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Abstract—For backward compatible high dynamic range
(HDR) video compression, the HDR sequence is reconstructed by
inverse tone-mapping a compressed low dynamic range (LDR)
version of the original HDR content. In this paper, we show that
the appropriate choice of a tone-mapping operator (TMO) can
significantly improve the reconstructed HDR quality. We develop
a statistical model that approximates the distortion resulting from
the combined processes of tone-mapping and compression. Using
this model, we formulate a numerical optimization problem to
find the tone-curve that minimizes the expected mean square
error (MSE) in the reconstructed HDR sequence. We also develop
a simplified model that reduces the computational complexity of
the optimization problem to a closed-form solution. Performance
evaluations show that the proposed methods provide superior
performance in terms of HDR MSE and SSIM compared to
existing tone-mapping schemes. It is also shown that the LDR
image quality resulting from the proposed methods matches that
produced by perceptually-based TMOs.

Index Terms—high dynamic range imaging, bit-depth scalable,
tone-mapping, HDR video compression.

I. INTRODUCTION

Natural scenes contain far more visible information than

can be captured by the majority of digital imagery and

video devices. This is because traditional display devices can

only support a limited dynamic range (contrast) and color

gamut. New display and projection technologies, however,

employ narrow-wavelength LED light sources that expand the

boundaries of the displayable color gamut. This expansion

will be again vastly enlarged with the next generation display

technologies that will employ dual modulation [1] or backlight

dimming that enhance intra- and inter-frame contrast.

For video compression, these advances in display technolo-

gies have motivated the use of extended gamut color spaces.

These include xvYCC (x.v.Color) for home theater [2] and

the Digital Cinema Initiative color space for digital theater

applications. Yet, even these extended color spaces are too

limited for the amount of contrast that can be perceived by

the human eye. High dynamic range (HDR) video encoding

goes beyond the typical color space restrictions and attempts

to encode all colors that are visible and distinguishable to the
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Fig. 1. General structure of the scalable approach used for backward-
compatible HDR video encoding. The base layer encodes an 8-bit LDR rep-
resentation of the HDR input. The enhancement layer encodes the difference
(residual) between the inverse tone-mapped base layer and the original HDR
source.

human eye [3], and is not restricted by the color gamut of

the display technology used. The main motivation is to create

a video format that would be future-proof, independent of a

display technology, and limited only by the performance of

the human visual system (HVS).

HDR images preserve colorimetric or photometric pixel

values (such as CIE XYZ) within the visible color gamut

and allows for intra-frame contrast exceeding 5-6 orders of

magnitude (106 : 1), without introducing contouring, banding

or posterization artifacts caused by excessive quantization.

The photometric or colorimetric values, such as luminance

(cd · m−2) or spectral radiance (W·sr−1·m−3), span much

larger range of values than luma and chroma values (gamma

corrected) used in typical video encoding (JPEG, MPEG, etc.).

The obvious representation for the colorimetric values are

floating point numbers, which, however, are impractical for

image and video coding applications. For that reason several

HDR color encodings and file formats have been proposed,

including the Radiance RGBE (.hdr) [4], OpenEXR (.exr) [5]

and LogLuv TIFF (.tiff) [6] file formats. They employ either

more efficient floating point coding (OpenEXR and RGBE)

or perceptually motivated compressive functions (LogLuv and

[3]), which extends a typical ’gamma correction’ to the entire

range of luminance values.

Although HDR image and video encoding offers truly

device-independent representation, the majority of existing

digital display devices can only support 8-bit video content.
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Therefore, high dynamic range video formats are unlikely to

be broadly accepted without the backward-compatibility with

these devices. Such backward-compatibility can be achieved

if the HDR video stream contains 1) a backward-compatible

8-bit video layer which could be directly displayed on existing

devices, and 2) additional information which along with this

8-bit layer can yield a good quality reconstructed version of

the original HDR content. Such a stream can also contain

a residual layer to further improve the quality of the HDR

reconstruction. Fig. 1 illustrates the general coding structure

used to provide a backward compatible HDR video bitstream.

Several proposals have been suggested to allow the above-

mentioned HDR backward-compatibility function within the

scalable extension of the H.264/AVC video coding standard

[7]–[15]. The contrast of the original HDR content is first

quantized into the 8-bit range using a tone mapping oper-

ator (TMO) to produce an LDR representation. The LDR

sequence is then compressed using a standard video encoder

(H.264/AVC). A larger dynamic range video can then be

reconstructed by decoding the LDR layer and applying the

inverse of the tone-mapping operator to reconstruct the HDR

representation. The shape of the TMO can be encoded using

supplemental enhancement information (SEI) messages [8],

[16]. Finally, a HDR residual signal can also be extracted and

encoded in the bitstream as an enhancement layer.

In this paper, we address the problem of finding an optimal

tone-curve for such a backward-compatible encoding scheme.

To compute the tone-curve, we propose a method that mini-

mizes the difference in the video quality between the original

and the reconstructed HDR video . This difference results in

quality loss and is due to tone-mapping, encoding, decoding

and inverse tone-mapping the original video. Minimizing this

difference would reduce the size of the HDR residual signal

in the enhancement layer. We also achieve the primary goal of

tone-mapping which is to produce an LDR image with a visual

response as similar as possible to the original HDR image.

Although the initial assumptions used in our approach pose a

difficult optimization problem, we demonstrate that for typical

compression distortions there exists a closed-form solution that

approaches the optimum.

The remainder of this paper is organized as follows: an

overview of related work is presented in Section II. In Section

III, the proposed tone-mapping approach that considers tone-

mapping together with compression is discussed in detail.

Section IV demonstrates and analyzes the performance of the

proposed methods. Finally, we draw our conclusions in Section

VI.

II. RELATED WORK

Backward compatible HDR video encoding has received

significant interest recently. Mantiuk et al. [3] derived a color

space of encoding HDR content based on the luminance

threshold sensitivity of the human visual system. They con-

cluded that 10-12 bit luma encoding is sufficient to encode

the full range of visible and physically plausible luminance

levels. Their encoding, however, is not backward-compatible

with the existing video decoding hardware. For still image

compression, backward compatibility can be achieved by

encoding a tone-mapped copy of the HDR image together

with a residual [17] or a ratio image [18] that allows the

reconstruction of the original HDR image. In [19] and [20] this

approach was extended for video sequences. A tone-mapping

curve was encoded together with the tone-mapped and residual

video sequences. In [19] the residual video sequence was

additionally filtered to remove the information that is not

visible to the human eye.

Recently, several proposals for bit-depth scalability have

been introduced to provide backward-compatible HDR video

bitstreams. These proposals incorporate backward-compatible

encoding of high fidelity video as an extension to the

H.264/AVC video encoding standard [8]–[10], [21]. The ex-

tension includes tone-mapping SEI messages, which encode

the shape of the tone-mapping curve [8]. The scalable video

coding (SVC) extension [22] is used to encode an additional

residual stream needed to reconstruct the information lost due

to tone-mapping, or to provide bit-depth scalability [9], [10],

[20], [23]. The proposed tone mapping is meant to be used in

combination with the scalable video coding. In that case the

backward compatible (tone-mapped) sequence is generated by

our operator, instead of being provided by a user, which results

in better compression efficiency.

The primary goal of tone-mapping is to produce the best

quality low-dynamic range rendering of an HDR scene that

is visually close to the visual high contrast signal [24], [25].

A review of such operators can be found in [26, Ch. 6–8].

Li et al. [27] first considered tone-mapping explicitly so as to

optimize image compression. They used forward and inverse

wavelet-based tone-mapping (compressing and companding)

in an iterative optimization loop to minimize HDR quality

loss due to quantizing the 8-bit tone-mapped image. As this

method requires encoding the tone-mapped image using high

bit-rates, it is thus not suitable for video. Lee et al. [28]

extended the gradient domain tone-mapping method [29] to

video applications using the temporal information obtained

from the video decoding process. In [30] the performance of

several tone-mapping operators in terms of quality loss due

to forward and inverse tone-mapping was compared. Local

tone-mapping operators (spatially variant) were found to be

more prone to quality loss than global operators (spatially

invariant). In this paper we compare the results of our study

with the two tone-mapping operators that performed the best

in this study: the photographic TMO [31] and the adaptive

logarithmic TMO [32].

III. PROBLEM STATEMENT AND PROPOSED SOLUTION

In this section, we present the challenges of obtaining a

good quality reconstructed HDR representation in a backward-

compatible HDR video encoding system and describe in

detail the approach we propose towards overcoming these

challenges.

The performance of a backward-compatible HDR video and

image encoding system depends on the coding efficiency of the

LDR base layer and the HDR enhancement layer. Performance

gains can be achieved by finding a TMO that preserves the
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necessary information in the LDR base layer so that after

it passes through the inverse TMO process, the resultant

HDR reconstructed signal is of high quality. The coding

efficiency of the base layer does not depend much on the

TMO used as most TMOs attain a similar level of contrast in

the LDR representation. Therefore, the performance gain lies

in the effectiveness of the inverse TMO in producing a high

quality inverse tone-mapped HDR representation. This in turn

determines the resulting HDR quality (when no enhancement

layer exists).

It can be deduced from above that the performance of the

whole system strongly depends on the TMO used to produce

the LDR representation which, in turn undergoes compres-

sion. Our proposed approach attempts to find the best global

(spatially invariant) tone-mapping curve that minimizes the

mean square error (MSE)1 between the original HDR content

and the reconstructed version obtained after tone-mapping,

compression, decompression, and inverse tone-mapping . This

process is illustrated in Fig. 2.

Let l denote the input HDR image/frame, and v the tone-

mapped LDR version as shown in Fig. 2a. Let ṽ be the decoded

LDR frame, and l̃ the reconstructed HDR frame produced after

inverse-tone-mapping. Also let θ be the set of parameters that

control the tone-mapping operator, then our goal is to find

the tone-mapping parameters that minimize MSE, which we

denote as ||l − l̃||22 using the norm notation.

The above optimization problem can be solved by ex-

haustive search, repeatedly tone-mapping, encoding, decoding

and then inverse tone-mapping, until the best set of TMO

parameters θ∗ is found. Even though this approach guarantees

an optimal solution, this framework requires an unacceptable

computational cost. To overcome this problem, we estimate

the distortion due to tone-mapping, encoding, decoding, and

inverse tone-mapping with a statistical distortion model, as

illustrated in Fig. 2b. Then, we show that under certain

assumptions that are valid for natural images, an immediate

closed-form solution for this problem can be found.

In the following sections we consider only luminance/luma

channels. To tone-map color images, we use the same tone-

curve for the red, green and blue color channels. Such ap-

proach was shown to well preserve color appearance for mod-

erate contrast compression [34]. Encoding of the enhancement

layer (for the residual data) is not considered in this paper. The

rationale comes from our effort to achieve the best possible

HDR reconstruction and thus the smallest possible residual.

As a result, the cost of encoding any additional refinement

layer would be minimized.

In the following subsections we describe how we pa-

rameterize the tone-mapping function, approximate encoding

distortions with a statistical model and then find a closed-form

solution for an optimal tone-curve.

(a)

(b)

Fig. 2. System overview of the proposed tone-mapping method. (a)
demonstrates the ideal scenario where the actual H.264/AVC encoding is
employed. (b) shows the practical scenario which is addressed by this paper.

Fig. 3. Parameterization of a tone-mapping curve and the notation. The
bar-plot in the background represents an image histogram used to compute
p(l).

A. Tone-Mapping Curve

The global tone-mapping curve is a function that maps HDR

luminance values to either the display’s luminance range [25],

or directly to LDR pixel values. In this paper, we consider

the latter case. The tone-mapping curve is usually continuous

and non-decreasing. The two most common shapes for the

tone curves are the sigmoidal (“S-shaped”) or a compressive

power function with an exponent < 1 (gamma correction).

According to the Weber-Fechner law [35], the sensitivity

1We choose the mean square error as the HDR quality metric for its
simplicity, despite its shortcomings in reflecting the perceptual quality of
images. Moreover, the results shown in Section IV demonstrate that although
we minimize the MSE we also achieve image quality gains in terms of
SSIM [33].
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of the human visual system to light is proportional to the

logarithm of luminance. Thus, our tone-mapping method will

operate on the logarithmic values of the luminance, which we

refer to as HDR values (l = log10(L) where L is the luminance

of the HDR image).

To keep the problem analytically tractable, we parameterize

the tone-mapping curve as a piece-wise linear function with

the nodes (lk, vk), as shown in Fig. 3. Each segment k between

two nodes (lk, vk) and (lk+1, vk+1) has a constant width in

HDR values equal to δ (0.1 in our implementation). The tone-

mapping curve can then be uniquely specified by a set of

slopes:

sk =
vk+1 − vk

δ
, (1)

which forms a vector of tone-mapping parameters θ. Using

this parameterization, the forward tone-mapping function is

defined as:

v(l) = (l − lk)·sk + vk, (2)

where v is the LDR pixel value, k is the segment correspond-

ing to HDR value l, that is lk≤l<lk+1. The inverse mapping

function is then:

l̃(v; sk) =















v − vk
sk

+ lk for sk > 0
∑

l∈S0

l·pL(l) for sk = 0 ,
(3)

where sk ∈ {s1..sN}.

When the slope is zero (sk = 0), l̃(v; sk) is assigned an

expected HDR pixel value for the entire range S0 in which

the slope is equal zero. pL(l) is the probability of HDR pixel

value l.

B. Statistical Distortion Model

As mentioned earlier in section III, accurately computing

the distorted HDR values l̃ would be too computationally

demanding. Instead, we estimate the error ||l̃ − l||22 assuming

that the compression distortions follow a known probability

distribution pC . Under this assumption, the expected value of

the error ||l̃ − l||22 is:

E[||l̃ − l||22] =

lmax
∑

l=lmin

vmax
∑

ṽ=0

(l̃(ṽ; sk)− l)2 · pC(v(l)− ṽ|v(l)) · pL(l),

(4)

where pC(v − ṽ|v) is the probability that the encoding error

equals v− ṽ. Note that Eqs. (2) and (3) show that both v and l̃
are uniquely determined by the values of l and ṽ, respectively.

Therefore, the conditional probabilities for these two variables

and their corresponding summations have been removed from

the calculation of the expected value of the error above.

The probability of the HDR pixel value pL(l) is in practice

found from a histogram of HDR values and the summation

over l is performed for each bin of that histogram. The number

of bins is greater than or equal to the number of tone-curve

segments.

Since a tone curve is uniquely defined by a sequence of

its slopes s1, ..., sN , the expected error value in (4) can be

expressed as a function ε(sk). For a specific tone curve defined

by the sequence of slopes, the pixel value v is calculated as in

(2). In practice the pixel values v and ṽ are integer valued, such

that v, ṽ ∈ {0, 1, ..., vmax}, whereas, l and l̃ are continuous

real variables. The rounding operation makes the encoding

error estimate in (4) a non-convex function. Therefore, we

impose a convex relaxation on the encoding error function

by removing the rounding operator from the calculation of v.

Moreover, assuming that the compression error probability is

independent of the LDR pixel value v, we can simplify the

expression above by removing the dependency of pC on v.

Consequently, the continuously relaxed objective function is

written as:

ε(sk) =

lmax
∑

l=lmin

vmax
∑

ṽ=0

(l̃(ṽ; sk)− l)2 · pC(v − ṽ) · pL(l) (5)

The only unknown variable is the probability distribution of

the compression error pC(v − ṽ), which can be estimated for

any lossy compression scheme. In Appendix A we model such

distribution for the H.264/AVC I-frame coding 2. However,

we will show in Section III-D that the distribution of the

compression scheme error is not necessary to calculate a good

approximation of the encoding error.

C. Optimization Problem

The optimum tone curve can be found by minimizing the

function ε(sk) with respect to the segment slopes sk:

argmin
s1..sN

ε(sk) (6)

subject to:

smin≤sk≤smax for k = 1..N
N
∑

k=1

sk·δ = vmax.
(7)

The first constraint restricts slopes to the allowable range,

while the second ensures that the tone curve spans exactly

the range of pixel values from 0 to vmax. The minimum

slope smin ensures that the tone-mapping function is strictly

increasing and thus invertible and l̃(ṽ; sk) can be computed.

The lack of this assumption introduces discontinuity and local

minima, impeding the use of efficient solvers. Since smin is

set to a very low value (below 0.5/δ), this assumption has

no significant effect on the resulting tone-curves, which are

rounded to the nearest pixel values. With smax we ensure

that we do not try to preserve more information than what

is visible to the human eye. Assuming that the luminance

detection threshold equals 1% (∆L/L = 0.01), we can write:

l̃(v + 1; sk)− l̃(v; sk) > log10(1.01), (8)

so that:

smax = (log10(1.01))
−1. (9)

2The derivation is also valid for other compression methods such as
H.264/AVC P-frame, B-frame and JPEG coding, which we show in the
supplementary materials.
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D. Closed-form Solution

The distortion model in (5) gives a good estimate of

compression errors, but poses two problems for practical

implementation in an HDR compression scheme: 1) it requires

the knowledge of the encoding distortion distribution pC , and

2) the optimization problem can only be solved numerically

using slow iterative solvers. In order to reduce the complexity

of the optimization problem given in (7), we propose the fol-

lowing assumptions that allow us to cast a simpler optimization

problem to which we can find a closed-form solution with

almost no noticeable impact on the compression performance.

If we assume local linearity of the tone-curve, so that the

slope at the non-distorted pixel value v and that at the distorted

pixel value ṽ is the same, we can then substitute l̃(ṽ; sk) and l
in the distortion model (5) using the inverse mapping function

in (3), this gives:

ε(sk) ≈

lmax
∑

l=lmin

vmax
∑

ṽ=0

pC(v − ṽ) · pL(l) ·

(

v − ṽ

sk

)2

. (10)

After reorganizing we get:

ε(sk) ≈

lmax
∑

l=lmin

pL(l)

s2k
·

vmax
∑

ṽ=0

pC(v − ṽ) · (v − ṽ)
2

=

lmax
∑

l=lmin

pL(l)

s2k
· V ar(v − ṽ).

(11)

Since the variance of (v−ṽ) does not depend on the slopes sk,

it does not affect the location of the global minimum of ε(sk)
and thus can be omitted when searching for the minimum.

Our local linearity assumption holds in most cases for two

reasons. Firstly, the distortion distribution pC has high kurtosis

(see appendix) so that most of the distorted pixels are likely to

lie in the same segment as the non-distorted pixel v. Secondly,

even if a distorted pixel ṽ moves to another segment, the slopes

of two neighboring segments are usually very close to each

other. This assumption has been also confirmed by our results,

in which the tone-curves found using the accurate model from

(5) and a simplified model from (11) were almost the same

(see Section IV).

The most important consequence of using the simplified

model from (11) is that the optimal tone-curve does not depend

on the image compression error, as long as the compression

distortions are not severe enough to invalidate the local lin-

earity assumption. This means that the optimal tone-curve can

be found independently of the compression algorithm and its

quality settings.

The constrained optimization problem defined in (6) can

now be re-written as follows:

argmin
s1..sN

N
∑

k=1

pk
s2k

subject to

N
∑

k=1

sk =
vmax

δ
,

(12)

where pk =
lk+1
∑

l=lk

pL(l), and lk and lk+1 define the lower and

the upper bounds of a segment, respectively.

This problem can be solved analytically by calculating the

first order Karush-Kuhn-Tucker (KKT) optimality conditions

of the corresponding Lagrangian, which results in the follow-

ing system of equations:






































−2p1

s3
1

+ λ = 0
−2p2

s3
2

+ λ = 0

...
−2pN

s3N
+ λ = 0

N
∑

k=1

sk − vmax

δ = 0

, (13)

where λ is the Lagrange multiplier. The solution to the above

system of equations results in the slopes sk given by:

sk =
vmax · p

1/3
k

δ ·
N
∑

k=1

p
1/3
k

. (14)

Note that the expression derived in (14) does not consider

the upper bound constraint imposed on sk in (7). Let I be the

set of the index of a segment with a slope that exceeds the

upper bound. We overcome the upper bound violation using

the following adjustment:

sk =



























smax for sk ∈ I,

(

vmax−
∑

i∈I

smaxδ

)

·p
1/3
k

δ·
N
∑

j /∈I

p
1/3
j

for sk /∈ I.

(15)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we first validate the proposed methods: opti-

mization using the statistical model proposed in Section III-B

and the closed-form solution based on a simplified model

derived in Section III-D. Then, our models are further analyzed

based on the generated tone curve and the distortion of the

reconstructed HDR content. The performance of our models

is also evaluated by comparing it with existing tone-mapping

methods. We use H.264/AVC encoding as an example to

demonstrate the results. In the experiments below, all tone-

mapped images are compressed/decompressed using the intra

mode of the H.264/AVC reference software [36] except for

IV-E where inter-frame mode is also used. To reconstruct an

HDR image from a decoded LDR image, an inverse tone-

mapping function is stored as a lookup table with each encoded

image.

A. Model validation

In this section, we validate that the statistical model of

Section III-B results in a tone-curve that truly reflects the

ground-truth results. Ground-truth results are achieved using

the ideal scheme illustrated in Fig. 2a, where the actual

H.264/AVC encoder and decoder are employed to find the

truly optimal piecewise linear tone curve. This ideal scheme

is extremely computationally expensive, and its complexity

increases exponentially with the number of segments. To make
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Fig. 4. Validation of the proposed models by comparison with the ground-
truth solution. The top figure, (a), shows the tone curves computed using the
statistical model, the closed-form solution and the ground-truth optimization
for the image ”Memorial”. The x axis denotes the HDR luminance in the
log-10 scale, and y axis is the LDR pixel value. (b) demonstrates the result
of HDR MSE (in log10 scale) vs. bit rate (bits/pixel). The lower the MSE
value, the better the image quality.

the experiment computationally feasible, we divided the tone

curve into four segments of equal width. That is, the dynamic

range of each of the segments is identical. Then the ideal

scheme is used to find our ground-truth four-segment tone-

curve.

Fig. 4a demonstrates the tone curves generated by the

statistical (Section III-B), the closed-form (Section III-D) and

the ground-truth approaches for the H.264/AVC quantization

parameter QP = 22. It can be seen that the tone curves

produced by the proposed models are very close to the ground-

truth curve. Fig. 4b shows the rate-distortion result in terms

of bit rate vs HDR MSE. The results show that for different

encoding bit rates, the reconstructed HDR images resulting

from the two proposed models have very similar MSE rela-

tive to the ground-truth case. This further validates that the

performance of the ideal scenario can be closely estimated by

our statistical model and that the local linearity assumption

we used to derive the closed-form solution is justified.

B. Dependence of the tone curves on QP

Next, we verify that the proposed statistical model can be

well approximated by the closed-form solution which produces

a tone curve that is independent of QP. The probability

distribution of the H.264/AVC compression errors, which is

a function of QP, is included in the statistical model proposed

in Section III-B. This suggests that the generated tone curve

should vary with the value of QP. However, we observed

from experiments on a large pool of HDR images encoded

at different QPs that the variation in QP has no significant

effect on the choice of an optimal tone curve. Fig. 5 illustrates

this observation with an example of two images and their

corresponding tone curves derived from the statistical model

for different QP values (the larger the value of QP, the larger

the compression error). The figures show that the tone curves

are not significantly affected by the variation of QP.

C. Further analysis of the closed-form solution

The tone curve resulting from the closed-form solution

given by (14) can be generalized as follows:

sk =
vmax · p

1/t
k

δ ·
N
∑

k=1

p
1/t
k

, (16)

In our closed-form solution, t is set to be equal to 3. Note that

when t = 1, (16) is identical to the histogram equalization

operation. Therefore, we will investigate the performance of

the tone curves obtained from changing the exponent t of (16).

In the experiment, we set t = 1, 2, 3, 4, 5, 10 and 20,

and compressed the tone-mapped image using H.264/AVC at

different QPs, and evaluated the distortion of the reconstructed

HDR image. In addition to HDR MSE, we also used the

popular quality metric known as the Structural Similarity Index

(SSIM) [33] in order to find which t value gives highest quality

for a particular quality metric. Fig. 6 shows the resulting

average performance over 40 HDR images. The left row in

the figure indicates that our closed-form solution (t = 3) is

largely better than the histogram equalization method (t = 1)

and outperforms all other cases for HDR MSE. This can

be expected, since our approach explicitly minimizes MSE.

However, the same behavior cannot be expected from SSIM:

the difference among all cases is minimal for light and medium

compression, while the case of (t = 2) performs slightly better

for strong compression.

From a practical point of view, HDR content is usually

prepared for high-quality visual experience where only light

or medium compression quantization is allowed. In this sense,

the results demonstrated in Fig. 6 indicate that our closed-form

solution (t = 3) guarantees good performance.

D. Comparison with existing TMOs

In this subsection, we compare the performance of the

proposed models to existing tone-mapping methods. The

chosen TMOs are the photographic TMO [31], the adaptive

logarithmic TMO [32] and the display adaptive TMO [25].

In [30], a study was conducted to find how different TMOs
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Fig. 5. Tone curves generated using the statistical model with different QP values for the images ”AtriumNight” and ”Desk”. The notation of the axis is the
same as Fig. 4a. The smaller the value of QP, the better the compression quality. 87 and 88 segments are used for ”AtriumNight” and ”Desk” respectively.
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Fig. 6. Distortion measures for the reconstructed HDR images using the generalized solution (see (16)) with different values of t, averaged over 40 images.
The tone-mapped images are compressed with different quality (QP = 10, 22 and 38), decoded and used to reconstruct HDR images. The left row, (a), shows
the measurement of HDR MSE, where the smaller the value, the better the image quality. (b) compares the SSIM quality. Higher SSIM values mean better
quality. For each of the 40 images, the segment width is set to be 0.1.
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Fig. 7. Comparison with other tone-mapping methods in terms of MSE and SSIM (for the reconstructed HDR image) vs. bit rate, averaged over 40 images.
The correlation between image quality and the distortion measures (MSE and SSIM) can be referred to the caption of Figure 6. MSE and SSIM for all methods
represent the reconstruction error without the correction of the residual/enhancement layer. In the experiment, the segment width of each image histogram is
set to be 0.1.

perform when the LDR is inverse tone-mapped. Of the TMOs

that were compared, the photographic TMO and the adaptive

logarithmic TMO were found to outperform other popular

tone-mapping methods in backward-compatible HDR image
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(a) Image: AtriumNight; LDR images shown are compressed with QP = 10

Fig. 8. Rate-distortion curves, tone curves and tone-mapped images for the image ”AtriumNight”. The first row demonstrates the resulting tone-curves with
different TMOs, followed by the results for MSE and SSIM vs. bit rates; the second row shows tone-mapped LDR images using the proposed statistical model
and the closed-form solution. The third row shows the tone-mapped images using the existing tone-mapping methods. All the tone-mapped images shown are
compressed. The compression quantization parameters used for ”AtriumNight” is 10. The number of segments used for the histogram is 87.

compression. However, Display adaptive TMO is a recent

tone-mapping algorithm at the time of writing and it employs

a similar optimization loop as our technique.

Fig. 7 compares the distortion of the reconstructed HDR

image versus the compressed LDR bit rate for different

TMOs, averaged over 40 images. This test demonstrates how

successful each TMO is at delivering a good quality HDR

by inverse tone mapping the corresponding LDR represen-

tation. The results show that our proposed methods clearly

outperform the other methods in terms of MSE. The difference

is not very large for low bit rates (heavy compression), but

the performance of our model dramatically improves when

the compression reaches the point of the medium and light

compression. For HDR MSE = -3 (in log10 scale), which

corresponds to QP = 25, we save about 50% of the bit-rate

compared to the best performing competitive TMO for the

same quality. Fig. 7 also shows that the proposed statistical

model results in a better MSE performance compared to the

closed-form solution.

Although our models are designed for minimizing MSE, the

results also indicate that the proposed TMOs show superior

performance for the advanced quality metric, SSIM. In terms

of SSIM, Fig. 7b shows that our proposed TMOs result in

a better performance and the improvement is sustained for

higher bit rates.

Fig. 8, 9 and 10 display the tone curve, rate-distortion

curves and tone-mapped LDR images for three images. Ad-
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(a) Image: Coby; LDR images shown are compressed with QP = 10

Fig. 9. Rate-distortion curves, tone curves and tone-mapped images for the image ”Coby”. The notation is the same as Fig. 8. The compression quantization
parameters used for ”Coby” is 22. The number of segments used for the histogram is 36.

ditional results for more images are included in the supple-

mentary material. The LDR images shown in these figures

demonstrate that the images tone-mapped using our method

also provide good quality. To further demonstrate the quality

of the LDR images generated by the proposed models, Fig. 11

shows the distortion maps of the LDR images compared with

their original HDR counterparts. The distortion maps were

generated using the dynamic range independent image quality

metric [37], which is the only available computational metric

capable of comparing HDR and tone-mapped images. The

metric visualizes the areas where the visible contrast is lost

(green color), or distorted (red color). The distortions maps

indicate that the proposed method causes less contrast loss

than the other tested tone-mapping operators.

The computer graphics community often uses a

perceptually-based image difference predictor, HDR-

VDP [38], to compare a distorted HDR image to a reference

HDR image. We compared the different TMOs in terms of

HDR-VDP and found that there is no consistent improvement

or degradation in performance of the different TMOs when

compression is applied at the LDR layer. Therefore, we do

not include performance evaluations relative to HDR VDP in

this paper.

The computational complexity of most global tone mapping

operators, such as the photographic and the logarithmic oper-

ators compared in our study, is linear to the number of pixels

O(N). The same holds for our closed form solution, in which

the most expensive part is computing an image histogram. The

solution based on the statistical model is more computationally

expensive because it requires several iteration for the optimiza-

tion procedure to converge. For comparison, the closed-form

solution requires about 0.9 seconds and the statistical approach

20 seconds to complete using non-optimized MATLAB code

on a 3 GHz CPU computer.

E. Optimized tone-curves for JVT bit-depth scalable encoding

In this section, we demonstrate the efficiency gains that

can be expected when the proposed tone-mapping technique

is used in combination with the JVT bit-depth scalable ex-

tensions [22]. For that purpose, we tone-map the JVT stan-



TRANSACTIONS ON IMAGE PROCESSING 10

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

50

100

150

200

250

HDR Log luminance

L
D

R
 p

ix
e
l 
v
a
lu

e

 

 

Image histogram

Proposed (statistical)

Proposed (closed−form)

Photographic

Adaptive logarithmic

Adaptive display

0 0.5 1 1.5 2 2.5
−4.5

−4

−3.5

−3

−2.5

−2

Bit Rate (bits/pixel)

H
D

R
 M

S
E

 (
L

o
g

1
0

)

 

 

Proposed (statistical)

Proposed (closed−form)

Photographic

Adaptive logarithmic

Adaptive display

0 0.5 1 1.5 2 2.5
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Bit Rate (bits/pixel)

S
S

IM

 

 

Proposed (statistical)

Proposed (closed−form)

Photographic

Adaptive logarithmic

Adaptive display

Closed-form solution Statistical

Photographic TMO Adaptive logarithmic TMO Display Adaptive TMO

(a) Image: BristolBridge; LDR images shown are compressed with QP = 10

Fig. 10. Rate-distortion curves, tone curves and tone-mapped images for the image ”BristolBridge”. The notation is the same as Fig. 8. The compression
quantization parameters used for ”BristolBridge” is 38. The number of segments used for the histogram is 39.

dard sequences [39] using our closed-form method, and then

compare the compression performance between the sequences

generated by our method and the generic tone-mapping used

in the test sequences.

The JVT test sequences [39] are provided as 10-bit

extended dynamic range frames and the corresponding 8-

bit tone-mapped frames. The 10-bit frames contain gamma

corrected footage from a high-end camera that can capture

an extended dynamic range. We assume that the gamma

correction has a similar effect as the logarithmic function that

we apply to linear luminance values to account for the Weber

law. Therefore, we use the 10-bit frames directly as input to

our algorithm. One important issue to consider is flickering,

which our method can cause when used on video sequences.

This is because the computed tone-curves solely depend on

scene content, which can abruptly change from frame to

frame. To prevent such flickering, we apply a low-pass filter

to the generated tone-curves, identical to that in [25]. For

comparison, we also generate tone-mapped sequences without

the temporal filter.

Fig. 12 shows the comparison of the compression per-

formance for our method (closed-form solution) with and

without the temporal filtering, and the generic tone-mapping

used for the JVT test sequences. The temporal filtering did

not change significantly compression performance for these

test sequences (compare black and red curves in Fig. 12).

This is because the frames did not contain any abrupt scene

changes that could cause flickering. For two sequences (Free-

way and Waves) our method gave significant improvement

over a generic tone-mapping that was not optimized for

video compression (compare red and dashed-blue curves). The

improvement is especially large for higher bit-rates. For the

third sequence (Plane), the compression performance was very

similar for both methods. Slightly worse result for our method

for medium bit-rates can be explained by the approximations

used in the closed-form solution. The tone-mapped sequence

provided by the JVT was coincidentally well conditioned for

video compression. However large improvements for the two

remaining sequences illustrate gains that can be expected from

the proposed method when used in combination with the JVT

bit-depth scalable coding.
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(a) Image: AtriumNight; distortion maps of tone-mapped images (no compression)
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(b) Image: Coby; distortion maps of tone-mapped images (no compression)

Statistical (proposed) Close-form (proposed) Photographic Logarithmic Adaptive Display

(c) Image: BristolBridge; distortion maps of tone-mapped images (no compression)

Fig. 11. Distortion maps of the LDR images relative to the original HDR images. The LDR images evaluated have not been compressed. In each of the
distortion maps, three colors denote three different types of distortions: green for loss of visible contrast; blue for amplification of invisible contrast; red for
reversal of visible contrast. The higher intensity of a color correlates with higher distortion of that type. In general, the less colored regions and lighter color
intensity denote better LDR image quality.

0 10 20 30 40 50 60 70 80 90 100
25

30

35

40

45

50

55

PSNR vs. Bit Rate for Video "Freeway"

Bit Rate (Mbit/s at 30Hz)

1
0

−
b

it
 P

S
N

R

 

 

proposed

temporal filter

JVT

0 20 40 60 80 100 120 140
30

35

40

45

50

55

PSNR vs. Bit Rate for Video "Plane"

Bit Rate (Mbit/s at 30Hz)

1
0

−
b

it
 P

S
N

R

 

 

proposed

temporal filter

JVT

0 10 20 30 40 50 60 70 80 90 100
34

36

38

40

42

44

46

48

50

52

54

PSNR vs. Bit Rate for Video "Waves"

Bit Rate (Mbit/s at 30Hz)

1
0

−
b

it
 P

S
N

R

 

 

proposed

temporal filter

JVT

Fig. 12. Compression performance for the proposed method used with the the JVT bit-depth scalable encoding. The comparison is made between the
closed-form solution of our method (red curve), the same method but with the temporal filter that prevents flickering (black), and the generic tone-mapping
used in the JVT test sequences (dashed-blue). The x-axis denotes the bit rate in Mbit/s at 30Hz of frame rate, and the y-axis is the PSNR between the original
10-bit video and its inversely-tone-mapped version. 100 segments are used in the histogram for each of three sequences.

V. DISCUSSION

Our proposed tone-mapping methods can directly improve

the compression efficiency of bit-depth scalable video coding.

The proposed methods are designed to produce a better

reconstructed HDR representation. A direct consequence of

this design objective is a reduction in the size of the higher

bit-depth enhancement layer which contains the difference

between the reconstructed HDR image and the original one.

Thus, our method can lower the total bit rate for the bit-depth

scalable coding.

Although the primary goal of tone-mapping algorithms is

to optimize the visual quality of the displayed LDR image,

we instead designed a tone-mapping operator that optimizes

the compression performance in the backward-compatible en-

coding scheme. Numerous algorithms in the literature have

considered the primary objective that explicitly focuses on
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producing good quality tone-mapped images. This group of

algorithms include the photographic [31], logarithmic [32] and

display adaptive [25] TMOs considered in this paper. The

tone-curve that meets both objectives can be approximated

by the linear combination of the tone-curves produced by our

method and these algorithms. Moreover, our study shows that

the overall quality of images tone-mapped with our method

is comparable to other tone-mapping algorithms and none

of the tone-mapped images we generated was considered as

unacceptable. This means that for the applications that do

not require a finely adjusted backward-compatible layer, our

method can be used directly.

Our considerations are limited to global tone-curves used for

the entire frame while many modern tone-mapping methods

use local (spatially varying) processing to retain more details

and produce better looking images. However, the study in [30]

showed that local tone-mapping operators result in worse com-

pression performance than global operators. This suggests that

there is a trade-off between choosing a tone-mapping operator

that is optimal for preserving HDR information in compressed

images and an operator that produces the best looking images.

The study of such a trade-off and the application of local

tone mapping for compression is an interesting topic for future

work.

Finally, tone-mapping each frame of a video sequence

independently can produce flickering since the tone-curve can

change rapidly from frame to frame. This, however, can be

avoided when a low-pass filter is applied on the sequence of

computed tone-curves, as done in [25].

VI. CONCLUSION

In this paper, we showed that the appropriate choice of

a tone-mapping operator (TMO) can significantly improve

the reconstructed HDR quality. We developed a statistical

model that approximates the distortion resulting from the

combined processes of tone-mapping and compression. Using

this model, we formulated a constrained optimization problem

that finds the tone-curve which minimizes the expected HDR

MSE. The resulting optimization problem, however, suffers

from high computational complexity. Therefore, we presented

a few simplifying assumptions that allowed us to reduce

the optimization problem to an analytically tractable form

with a closed-form solution. The closed-form solution is

computationally efficient and has a performance compatible

to our developed statistical model. Moreover, the closed-form

solution does not require the knowledge of QP, which makes it

suitable for cases where the compression strength is unknown.

Although our models are designed to minimize HDR MSE,

the extensive performance evaluations show that the proposed

methods provide excellent performance in terms of SSIM

and the LDR image quality, in addition to an outstanding

performance in MSE.

APPENDIX A

H.264/AVC INTRA CODING ERROR MODEL (pC )

Let v, ṽ ∈ {0, 1, · · · , vmax}, be the original and decoded

values of a LDR pixel, respectively. We denote by pC(v − ṽ)

the probability that decoded pixel luma level has shifted by a

factor v − ṽ from its original luma level.

For a specific image, p(v − ṽ) can be estimated by sub-

tracting each pixel value of the de-compressed image from

that of the original image and then fitting a distribution for

these differences by sampling such distribution on a large set

of compression-distorted images. Let w be equal to v− ṽ. We

found that the probability can be well approximated with the

General Gaussian Distribution (GGD):

pC(w : µ, σ, α) =
λ(α, σ) · α

2 · Γ(1/α)
· e−[λ(α,σ)·|w−µ|]α , (17)

where µ denotes the mean, σ is the standard deviation and

α denotes the shape parameter. The functions λ and Γ are

expressed as follows:

λ =
1

σ
·

[

Γ(3/α)

Γ(1/α)

]1/2

, (18)

Γ(m) =

∫ ∞

0

tm−1 · e−tdt, z > 0, (19)

and (19) is called the gamma function. In order to find a

GGD fitting, the values of µ, σ and α need to be assigned.

The distribution mean is set equal to 0 since all compression

schemes make every effort to keep decoded pixel values

unchanged. To find the standard deviation σ and the shape

parameter α that best fit the image histograms, we use the

least square regression. Note that σ and α vary for different

images and different values of quantization parameters (QPs).

Fig. 13 shows example error distributions and the resulting

fitting curves.

We collected the estimated α and σ for a large number of

images and for different QPs using H.264/AVC intra-frame

mode. Fig. 14 demonstrates the results of α and σ vs. the

value of QP for different images. We found that σ and α can

be well described by the functions of QP:

σ = a · QP2 − b · QP + c, (20)

α = 1 + e(d·QP+g), (21)

where a, b, c, d and g are constants equal to 0.00625, 0.12457,

1.2859, -0.1 and 1.32, respectively.

We also modelled the error distributions for H.264/AVC

predicted frames (P frames), bi-directional predicted frames

(B frames) and JPEG compression. We found that their com-

pression errors can be well estimated by GGD too. Please refer

to the supplementary documents for details [40].

REFERENCES

[1] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead,
M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range
display systems,” ACM Transactions on Graphics (Proc. SIGGRAPH),
vol. 23, no. 3, pp. 757–765, 2004.

[2] IEC61966-2-4, “Colour measurement and management - part 2-4:
Colour management - extended-gamut YCC colour space for video
applications - xvYCC,” 2006.

[3] Rafał Mantiuk, Grzegorz Krawczyk, Karol Myszkowski, and Hans-Peter
Seidel, “Perception-motivated high dynamic range video encoding,”
ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 23, no. 3, pp.
730–738, 2004.



TRANSACTIONS ON IMAGE PROCESSING 13

−2 −1 0 1 2
0

0.2

0.4

0.6

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

−10 −5 0 5 10
0

0.1

0.2

0.3

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

−20 −10 0 10 20
0

0.05

0.1

0.15

−20 −10 0 10 20
0

0.05

0.1

−40 −20 0 20 40
0

0.02

0.04

0.06

0.08

0.1

−60 −40 −20 0 20 40 60
0

0.02

0.04

0.06

0.08

Errors

N
o

. 
o

f 
p

ix
e

ls

Fig. 13. Error distributions fitted with GGD distribution curves. Yellow bars
denote the histogram of the compression error and dash black line is the fitted
GGD curve.

10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

QP

S
T

D
 (

σ)

 

 

Data for individual images

Fitting Curve

(a)

10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

3

QP

T
h
e
 s

h
a
p
e
 p

a
ra

m
e
te

r 
(α

)

 

 

Data for individual images

Fitting Curve

(b)

Fig. 14. The standard deviation and the shape parameter vs. the value of
QP for H.264/AVC encoding over a large pool of images. The blue circle
corresponds to a single image at a certain QP. The red line is the averaging
curve used to remove the image dependency.

[4] G. Ward, “Real pixels,” Graphics Gems II, pp. 80–83, 1991.

[5] R. Bogart, F. Kainz, and D. Hess, “Openexr image file format,” ACM
SIGGRAPH 2003,Sketches and Applications, 2003.

[6] G. Ward Larson, “Logluv encoding for full-gamut, high-dynamic range
images,” Journal of Graphics Tools, vol. 3, no. 1, pp. 15–31, 1998.

[7] Y. Gao and Y. Wu, “Applications and requirement for color bit depth
scalability,” Tech. Rep., ISO/IEC JTC1/SC29/WG11 and ITU-T SG16
Q.6, JVT-U049, Oct. 2006.

[8] G.J. Sullivan, Haoping Yu, S.-i. Sekiguchi, Huifang Sun, T. Wedi,
S. Wittmann, Yung-Lyul Lee, A. Segall, and T. Suzuki, “New stan-
dardized extensions of mpeg4-avc/h.264 for professional-quality video
applications,” Image Processing, 2007. ICIP 2007. IEEE International
Conference on, vol. 1, pp. I–13–16, 2007.

[9] M. Winken, D. Marpe, H. Schwarz, and T. Wiegand, “Bit-depth scalable
video coding,” Image Processing, 2007. ICIP 2007. IEEE International
Conference on, vol. 1, pp. I–5–8, 2007.

[10] A. Segall and J. Zhao, “Bit-stream rewriting for SVC-to-AVC conver-
sion,” in Image Processing, 2008. ICIP 2008. 15th IEEE International
Conference on, 2008, pp. 2776–2779.

[11] Y. Gao and Y. Wu, “Bit depth scalability,” Tech. Rep., ISO/IEC

JTC1/SC29/WG11 and ITU-T SG16 Q.6, JVT-V061, Jan. 2007.
[12] Y. Ye, H. Chung, M. Karczewicz, and I. S. Chong, “Improvements to

Bit Depth Scalability Coding,” Tech. Rep., ISO/IEC JTC1/SC29/WG11
and ITU-T SG16 Q.6, JVT-Y048, Oct. 2007.

[13] M. Winken, H. Schwarz, D. Marpe, and T. Wiegand, “SVC bit depth
scalability,” Tech. Rep., ISO/IEC JTC1/SC29/WG11 and ITU-T SG16
Q.6, JVT-V078, Jan. 2007.

[14] Yong Yu, Steve Gordon, and Michael Yang, “Improving Compression
Preformance in Bit Depth SVC with a Prediction Filter,” Tech. Rep.,
ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, JVT-Z045, Jan. 2008.

[15] A. Segall and Y. Su, “System for bit-depth scalable coding,” Tech.
Rep., ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6, JVT-W113,
April 2007.

[16] Andrew Segall, Louis Kerofsky, and Shawmin Lei, “Tone Mapping SEI
Message,” Tech. Rep., ISO/IEC JTC1/SC29/WG11 and ITU-T SG16
Q.6, JVT-T060, July 2006.

[17] K. E. Spaulding, G. J. Woolfe, and R. L. Joshi, “Using a residual image
to extend the color gamut and dynamic range of an sRGB image,” in
Proc. of IS&T PICS Conference, 2003, pp. 307–314.

[18] Greg Ward and Maryann Simmons, “JPEG-HDR: A backwards-
compatible, high dynamic range extension to JPEG,” in Proceedings
of the 13th Color Imaging Conference, 2005, pp. 283–290.

[19] Rafał Mantiuk, Alexander Efremov, Karol Myszkowski, and Hans-
Peter Seidel, “Backward compatible high dynamic range mpeg video
compression,” ACM Transactions on Graphics (Proc. SIGGRAPH), vol.
25, no. 3, 2006.

[20] A. Segall, “Scalable coding of high dynamic range video,” in Image
Processing, 2007. ICIP 2007. IEEE International Conference on, 2007,
vol. 1, pp. I –1–I –4.

[21] Y. Wu, Y. Gao, and Y. Chen, “Bit-depth scalability compatible to H.
264/AVC-scalable extension,” Journal of Visual Communication and
Image Representation, vol. 19, no. 6, pp. 372–381, 2008.

[22] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand, “Overview of
the Scalable Video Coding Extension of the H.264/AVC Standard,”
Transactions on Circuits and Systems for Video Technology, vol. 17,
no. 9, pp. 1103–1120, Sepetember 2007.

[23] Shan Liu, Woo-Shik Kim, and Anthony Vetro, “Bit-depth scalable
coding for high dynamic range video,” in Proc. of SPIE Visual
Communications and Image Processing 2008, William A. Pearlman,
John W. Woods, and Ligang Lu, Eds., 2008, vol. 6822, p. 649212.

[24] Patrick Ledda, Alan Chalmers, Tom Troscianko, and Helge Seetzen,
“Evaluation of tone mapping operators using a high dynamic range
display,” ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 24,
no. 3, pp. 640–648, 2005.

[25] R. Mantiuk, S. Daly, and L. Kerofsky, “Display Adaptive Tone
Mapping,” ACM Transactions on Graphics-TOG, vol. 27, no. 3, pp.
68–68, 2008.

[26] Erik Reinhard, Greg Ward, Sumanta Pattanaik, and Paul Debevec,
High Dynamic Range Imaging: Acquisition, Display, and Image-Based
Lighting, Morgan Kaufmann, 2005.

[27] Yuanzhen Li, Lavanya Sharan, and Edward H. Adelson, “Compressing
and companding high dynamic range images with subband architec-
tures,” ACM Trans. Graph., vol. 24, no. 3, pp. 836–844, 2005.

[28] Chul Lee and Chang-Su Kim, “Gradient domain tone mapping of high
dynamic range videos,” in Image Processing, 2007. ICIP 2007. IEEE
International Conference on, 2007, vol. 3, pp. III –461–III –464.

[29] R. Fattal, D. Lischinski, and M. Werman, “Gradient domain high
dynamic range compression,” Computer Graphics Forum (Proc. of
Eurographics), vol. 21, no. 3, pp. 249–256, 2002.

[30] R. Mantiuk and H.P. Seidel, “Modeling a Generic Tone-mapping
Operator,” Computer Graphics Forum (Proc. of Eurographics’08), vol.
27, no. 2, pp. 699–708, 2008.

[31] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone
reproduction for digital images,” ACM Transactions on Graphics (Proc.
SIGGRAPH), vol. 21, no. 3, pp. 267–276, 2002.

[32] F. Drago, K. Myszkowski, T. Annen, and N. Chiba, “Adaptive logarith-
mic mapping for displaying high contrast scenes,” Computer Graphics
Forum (Proc. of Eurographics), vol. 22, no. 3, pp. 419–426, 2003.

[33] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[34] R. Mantiuk, R. Mantiuk, A. Tomaszewska, and W. Heidrich, “Color
correction for tone mapping,” Computer Graphics Forum (Proc. of
EUROGRAPHICS), vol. 28, no. 2, pp. 193–202, 2009.

[35] Selig Hecht, “The visual discrimination of intensity and the weber-
fechner law,” The Journal of General Physiology, vol. 7, no. 2, pp.
235C267, November 1924.



TRANSACTIONS ON IMAGE PROCESSING 14

[36] “H.264/AVC JM14.2 Reference Software,” Available:
http://iphome.hhi.de/suehring/tml/.

[37] T. O. Aydin, R. Mantiuk, K. Myszkowski, and H.-P. Seidel, “Dynamic
range independent image quality assessment,” ACM Transactions on
Graphics (Proc. SIGGRAPH), vol. 27, no. 3, 2008.

[38] R. Mantiuk, S. Daly, K. Myszkowski, , and H.-P. Seidel, “Predicting
visible differences in high dynamic range images model and its calibra-
tion,” in Proc. of Human Vision and Electronic Imaging X. 2005, vol.
5666 of Proceedings of SPIE, pp. 204–214, SPIE.

[39] P. Topiwala and H. Yu, “New Test Sequences in the VIPER 10-bit HD
Data,” Tech. Rep., ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6,
JVT-Q090, Oct. 2005.

[40] “Supplimentary documents and results,” Available:
http://www.ece.ubc.ca/∼zicongm/tmo hdr enc/HTMLReport.html.

Zicong Mai is currently a Ph.D. candidate with
the Electrical and Computer Engineering Depart-
ment at the University of British Columbia. His
recent research focuses on developing processing
and compression algorithms for new-generation vi-
sual signals, such as high dynamic range (HDR)
images/video and stereoscopic video.

He received his Master’s degree also from the
Electrical and Computer Engineering Department at
the University of British Columbia, and was the
award holder of University Graduate Fellowship.

His research involved realizing compatibility between interactive multimedia
systems, including Blu-ray and DVB-based iTV.

Hassan Mansour (S’99 - M’09) received the B.E.
degree in Computer and Communications Engi-
neering from the American University of Beirut,
Lebanon, in 2003. He received the M.A.Sc. and
PhD degrees in Electrical and Computer Engineering
from the University of British Columbia, Vancouver,
BC, Canada, in 2005 and 2009, respectively, where
his research focused on multimedia communication
and video coding. He is currently a postdoctoral
research fellow with the departments of Computer
Science and Mathematics at the University of British

Columbia where he is conducting research in compressed sensing and sparse
signal reconstruction algorithms for distorted image and video signals.

Rafal Mantiuk received PhD from the Max-Planck-
Institute for Computer Science (Germany) in 2006.
He is a member of the Wales Research Institute of
Visual Computing and Lecturer (Assistant Profes-
sor) in the School of Computer Science at Bangor
University, North Wales, UK. His recent interests
focus on designing imaging algorithms that adapt to
human visual performance and viewing conditions
in order to deliver the best images given limited
resources, such as computation time, bandwidth or
dynamic range. He investigates how the knowledge

of the human visual system and perception can be incorporated within
computer graphics and imaging algorithms. More on his research can be found
at: http://goo.gl/UkCrt.

Panos Nasiopoulos received a Bachelor degree in
Physics from the Aristotle University of Thessa-
loniki (1980), Greece, and a Bachelor (1985), Master
(1988) and Ph.D. (1994) in Electrical and Com-
puter Engineering from the University of British
Columbia, Canada. He is presently the Director of
the Institute for Computing, Information and Cogni-
tive Systems (160 faculty members and 800 gradu-
ate students) at the University of British Columbia
(UBC). He is also a Professor with the UBC de-
partment of Electrical and Computer Engineering,

the Inaugural Holder of the Dolby Professorship in Digital Multimedia, and
the current Director of the Master of Software Systems Program at UBC.
Before joining UBC, he was the President of Daikin Comtec US (founder of
DVD) and Executive Vice President of Sonic Solutions. Dr. Nasiopoulos is
a registered Professional Engineer in British Columbia, the Associate Editor
for IEEE Signal Processing Letters, and has been an active member of the
Standards Council of Canada, the IEEE and the Association for Computing
Machinery (ACM).

Rabab Kreidieh Ward is a Professor in the Elec-
trical and Computer Engineering Department at the
University of British Columbia, Vancouver, B.C.,
Canada. She is presently with the Office of the Vice
President Research and International as the natural
sciences and engineering research coordinator. Her
research interests are in signal, image and video
processing. She has made contributions in the areas
of signal detection, image encoding, compression,
recognition, restoration and enhancement, and their
applications to infant cry signals, cable TV, HDTV,

medical images, and astronomical images. She has published over 380 journal
and conference papers and holds six patents related to cable television picture
monitoring, measurement and noise reduction. Applications of her work have
been transferred to U.S. and Canadian industries.

She was a Vice President of the IEEE Signal Processing Society, 2003-2005,
the General Chair of the IEEE International Conference on Image Processing
2000, the IEEE Symposium on Signal Processing and Information Technology
2006, and the Vice Chair of the IEEE International Symposium on Circuits
and Systems 2004. She is a Fellow of the Royal Society of Canada, the
IEEE, Canadian Academy of Engineers and Engineering Institute of Canada,
and a recipient of the UBC 1997 Killam Research Prize, YWCA Woman
of Distinction Award (2008) , the R. A. McLachlan Memorial Award (the
top award) of the Association of Professional Engineers and Geoscientists of
British Columbia and the ”Society Award ”of the IEEE Signal Processing
Society.

Wolfgang Heidrich is a Professor and the Dolby
Research Chair in Computer Science at the Uni-
versity of British Columbia. He received a PhD in
Computer Science from the University of Erlangen
in 1999, and then worked as a Research Associate in
the Computer Graphics Group of the Max-Planck-
Institute for Computer Science in Saarbrucken, Ger-
many, before joining UBC in 2000. Dr. Heidrich’s
research interests lie at the intersection of computer
graphics, computer vision, imaging, and optics. In
particular, he has worked on High Dynamic Range

imaging and display, image-based modeling, measuring, and rendering, geom-
etry acquisition, GPU-based rendering, and global illumination. Dr. Heidrich
has written over 100 refereed publications on these subjects and has served
on numerous program committees. He was the program co-chair for Graphics
Hardware 2002, Graphics Interface 2004, and the Eurographics Symposium
on Rendering, 2006.


