns. For the circuit elements per unit length,
Our extensive numerical experiments have shown that tig user = 0.25 Q/cm, L = 4 nH/cm, C = 1.6 pF/cm,
solution of the min-max problem (I1.5) occurs whep,p:| and G = 2 mho/cm. The load and termination resistances
atw = 0 and that atw = @ are balanced, wher@ is the are chosen to b&0 . To integrate the equations in time,
interior maximum ofjp,|. Thereforen™ is characterized by \ye use the backward Euler method witho time steps, i.e.,

min (Rr?z;;(omopt(s a,b,b,c,a, B)]

min (0332( |Popt (iw, a,b, b, ¢, )|

the equation At = 550 We use zero initial conditions and random initial
7 — 7 forms. The optimized parametesrd = —0.5426 and
oot (0,a,b,D, ¢, a*)| = |po b,b,c,a* I.e) Wave ! : .
[Popt (0, 0,6, b, ¢ @%)] = |popi (& @, b, b, ¢, a7)], (11-6) p* = —-L are used in the oWR algorithm. To illustrate

independently of the transient analysis tiié It should the difference in convergence between the cWR and oWR
be noted that for the RLC circuit case considered in [174Jgorithms analyzed in this paper, we show in Fig. 3 the error
there was a dependence @n when solving the min-max as a function of iterations measured in infinity norm between
problem analyzed there. In Fig. 2, we give an example for tlilee converged solution computed using the entire circiit, i
modulus of the classical convergence factor and the opdithizby a conventional Spice type approach, and the iterates. We
convergence factor from the numerical section, using tilskow the error for the small circuit example on the left while
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Fig. 3. Convergence behavior of the cWR algorithm compaeethé oWR algorithms.Left: small circuit. Right: large eirc

IV. CONCLUSIONS

In this paper, we included the shunt loss G in the trans-
mission line model for the oWR approach for the difficult
longitudinal partitioning problem. We presented a pramtic
oWR algorithm that is inexpensive and easy to use. Also,
it greatly improves the convergence for a single RLCG line
e, 4 ————————— type circuit. It could also be directly applied to multiple

‘ lines in conjunction with the transverse partitioning teiciue.
N TN The results show the better performance of the new oWR
/ \ algorithm for an RLCG model over the cWR. To the best

sl LA of our knowledge, this is the first time that such algorithms
el \ / \/ have been proposed and analyzed for TL models with shunt
/'\/\ resistencess.
o/
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