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Abstract—We consider the age-of-information in a multi-class
M/G/1 queueing system, where each class generates packets
containing status information. Age of information is a relatively
new metric that measures the amount of time that elapsed
between status updates, thus accounting for both the queueing
delay and the delay between packet generation. This gives rise
to a tradeoff between frequency of status updates, and queueing
delay. In this paper, we study this tradeoff in a system with
heterogenous users modeled as a multi-class M/G/1 queue. To
this end, we derive the exact peak age-of-Information (PAoI)
profile of the system, which measures the “freshness” of the status
information. We then seek to optimize the age of information,
by formulating the problem using quasiconvex optimization, and
obtain structural properties of the optimal solution.

I. INTRODUCTION

Realtime status information is critical for optimal control

in many networked systems, such as sensor networks used

to monitor temperature or other physical phenomenon [1];

autonomous vehicle systems, where accurate position informa-

tion is required to avoid collisions [2]; or wireless networks

where realtime channel state information is needed to make

scheduling decisions [3]. In all of these systems, what matters

is not how fast the update information gets delivered, but

rather, how accurately the received information describes the

physical phenomenon being observed.

Recently, [4] proposes the notion of age-of-information

(AoI), which measures the average time between the gen-

eration of an update message until it is received by the

control unit; thus measuring the “freshness” of the available

information. The early works on age-of-information consider

homogeneous systems, where all entities use the same amount

of resources for status update, and the length of status mes-

sages can be modeled using an i.i.d. exponential distribution.

In this paper, we consider a heterogenous systems where

entities generate status messages with different length (service

time) distributions. In particular, we consider a multi-class

M/G/1 queueing systems; where each entity generates status

update messages according to a given distribution, and derive

the exact peak age-of-information (PAoI) value for each entity,

which is the average maximum elapsed time since the latest

received update packet is generated, and captures the extent

to which update information is delayed. We then consider a

system where, for packet management, at most one packet can

be kept in the system, and compute the PAoI for the multi-

class M/G/1/1 queue.

Next, we turn our attention to the problem of optimizing the

PAoI by controlling the arrival rate of update messages (i.e.,

the sampling rate of the physical process being observed). We

formulate the optimization problem as a minimization of a

quasiconvex cost function of the system age-of-information

profile. We show that in the M/G/1/1 case, the optimization

problem is a quasi-convex program and derive properties of

the optimal solution. In the general M/G/1 case, however,

the problem is a general non-convex program for which we

derive an approximate solution.

The notion of age-of-information was first introduced in [4]

in the context of a single source modeled as an M/M/1 queue,

and extended to multiple sources in [5]. In [6], [7] the authors

consider the problem of minimizing the age of system state

in vehicular networks. In [8] the AoI is analyzed for a system

with random delays, and in [9] PAoI is derived for a single-

class M/M/1 queueing system.

Our work differs from these prior works in a number of

ways. First, we focus on the PAoI metric, which is closely

related to the AoI, but is much more tractable, thus facilitating

its optimization. Second, we consider general service time

distributions, whereas previous works focus mainly on expo-

nential service time. Finally, we minimize the cost of the PAoI

in a system with heterogenous service requirements; where the

service requirements of different entities are modeled using

quasi-convex cost functions of the PAoI.

It is important to note here that AoI is different from the

traditional delay metric considered in communication systems.

Indeed, our results show that PAoI minimization is equivalent

to minimizing the sum of update interval and update packet

delay. Due to this difference, the ultimate optimization prob-

lem turns out to be non-convex.

This paper is organized as follows. In Section II we present

the system model. We derive the PAoI values for M/G/1
and M/G/1/1 in Section III. We consider the system cost

optimization problem in Section IV, and present numerical

results in Section V. We conclude the paper in Section VI.

II. SYSTEM MODEL

We consider a system that consists of a set of N entities,

denoted by N = {1, ..., N}. To disseminate entity status

information, the system regulates how frequently each entity

updates its status. We denote this decision by an update rate

vector λ = (λ1, ..., λN ), where λn is the update rate of entity



n. We assume that the update process is Poisson with rate λn.

After generation, update packets are relayed to a central unit

for processing. To ensure that each entity eventually updates

its status, we require that 0 < λmin ≤ λn ≤ λmax for all n.

We denote by Λ , {λ : λmin ≤ λn ≤ λmax, ∀n} the set of

feasible rate vectors.

A. Single queue model

In a practical system, different update information streams

will share the limited system resources for delivery. We model

this by the system shown in Fig. 1, where all update messages

go through a single server queue. This single server queueing

model is the same as that adopted by prior work on AoI [4],

[5], [8].

Fig. 1. The update packet delivery process in a 2-entity system.

In this queueing system, each new class-n packet arrival

to the queue represents the generation of a new entity n
update packet. Hence, class-n packets arrive according to a

Poisson process with rate λn. Departures from the queue,

on the other hand, represent update packet reception events

at their destinations. To model the heterogeneous resource

requirements, e.g., entities may have update messages with

different length distributions, we assume that each update

packet from entity n requires a random service time Xn, which

is i.i.d. with mean xn and second moment yn. For convenience,

we denote xmax = maxn xn and ymax = maxn yn.

This system is indeed equivalent to a multi-class M/G/1
queue. This model captures two key features of communi-

cation in networked systems: (i) resources are shared among

different update streams, and (ii) queueing can occur during

traffic delivery. Adopting this simple model allows us to focus

on the age aspect of the update information.

B. Age-of-Information

The status age of an entity at a particular time instance t is

defined to be the time elapsed since its latest received update

packet was generated. Fig. 2 shows the status age (denoted by

∆n(t)) of entity n. The dropping points of ∆n(t) are the time

instances when an update packet is received, which resets the

age value to a lower level (i.e., the current time minus the

generation time of the new update packet).
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Fig. 2. The evolution of the status age of entity n in the system. Here Ank

denotes the k-th peak of age.

Given ∆n(t), the average status age of entity n is defined

as:

Aav,n = lim
T→∞

1

T

∫ T

t=0

∆n(t)dt. (1)

This metric is called the age-of-information (AoI) and was

first considered in [4]. However, the AoI metric is hard to

analyze. Moreover, in many systems, it is often the maximum

status information delay that determines the performance loss

[3]. Thus, we instead focus on the average peak status age.

Specifically, let Ank denote the k-th peak value of ∆n(t) (See

Fig. 2). The peak age-of-information (PAoI) metric An(λ) is

defined as:

Ap,n(λ) , lim
K→∞

1

K

K
∑

k=1

Ank. (2)

Here we explicitly express PAoI as a function of the update

rate vector λ. The PAoI metric was first considered in [9]

for the M/M/1/1 queue. It represents the maximum age of

information before a new update is received. PAoI is closely

related to the previously considered AoI metric Aav,n, e.g.,

in [4] and [5], but is much more tractable, thus facilitating its

optimization.1

C. Optimizing update rates

We model the system performance using a function of

PAoI, to capture the fact that delay in status update often

causes a proportional performance degradation. Specifically,

we consider the following system cost function, i.e.,

Csys(A(λ)) , max
n

Cn(Ap,n(λ)). (3)

Here Cn(An) is the cost of entity n for having a PAoI of An,

and it is assumed to be a quasiconvex and non-decreasing

function in An with Cn(0) = 0. Our objective is to find

an update rate vector λ ∈ Λ to minimize Csys(A(λ)), i.e.,

minimize the maximum cost over all entities.

III. COMPUTING PAOI

In this section, we compute the PAoI for two different

queueing models, i.e., the M/G/1 model and the M/G/1/1
model. The two models differ in the way update packets are

managed. In the M/G/1 model, new packets are queued if

the server is busy, while they are discarded in the M/G/1/1
model. This packet management scheme was also considered

in [9] for the M/M/1 model.

A. A general result for G/G/1 queues

We first derive a useful result for general G/G/1 queues.

Denote by In the inter-arrival time of entity n packets, and

let Wn be the waiting time of entity n packets and let Tn be

the total sojourn time in the queue. We have the following

proposition, in which the superscript “gg1” is used to indicate

the relationship to G/G/1 queues.

Proposition 1: In a G/G/1 queue, the PAoI is given by:

Agg1
p,n = E

{

In + Tn

}

= E
{

In +Xn +Wn

}

, ∀n. 3 (4)

1Intuitively, PAoI provides an approximate upper bound for AoI, as it only
considers the average sampled at the peak moments, whereas AoI in (1)
computes the time average value of instantaneous age.



Proof: This relation follows from Fig. 2, where we see

that the PAoI is equal to the time from the generation of an

update packet until the completion of the next update packet,

plus their inter-arrival time.

Equation (4) shows that PAoI is indeed the sum of the

update interval and update packet delay. For a multi-class

G/G/1 queue, we also know that the AoI is given by [4]:

Agg1
av,n = λnE

{

InTn +
I2n
2

}

. (5)

Comparing (5) and (4), we have:

Agg1
av,n −Agg1

p,n (6)

= λn

(

E
{

In(Tn +
In
2
)
}

− E
{

In
}

E
{

In + Tn

}

)

= λn

(

E
{

InTn

}

− E
{

In
}

E
{

Tn

}

+
E
{

I2n
}

2
− E

{

In
}2

)

.

Equation (6) provides a way for checking how close the two

metrics are to each other. It can be seen that when In is a

constant, i.e., periodic arrival, Agg1
av,n = Agg1

p,n − λI2

n

2
. We will

see in the next subsection that Agg1
av,n ≤ Agg1

p,n in the single

class M/M/1 case. Thus, PAoI serves as an upper bound for

AoI. More generally, the following lemma shows that PAoI

approximates AoI for general single-class G/G/1 queues.

Lemma 1: For a general single-class G/G/1 queue,

Agg1
p −

3λE
{

I2
}

2
− λE

{

I
}2

≤ Agg1
av ≤ Agg1

p + λE
{

I2
}

/2.3

Proof: See Appendix A.

B. PAoI for multi-class M/G/1 queue

Using (4), we can compute the PAoI for each entity in the

M/G/1 queue.

Proposition 2: The PAoI for a multi-class M/G/1 system

is given by:

Amg1
p,n =

1

λn

+ xn +

∑

j λjyj

2(1−
∑

j λjxj)
. 3 (7)

In (7) we have used the P-K formula to compute the waiting

time in the M/G/1 queue [10]. It is necessary to ensure ρ ,
∑

j λjxj < 1, so that the queue is stable and the PAoI is finite.

We can use (7) to compute the PAoI for a single class

M/M/1 system. In particular, with N = 1 and exponential

service time of rate µ, (7) becomes:

Amm1
p =

1

µ

(

1 +
1

ρ
+

ρ

1− ρ

)

. (8)

In contrast, the AoI for M/M/1 derived in [4], is given by,

Amm1
av =

1

µ

(

1 +
1

ρ
+

ρ2

1− ρ

)

. (9)

Comparing (7) to (9), we have,

Amm1
p −Amm1

av =
1

µ
ρ =

λ

µ2
. (10)

Hence, PAoI is a close upper bound of AoI for M/M/1
queues, yet is much more tractable.

Conservation Laws for PAoI: From (7), we also obtain

the following conservation formula for PAoI:
∑

n

λnA
mg1
p,n = N + ρ+NW. (11)

We also see from (7) that:

Amg1
p,n −

1

λn

− xn = Amg1
p,m −

1

λm

− xm, ∀n,m,

which implies,
1

λn

−
1

λm

= (Amg1
p,n − xn)− (Amg1

p,m − xm). (12)

Hence, the relationship between Amg1
p,n and Amg1

p,m is completely

determined by λn and λm. For example, λm > λn implies

Amg1
p,n − xn > Amg1

p,m − xm.

C. PAoI for M/G/1/1 queue

Let us now consider the case when the server does not queue

incoming update packets. This can be viewed as the server is

performing packet management [9].

Proposition 3: The PAoI for a multi-class M/G/1/1 is

given by:

Amg11
p,n = xn +

1

λn

+

∑

k λkxk

λn

, ∀n. 3 (13)

Proof: Let Zjn be the expected time to complete service

for a class n packet starting from the moment a class j packet

begins receiving service at the server. We have:

Amg11
p,n = xn +

1

λ
+
∑

j

λj

λ
Zjn. (14)

Equation (14) can be understood as follows. Since the status

age of an entity decreases only when its next update packet

is served, the (expected) peak age can be broken down into

three components (see Fig. 3). The first component xn in

(14) is the processing time of the current update packet. The

second component is 1

λ
, the expected time needed to get the

next arrival (because packets arriving during busy periods are

dropped). Then, the third component is the expected time

needed until the completion of the next class n update packet

(the third term), which is Zjn if the next arrival turns out to

be a class j packet, resulting in an average time of
∑

j

λj

λ
Zjn.

t
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t
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t
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A
n1

A
n2

t
n4

Serving 
others

Interarrival
Time to serve 

the next packet

Fig. 3. Evolution of entity n’s status age in the M/G/1/1 system.

We now solve for Amg11
p,n . Note that for any i 6= n, we have:

Zji = xj +
1

λ
+

∑

k

λk

λ
Zki. (15)

Thus, Zji−Zki = xj −xk for any j, k 6= i. Plugging this into

(15) and using the fact that Zii = xi, we obtain:

Zji = xj +
1

λ
+

λi

λ
xi +

∑

k 6=i

λk

λ
[Zji + xk − xj ].

Therefore,

Zji = xi +
1

λi

+ xj +
∑

k 6=i

λkxk

λi

= xj +
1

λi

+
∑

k

λkxk

λi

.



Using this in (14), we get:

Amg11
p,n = xn +

1

λ
+

λn

λ
xn +

∑

j 6=n

λj

λ

[

xj +
1

λn

+
∑

k

λkxk

λn

]

= 2xn +
1

λn

+

∑

k 6=i λkxk

λn

.

Rearranging the terms in the above gives (13).

It is interesting to note that (13) does not require the second

moment of service time, which is generally required in the

analysis of M/G/1 queues. This can be attributed to the fact

that in the M/G/1/1 system, packets are never held in the

buffer, thus the residual service time does not play a role in

the computation of (13). Also, when N = 1, (13) recovers the

result from [9] for the M/M/1/1 queue. It is also interesting

to see in (13) that due to packet discard, the constraint ρ < 1
can actually be violated.

We note from (13) that, for any achievable PAoI vector

A
mg11
p = (Amg11

p1 , ..., Amg11
pN ),

λnA
mg11
p,n − λnxn =

∑

k

λkxk + 1. (16)

Since the right-hand-side (RHS) does not depend on n, this

implies that:

λnA
mg11
p,n − λnxn = λmAmg11

p,m − λmxm. (17)

Similar to (12), the relationship of Amg11
p,n and Amg11

p,m is

uniquely determined by λn and λm. We also have the fol-

lowing conservation formula:
∑

n

λnA
mg11
p,n = N + (N + 1)ρ. (18)

Comparing (7) and (13), we have:

Amg11
p,n −Amg1

p,n =

∑

k λkxk

λn

−

∑

j λjyj

2(1−
∑

j λjxj)
. (19)

This shows that Amg11
p,n can be much smaller than Amg1

p,n when

the update rates are large, i.e., when ρ is close to 1. Thus, even

though packets can be dropped in the M/G/1/1 system, such

dropping may actually result in PAoI reduction as queueing

delay is reduced.
IV. PAOI OPTIMIZATION

Having computed the PAoI for the two cases, we now con-

sider the problem of optimizing the update rates, i.e., minimize

Csys(λ). This formulation enables us to provide differentiated

service to different applications. In the following, we start with

the M/G/1/1 queue and then consider the M/G/1 queue.

A. M/G/1/1 optimization

In this case, the utility optimization problem takes the

following form:

min
λ

: Csys(λ) = max
n

Cn(xn +
1 +

∑

k λkxk

λn

) (20)

s.t. λ ∈ Λ.

The following lemma shows that although (20) is not convex,

it can still be efficiently solved.

Lemma 2: Problem (20) is a quasiconvex program. 3

Proof: First, we see that An = xn +
1+

∑
k
λkxk

λn
is a

linear-fractional function in λ. Since each Cn(An) function is

quasiconvex and nondecreasing in An, Cn(An) is quasiconvex

in λ. As the max operator preserves quasiconvexity, we

conclude that Csys(λ) is also quasiconvex in λ and (20) is

a quasiconvex program over the convex set Λ [11].

Therefore, the optimization problem (20) can be solved by

the bisection procedure described below [11]. Define

φt ,

{

0 Csys(λ) ≤ t
∞ else.

(21)

We see that Csys(λ) ≤ t is equivalent to φt ≤ 0, i.e., if λ

ensures φt ≤ 0, it also ensures Csys(λ) ≤ t. Hence, we then

use the following bi-section algorithm to solve (20).

Bisection: Set l = 0 and u = maxn Cn(xmax +
1+Nλmaxxmax

λmin

). Fix ǫ > 0. Then, repeat the following until

u− l ≤ ǫ:

1) Set t = (l + u)/2
2) Solve the following problem:

min : 1, s.t. φt ≤ 0, λ ∈ Λ. (22)

3) If (22) is feasible, set u = t; otherwise set l = t. 3

Using (17), we also obtain the following properties of the

optimal solution λ
∗ to (20), where � denotes entrywise larger.

Lemma 3: Let λ
∗ be an optimal solution of (20). Then,

(i) ∃ λ̂ � λ
∗ such that maxn λ̂n = λmax and Csys(λ̂) =

Csys(λ
∗), and (ii) if all entities are identical, i.e., x1 = x2

and Cn(A) = Cm(A), then λn = λmax, ∀n is an optimal

solution. 3

Proof: First, note from (17) that for a given λ, if we let

n0 = argminn(An − xn), then we can express each λm as:

λm = λn0

An0
− xn0

Am − xm

, ∀m. (23)

Consider an optimal solution λ
∗ and let A

∗ be the corre-

sponding PAoI vector. We construct a λ̂ as follows. Denote

n∗
0 = argminn(A

∗
n − xn). Then, we keep the ratio between

any pair of rates fixed and proportionally increase all λn until

λn∗

0
= λmax. From (17) and (13), we see that Â � A

∗. Since

each Cn(A) is nondecreasing, we have Cn(Ân) ≤ Cn(A
∗
n),

which implies Csys(λ̂) = Csys(λ
∗). This proves (i).

When all entities are identical, the rates must be the same

for all entities. Hence, λn = λmax for all n.

B. M/G/1 optimization

In M/G/1, the optimization problem becomes:

min : Csys(λ) = max
n

Cn(A
mg1
p,n ) (24)

s.t.
1

λn

+ xn +

∑

j λjyj

2(1−
∑

j λjxj)
= Amg1

p,n , ∀n (25)

∑

n

λnxn ≤ 1, λn > 0.

Different from problem (20), here the LHS in constraint (25)

is a sum of two linear-fractional functions, which may not

be quasiconvex any more. Thus, to proceed, we approximate

An(λ) with another function Bn(λ) defined as:

Bn(λ) , 2max

(

1

λn

+ xn,

∑

j λjyj

2(1−
∑

j λjxj)

)

. (26)

That is, we solve problem (24) with Amg1
p,n replaced by Bn. The

main advantage of introducing Bn(λ) is that it is quasiconvex

in λ. Hence, the function Csys(B(λ)) , maxn Cn(Bn) can

be efficiently minimized by the Bisection algorithm.



We now look at the performance of the approximation.

Define βn the maximum increasing slope of Cn(A), i.e.,

βn , inf{β : |Cn(A1)− Cn(A2)| ≤ β|A1 −A2|, ∀A1, A2}.

We then have the following lemma, where λ
∗
B is the optimal

solution of the approximation program.

Lemma 4: Let λ
∗ be an optimal solution of the original

problem (24) and denote A
∗ the resulting PAoI. Then,

Csys(λ
∗) ≤ Csys(λ

∗
B) ≤ Csys(λ

∗) + max
n

βnA
∗
n. 3 (27)

Proof: See Appendix B.

When each Cn(A) is linear in A, i.e., Cn(A) = wnA, we

have βn = wn. In this case, we can conclude from (33) that

Csys(λ
∗) ≤ Csys(λ

∗
B) ≤ 2Csys(λ

∗).

V. NUMERICAL RESULTS

We present a simple numerical example with N = 2 entities,

and constant service times x1 = 1 and x2 = 3. λmin = 0.01
and λmax = 10. The cost functions are given by C1(A1) =
4A2

1 and C2(A2) = A2
2, and Csys(λ) = max(C1, C2).

In Fig. 4 we plot the cost values for the M/G/1/1 queue.

The minimum value of Csys(λ) is achieved at λ1 = 10 and

λ2 = 6, with a resulting C1 = 60.84 and Csys(λ) = C2 =
61.36. In this case, the PAoI vector is A = (3.9, 7.83) and the

results match Lemma 3.
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Fig. 4. Cost value for the M/G/1/1 queue.

We next look at the M/G/1 case in Fig. 5. Since ρ < 1
must be satisfied to ensure a finite PAoI, if a λ violates ρ <
1, we set its PAoI value to a constant (the flat region). In

this case, the minimum is achieved at λ = (0.29, 0.125) with

A = (6.56, 13.11). Thus, C2 = 171.92 and C1 = Csys(λ) =
172.15. It can be verified that (12) holds.
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Fig. 5. Cost value for the M/G/1 queue.

We also compute the optimal solution of the approximation

approach to be λ
∗
B = (0.285, 0.17). The resulting PAoI vector

is A = (8.94, 13.31) and the cost vector is (C1, C2) =
(319.69, 177.16), implying Csys(λ

∗
B) = 319.69. It is not hard

to verify that Csys(λ
∗
B) ≤ 2Csys(λ

∗).

VI. CONCLUSION

We study the age-of-information in a general multi-class

M/G/1 queueing system. The age-of-information is a new

metric for system performance that represents not just the

queueing delay, but also the delay in generating new infor-

mation updates. Our main contribution is to generalize the

available results to systems with heterogeneous service time

distributions, accounting for the fact that different entities may

have different service requirements for their status updates.

We derive exact peak-age-of-information expressions for both

a M/G/1 system and M/G/1/1 system. Using the PAoI

measure allows us to optimize system cost, as a function of

PAoI, by choice of the update interval.

VII. ACKNOWLEDGEMENT

This work was supported in part by the National Ba-

sic Research Program of China Grant 2011CBA00300,

2011CBA00301, the National Natural Science Foundation of

China Grant 61033001, 61361136003, 61303195, Tsinghua

Initiative Research Grant, and the China Youth 1000-talent

Grant. The work of E. Modiano was supported by NSF Grant

CNS-1217048 and ONR Grant N00014-12-1-0064.

REFERENCES

[1] RFID Journal. Microsoft uses wireless sensors to track data center tem-
peratures. http://www.rfidjournal.com/articles/view?4587, Feb 2009.

[2] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. Parallel scheduling
for cyber-physical systems: analysis and case study on a self-driving
car. Proceedings of the ACM/IEEE 4th International Conference on

Cyber-Physical Systems, 2013.

[3] A. Reddy, S. Banerjee, A. Gopalan, S. Shakkottai, and L. Ying.
On distributed scheduling with heterogeneously delayed network-state
information. Queueing Systems, Vol. 72, No. 3-4, pp 193-218, Dec 2012.

[4] S. Kaul, R. Yates, and M. Gruteser. Real-time status: How often should
one update? Proceedings of INFOCOM mini-conference, 2012.

[5] R. D. Yates and S. Kaul. Real-time status updating: Multiple sources.
Proceedings of ISIT, 2012.

[6] S. Kaul, R. Yates, and M. Gruteser. On piggybacking in vehicular
networks. Proceedings of Globecom, 2011.

[7] S. Kaul, M. Gruteser, V. Rai, and J. Kenney. Minimizing age of
information in vehicular networks. Proceedings of SECON, 2011.

[8] C. Kam, S. Kompella, and A. Ephremides. Age of information under
random updates. Proceedings of ISIT, 2012.

[9] M. Costa, M. Codreanu, and A. Ephremides. Age of information with
packet management. Proceedings of ISIT, 2014.

[10] D. P. Bertsekas and R. G. Gallager. Data Networks. Prentice Hall, 1992.

[11] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

APPENDIX A – PROOF OF LEMMA 1

Here we prove Lemma 1. We drop all subscripts as N = 1.

Proof: Since T = W +X and X is independent of I , we

have E
{

InTn

}

− E
{

In
}

E
{

Tn

}

= E
{

IW
}

− E
{

I
}

E
{

W
}

.

Denote TQ the time it takes to clear the packets in the queue

when a new packet arrives (not including the new arrival).

Then, W = (TQ − I)+. Here I is the inter-arrival time until

the next packet arrives. Since I is independent of TQ, we have:

E
{

IW
}

=

∫

I

∫ ∞

t=I

I(t− I)f(t)dtf(I)dI



=

∫

I

(

I

∫ ∞

t=I

tf(t)dt− I2Pr{TQ ≥ I}

)

f(I)dI (28)

≤

∫

I

I

∫ ∞

t=I

tf(t)dtf(I)dI. (29)

Using (TQ − I)+ + I ≥ TQ and I ≥ 0, we have:
∫ ∞

t=I

tf(t)dt ≤ E
{

TQ

}

≤ E
{

(TQ − I)+
}

+ E
{

I
}

. (30)

Plugging this into (29), we get:

E
{

IW
}

≤

∫

I

I
(

E
{

(TQ − I)+
}

+ E
{

I
})

f(I)dI

= E
{

I
}

E
{

(TQ − I)+
}

+ E
{

I
}2

. (31)

Using this in (6), we obtain:

Agg1
av ≤ Agg1

p +
λE

{

I2
}

2
.

To derive the lower bound, we have from (28) that:

E
{

IW
}

=

∫

I

(

I

∫ ∞

t=I

tf(t)dt− I2Pr{TQ ≥ I}

)

f(I)dI

≥

∫

I

I

(

E
{

TQ

}

−

∫ I

t=0

tf(t)dt

)

f(I)dI − E
{

I2
}

≥

∫

I

I

(

E
{

TQ

}

− I

)

f(I)dI − E
{

I2
}

≥ E
{

I
}

E
{

W
}

− 2E
{

I2
}

. (32)

In the last inequality, we have used TQ ≥ W . Plugging (32)

into (6) proves the lower bound and completes the proof of

the lemma.

APPENDIX B – PROOF OF LEMMA 4

We prove Lemma 4 here.

Proof: From the definition of Bn, we see that given any

λ, Amg1
p,n (λ) ≤ Bn(λ) ≤ 2Amg1

p,n (λ). Thus, we have for λ
∗
B

that:

Csys(A(λ∗
B)) ≤ Csys(B(λ∗

B)) (33)

≤ Csys(B(λ∗)) ≤ Csys(2A(λ∗)).

Using the definition of βn, we have for each n that:

Cn(2An(λ
∗)) ≤ Cn(An(λ

∗) + βnA
∗
n. (34)

Taking the max over the above and combining it with (33),

we see that (27) follows.


