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Humans prolifically engage in mental time travel. We dwell on past actions and experience

satisfaction or regret. More than storytelling, these recollections change how we act in the

future and endow us with a computationally important ability to link actions and con-

sequences across spans of time, which helps address the problem of long-term credit

assignment: the question of how to evaluate the utility of actions within a long-duration

behavioral sequence. Existing approaches to credit assignment in AI cannot solve tasks with

long delays between actions and consequences. Here, we introduce a paradigm where agents

use recall of specific memories to credit past actions, allowing them to solve problems that

are intractable for existing algorithms. This paradigm broadens the scope of problems that

can be investigated in AI and offers a mechanistic account of behaviors that may inspire

models in neuroscience, psychology, and behavioral economics.
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T
he theory of how humans express preferences and make
decisions to ensure future welfare is a question of long-
standing concern, dating to the origins of utility theory1.

Within multiple fields, including economics and psychology2–4,
there remains unresolved debate about the appropriate formalism
to explain valuation of temporally distant outcomes in long-term
decision making.

In artificial intelligence (AI) research, the problem of evaluat-
ing the utility of individual actions within a long sequence is
known as the credit assignment problem5–7. This evaluation can
rate past actions or planned future actions8. To address credit
assignment, deep learning has been combined with reinforcement
learning (RL) to provide a class of architectures and algorithms
that can be used to estimate the utility of courses of action for
behaving, sensorimotor agents.

These algorithms have almost exclusively borrowed the
assumptions of discounted utility theory1,9,10 and achieve credit
assignment using value function bootstrapping and back-
propagation (deep RL)11. Practical RL algorithms discount the
future, reducing their applicability for problems with long delays
between decisions and consequences12,13.

Conspicuously, humans and animals evidence behaviors that
state-of-the-art (model-free) deep RL cannot yet simulate
behaviorally. In particular, much behavior and learning takes
place in the absence of immediate reward or direct feedback.
For example, there is no standard model of effects like latent
learning14,15, prospective memory16, and inter-temporal
choice2. In sum, much human learning and decision-making
occurs either without task reward or when rewards are
recouped at long delay from choice points. It has been argued
that hominid cognitive ability became truly modern when new
strategies for long-term credit assignment (LTCA) through
mental time travel and planning emerged17, leading to abrupt
cultural shifts and immense changes in social complexity18.
Algorithmic progress on problems of LTCA may similarly
magnify the range of decision-making problems that can be
addressed computationally.

Our paradigm builds on deep RL but introduces principles for
credit assignment over long time scales. First, agents must encode
and store perceptual and event memories; second, agents must
predict future rewards by identifying and accessing memories of
those past events; third, they must revaluate these past events
based on their contribution to future reward.

Based on these principles, the Temporal Value Transport
(TVT) algorithm uses neural network attentional memory
mechanisms to credit distant past actions for later rewards. This
algorithm automatically splices together temporally discontiguous
events, identified by task relevance and their association to each
other, allowing agents to link actions with their consequences.
The algorithm is not without heuristic elements, but we prove its
effectiveness for a set of tasks requiring LTCA over periods that
pose enormous difficulties to deep RL.

Results
Episodic RL. We consider the setting of episodic RL, with time
divided into separate trials (episodes) terminating after T time
steps. This setting is common and benefits from many practical
algorithms, although other formalisms exist19. The agent’s
behavior is governed by parameters θ, and it operates in the
environment by receiving at each discrete time step t sensory
observations ot , processing those observations into an internal
representation ht ¼ hðo0; ¼ ; ot; θÞ, and emitting actions at
using a policy probability distribution πðat jht ; yt ; θÞ (yt is inclu-
ded to allow conditioning variables). Each episode is independent
of the rest save for changes due to agent learning.

The objective is to maximize the sum of rewards that the agent
receives until the final time step. Let Rt � rt þ rtþ1 þ � � � þ rT ,
where rt is the reward at time step t and Rt is called the return.
The return of any episode is non-deterministic due to random-
ness in the start state of the system and the random action choices
of the policy. Therefore, beginning from the start of the episode
the aim is to maximize the expected return, known as the value
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To improve performance, it is common to evaluate the episodic
policy gradient20,21, which under fairly general conditions can be
shown to have the form:
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where ∇
θ
is the gradient with respect to θ. This quantity is

typically estimated by running episodes and sampling actions
from the policy probability distribution and calculating:
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X
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In practice, updating the parameters of the agent using Eq. (3) is
only appropriate for the simplest of tasks, because, though its
expectation is the episodic policy gradient, it is a stochastic
estimate with high variance. That is, for the gradient estimate Δθ,
VarπðΔθÞ is large relative to the magnitude of the expectation in
Eq. (2). Most applications of RL mitigate this variance in two
ways. First, they utilize variance reduction techniques, e.g.,

replacing Rt by a mean-subtracted estimate Rt � V̂ t , where V̂ t

is a learned prediction of Rt
10. In this work, we use variance

reduction techniques but sometimes suppress mention of them
(see “Methods: Loss functions”).

Another approach to reduce variance is to introduce bias22 by
choosing a parameter update direction Δθ that does not satisfy
Eπ½Δθ� ¼ ∇θ

V0. One of the most common tools used to
manipulate bias to reduce variance is temporal discounting,
which diminishes the contribution of future rewards. We

define the discounted return as R
ðγÞ
t ¼ rt þ γrtþ1 þ γ2rtþ2þ

� � � þ γT�trT . The parameter γ 2 ½0; 1� is known as the discount
factor. For γ ¼ 0:99, a reward 100 ð¼ 1

1�γÞ steps into the future is

attenuated by a multiplicative factor of

0:99100 ¼ 1�
1

100

� �100

� 1=e: ð4Þ

In general, the half-life (strictly, the 1=e-life) of reward in units of
time steps is τ ¼ 1

1�γ. Because effectively fewer reward terms are

included in the policy gradient, the variance of the discounted
policy gradient estimate

∇
θ
V
ðγÞ
0 �

X
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t¼0

∇
θ
logπðat jht ; θÞR

ðγÞ
t ð5Þ

is smaller, but because the influence of future reward on present
value is exponentially diminished, discounting limits the time
scale to which an agent’s behavior is adapted to roughly a
multiple of the half-life. Owing to this limitation,
RL applications focus on relatively short time-scale problems,
such as reactive games11. Yet there is a clear gap between
these and relevant human time scales: much of the narrative
structure of human life is characterized by highly correlated,
sparse events separated by long intervals and unrelated
activities.
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To study decision-making in the face of long delays and
intervening activity, we formalize task structures of two basic
types. Each is composed of three phases (Fig. 1a), P1–P3. In the
first task type (information acquisition tasks), in P1 the agent
must, without immediate reward, explore an environment to
acquire information; in P2, the agent engages in an unrelated
distractor task over a long time period with numerous
incidental rewards; in P3, the agent must exploit the
information acquired in P1 to acquire a distal reward. In the
second task type (causation tasks), the agent must act to trigger
some event in P1 that has only long-term causal consequences.
P2 is similarly a distractor task, but in P3 the agent must now
exploit the changes in environment provoked by its activity in
P1 to achieve success. Because a critical component of the
solution we will propose involves memory encoding and
retrieval, we consider P1 to consist of action followed by

memory encoding, P2 as the distractor, and P3 as exploitation
(Fig. 1a). While we sometimes report the performance in P2, to
ensure agents perform comparably on the distractor task, we
will focus primarily on the performance obtained by the agent
in P3 as the quantity of interest. The challenge is to produce
behavior in P1 that assists performance in P3, thereby
achieving LTCA. While this task structure is contrived, it
enables us to systematically control delay durations and
variance in the distractor reward.

Under these assumptions, we can understand why a distractor
phase can be damaging to LTCA by defining a measure of signal-
to-noise ratio (SNR) in the policy gradient estimate that induces
behavioral adaptation in P1. Here we measure SNR as the squared

length of the expected gradient, kEπ½Δθ�k
2, divided by the

variance of the gradient estimate, Varπ½Δθ� (the trace of
CovπðΔθ;ΔθÞ). In Supplementary Methods 1, we show that with
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Fig. 1 Task setting and Reconstructive Memory Agent. a The three-phase task structure. In phase 1 (P1), there is no reward, but the agent must seek

information or trigger an event. In phase 2 (P2), the agent performs a distractor task that delivers reward. In phase 3 (P3), the agent can acquire a distal

reward, depending on its behavior in P1. At each time step, the RL agent takes in observations o
t
and produces actions a

t
and passes memory state to the

next time step. b The Passive Visual Match task: the agent passively observes a colored square on the wall in P1 (gray here), consumes apples in P2, and

must select from a lineup of the previously observed square from P1. The agent and colored square are indicated by the yellow and red arrow, respectively.

c The Reconstructive Memory Agent (RMA) takes in observations, o
t
, encodes them, e

t
, compresses them into a state variable z

t
, and decodes from z

t
the

observations and value prediction V̂
t
. The state variable is also passed to an RNN controller h

t
that can retrieve (or read) memories t

t
from the external

memory M
t
using content-based addressing with search keys k

t
. z

t
is inserted into the external memory at the next time step, and the policy π

t

stochastically produces an action a
t
as a function of ðz

t;t; htÞ (only z
t
shown). d The RMA solves the Passive Visual Match, achieving better performance

than a comparable agent without the reconstruction objective (and decoders), LSTM+Mem, and better than an agent without external memory, LSTM. An

agent that randomly chooses in P3 would achieve a score of 3:25. Learning curves show standard error about the mean, computed over five independent

runs. e The RMA uses its attentional read weight on time step 526 in P3 to retrieve the memories stored on the first few time steps in the episode in P1,

when it was facing the colored square, to select the corresponding square and acquire the distal reward, worth ten points
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γ ¼ 1 the SNR is approximately

SNR �
k Eπ½Δθ�k

2

Varπ½
P

t2P2rt � ´CðθÞ þ Varπ½Δθj noP2 �
; ð6Þ

where CðθÞ is a reward-independent term and Varπ½Δθj noP2 � is
the (trace of the) policy gradient variance in an equivalent
problem without a distractor interval. Varπ½

P

t2P2rt � is the reward
variance in P2. When P2 reward variance is large, the policy
gradient SNR is inversely proportional to it. Reduced SNR is
known to adversely affect stochastic gradient optimization23. The
standard solution is to average over larger data batches, which,
with independent samples, linearly increases SNR. However, this
is at the expense of data efficiency and becomes more difficult
with increasing delays and interceding variance.

Before we examine a complete task of this structure, consider
a simpler task, which we call Passive Visual Match (Fig. 1b),
that involves a long delay and memory dependence without
LTCA. It is passive in that the information that must be
remembered by the agent is observed without any action
required on its part; tasks of this form have been recently
studied in memory-based RL24,25. In Passive Visual Match, the
agent begins each episode in a corridor facing a wall with a
painted square whose color is random. While this corresponds
to the period P1 in the task structure, the agent does not need
to achieve any goal. After 5 s, the agent is transported in P2 to
another room where it engages in the distractor task of
collecting apples for 30 s. Finally, in P3 the agent is transported
to a third room in which four colored squares are posted on
the wall, one of which matches the observation in P1. If the
agent moves to the groundpad in front of the matching
colored square, it receives a distal reward, which is much
smaller than the total distractor phase reward. To solve this
task, it is unnecessary for the agent to take into account
reward from the distant future to make decisions as the actions
in P3 precede reward by a short interval. However, the agent
must store and access memories of its past to choose the
pad in P3.

The Reconstructive Memory Agent (RMA). We solve this task
with an AI agent, which we name the RMA (Fig. 1c), simplified
from a previous model24. Critically, this model combines a
reconstruction process to compress useful sensory information
with memory storage that can be queried by content-based
addressing26–28 to inform the agent’s decisions. The RMA itself
does not have specialized functionality to subserve LTCA but
provides a basis for the operation of the TVT algorithm,
which does.

The agent compresses sensory observations into a vector, zt ,
that is both propagated to the policy to make decisions and
inserted into a memory system for later retrieval, using search
keys (queries) that are themselves optimized by RL. The
combination of this compression process with content-based
retrieval allows the RMA to make effective memory-based
decisions when current sensory information is insufficient.
Intuitively, remembering what previously occurred is a precondi-
tion for LTCA.

In this model, an image It , the previous reward rt�1, and the
previous action at�1 constitute the observation ot at time step t.
These inputs are processed by encoder networks and merged into
an embedding vector et , which is to be combined with the output
of a recurrent neural network (RNN). This RNN consists of a
recurrent LSTM network h and a memory matrix M of
dimension N ´W, where N is the number of memory slots and
W is the same length as a vector z. The output of this RNN and
memory system from the previous time step t � 1 consists of the

LSTM output ht�1 and k (¼ 3 here) vectors of length W read

from memory mt�1 � ðm
ð1Þ
t�1;m

ð2Þ
t�1; ¼ ;m

ðkÞ
t�1Þ, which we refer to

as memory read vectors. Together, these outputs are combined
with the embedding vector by a feedforward network into a state
representation zt ¼ f ðet ; ht�1;mt�1Þ. Importantly, the state
representation zt has the same dimension W as a memory read
vector. Indeed, once produced it will be inserted into the tth row
of memory at the next time step: Mt ½t; ��  zt .

Before this occurs, the RNN carries out one cycle of memory
reading and computation. The state representation zt is provided
to the RNN, alongside the previous time step’s memory read
vectors t�1 to produce the next ht . Then the current step’s

memory read vectors are produced: k read keys k
ð1Þ
t ; k

ð2Þ
t ; ¼ ; k

ðkÞ
t

of dimension W are produced as a function of ht , and each key is
matched against every row n using a similarity measure

Sðk
ðiÞ
t ;Mt�1½n; ��Þ. The similarities are scaled by a positive read

strength parameter β
ðiÞ
t (also computed as a function of ht), to

which a softmax over the weighted similarities is applied. This

creates an attentional read weight vector w
ðiÞ
t with dimension N ,

which is used to construct the ith memory read vector

m
ðiÞ
t ¼

PN
n¼1w

ðiÞ
t ½n�Mt ½n; ��.

The state representation zt is also sent to decoder networks
whose objective functions require them to produce reconstruc-

tions Ît ; r̂t�1; ât�1 of the observations (the carets denote
approximate quantities produced by networks) while also

predicting the value function V̂ðztÞ. This process ensures that
zt contains useful, compressed sensory information. Such
encoder–decoder models have been explored previously in
RL24,29. Finally, the state representation zt and RNN outputs
ðht;tÞ are provided as input to the policy network to construct the

policy distribution πðat jzt ; ht;tÞ, which is a multinomial distribu-

tion over the discrete actions here. At each time step, an action at
is sampled and emitted.

When trained on Passive Visual Match, all the agents
succeeded at the apple collection distractor task (Supplemen-
tary Fig. 1), although only the RMA learned to get the distal
reward by selecting in P3 the square color seen in P1 (Fig. 1d).
A comparison agent without an external memory (LSTM
agent) achieved effectively chance performance in P3, and an
agent with an external memory but no reconstruction objective
decoding observation data from zt (LSTM+Mem agent) also
performed worse. The reconstruction process in the RMA
helps to build and stabilize perceptual features in zt that can
later be found by memory retrieval24. The solution of the RMA
was robust. In Supplementary Fig. 2, we demonstrate
equivalent results for 0-, 15-, 30-, 45-, and 60-s distractor
intervals: the number of episodes required to learn remained
roughly independent of delay (Supplementary Fig. 3). In
addition, for more complicated stimuli consisting of CIFAR
images30, the RMA was able to make correct matching choices
(Supplementary Fig. 4).

Despite the P2 delay, Passive Visual Match does not require
LTCA. The cue in P1 is automatically observed; an agent only
needs to encode and retrieve a memory to transiently move to
the correct pad in P3. Consequently, an agent with a small
discount factor γ ¼ 0:96 (τ ¼ 25 steps at 15 frames per second,
giving a 1.67-s half-life) was able to solve the task (Supple-
mentary Fig. 13). However, encoding and attending to specific
past events was critical to the RMA’s success. In Fig. 1e, we see
an attentional weighting vector wt produced by an RMA read
key in an episode at time step 526, which corresponds to the
beginning of P3. The weighting was focused on memories
written in P1, during the instants when the agent was encoding
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the colored square. The learned memory retrieval identified
relevant time points over the 30-s distractor interval. Recall of
memories in the RMA is driven by predicting the value function

V̂ðztÞ and producing the policy distribution πðat jzt ; ht;tÞ. As we
have seen, these objectives allowed the agent to automatically
detect relevant past moments.

We now turn to a type 1 information acquisition task, Active
Visual Match, that demands LTCA. Here, in P1, the agent must
actively find a colored square, randomly located in a two-room
maze, so that it can decide on the match in P3 (Fig. 2a). If an
agent finds the visual cue by chance in P1, then it can use this
information in P3, but this will only be successful at random. As
in Passive Visual Match, the agent engages in a 30-s distractor
task of apple collection during P2. When the rewards of P2 apples
were set to 0, RMAs with discount factors sufficiently close to 1
were able to solve the task (Fig. 2b, dashed lines). With a
randomized number of apples worth one point each, the RMAs
with γ ¼ 0:998 ultimately began to learn the task (Fig. 2b, solid
line, medium blue) but were slower in comparison to the no P2
reward case. For a fixed mean reward per episode in P2 but
increasing variance, RMA performance degraded entirely (Sup-
plementary Fig. 5). Finally, for the principal setting of the level,
where each P2 apple is worth five points and the P2 reward

variance is 630, all comparison models (LSTM agent, LSTM
+Mem agent, and RMA) failed to learn P1 behavior optimized
for P3 (Fig. 2d). For γ ¼ 0:96, RMAs reached a score of about 4.5,
which implies slightly better than random performance in P3:
RMAs solved the task in cases where they accidentally sighted the
cue in P1.

Temporal Value Transport. TVT is a learning algorithm that
augments the capabilities of memory-based agents to solve LTCA
problems. The insight is that we can combine attentional memory
access with RL to fight variance by automatically discovering how
to ignore it, effectively transforming a problem into one with no
delay. A standard technique in RL is to estimate the return for the
policy gradient calculation by bootstrapping10: using the learned
value function, which is deterministic and hence low variance but
biased, to reduce the variance in the return calculation. We

denote this bootstrapped return as ~Rt :¼ rt þ γV̂ tþ1. The agent
with TVT (and the other agent models) likewise bootstraps from
the next time step and uses a discount factor to reduce variance
further. However, it additionally bootstraps from the distant
future.

In Fig. 2c, we highlight the basic principle behind TVT. We
previously saw in the Passive Visual Match task that the RMA
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Fig. 2 Temporal Value Transport and type 1 information acquisition tasks. a First person (upper row) and top–down view (lower row) in Active Visual

Match task while the agent is engaged in the task. In contrast to Passive Visual Match, the agent must explore to find the colored square, randomly located

in a two-room environment. The agent and colored square are indicated by the yellow and red arrow, respectively. b Without rewards in P2, RMA models

with large discount factors (near 1) were able to solve the task; the RMA with γ ¼ 0:998 exhibited retarded but definite learning with modest P2 reward (1

point per apple). c Cartoon of the Temporal Value Transport mechanism: the distractor interval is spliced out, and the value prediction V̂
t3
from a time

point t3 in P3 is directly added to the reward at time t1 in P1. d The TVT agent alone was able to solve Active Visual Match with large rewards during the P2

distractor (Supplementary Movie 1) and faster than agents exposed to no distractor reward. The RMA with discount factor γ ¼ 0:96 was able to solve a

greater than chance fraction because it could randomly encounter the colored square in P1 and retrieve its memory in P3. In b, d, error bars represent

standard errors across five agent training runs
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reading mechanism learned to retrieve a memory from P1 in
order to produce the value function prediction and policy in P3.
This was an process determined automatically by the needs of the
agent in P3. We exploit this phenomenon to form a link between
the time point t3 (occurring, e.g., in P3) at which the retrieval
occurs and the time t1 at which the memory was encoded. This
initiates a splice event in which the bootstrapped return

calculation for t1 is revaluated to ~Rt1
:¼ rt1 þ γV̂ t1þ1

þ αV̂ t3
,

where α is a form of discount factor that diminishes the impact of
future value over multiple stages of TVT. From the perspective of
learning at time t1, the credit assignment is conventional: the
agent tries to estimate the value function prediction based on this
revaluated bootstrapped return, and it calculates the policy
gradient based on it too. The bootstrapped return can trivially be

regrouped, ~Rt1
:¼ ðrt1 þ αV̂ t3

Þ þ γV̂ t1þ1
, which facilitates the

interpretation of the transported value as fictitious reward
introduced to time t1.

This is broadly how TVT works. However, there are further
practicalities. First, the TVT mechanism only triggers when a
memory retrieval is sufficiently strong: this occurs whenever a

read strength β
ðiÞ
t is above a threshold, βthreshold (for robustness

analyses of the reading and threshold mechanisms, see Supple-
mentary Figs. 14, 15, 17, and 18). Second, each of the k memory
reading processes operates in parallel, and each can indepen-
dently trigger a splice event. Third, instead of linking to a single
past event, the value at the time of reading t0 is transported to all
times t with a strength proportional to wt0 ½t�. Fourth, value is not
transported to events that occurred very recently, where recently
is any time within one half-life τ ¼ 1=ð1� γÞ of the reading time
t0. (See Supplementary Methods Section 2 for algorithm
pseudocode.)

When applied to the Active Visual Match task with large
distractor reward, an RMA model with TVT (henceforth TVT)
learned the correct behavior in P1 and faster even than RMA with
no distractor reward (Fig. 2b, d). The difference in learned
behavior was dramatic: TVT reliably sought out the colored
square in P1, while RMA behaved randomly (Fig. 3a). Figure 3b
overlays on the agent’s trajectory (arrowheads) a coloring based
on the read weight produced at the time t3 of a TVT splice event
in P3: TVT read effectively from memories in P1 encoded while
viewing the colored square. During the learning process, we see
that the maximum read strength per episode (Fig. 3d, lower
panel) began to reach threshold (lower panel, red line) early and
prior to producing P3 reward reliably (Fig. 3d, upper panel),
which instigated learning in P1. After training, TVT’s value

function prediction V̂ t directly reflected the fictitious rewards.
Averaged over 20 trials, the value function in P1 (Fig. 3c, left
panel, blue curve) was higher than the actual discounted return,
P

t0�tγ
t0�trt0 , (Fig. 3c, left panel, green curve). The RMA with

discounting did not show a similar difference between the
discounted return and the value function (Fig. 3c, right panel). In
both Fig. 3c panels, we see bumps in P3 in the return traces due to
the distal reward: TVT achieved higher reward in general, with
the RMA return reflecting chance performance. Further, we
showed TVT could solve problems with even longer distractor
intervals, in this case with a P2 interval of 60 s (Supplementary
Fig. 6).

TVT can also solve type 2 causation tasks, where the agent does
not need to acquire information in P1 for P3 but instead must
cause an event that will affect the state of the environment in P3.
Here we study the Key-to-Door (KtD) task in which an agent
must learn to pick up a key in P1 so that it can unlock a door in
P3 to obtain reward (Fig. 4a). Although no information from P1
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must be recalled in P3 to inform the policy’s actions (the optimal
decision is to move toward the door in P3 regardless of the events
in P1), TVT still learned to acquire the key in P1 because it read
from memory to predict the value function when positioned in
front of the door in P3 (Fig. 4b, black). All other agents failed to
pick up the key reliably in P1 (Fig. 4b blue, pink, green). We
parametrically changed the variance of reward in P2 (Fig. 4c and
Supplementary Fig. 11). In cases where the P2 reward variance
was low (SNR high), even LSTM agents with γ ¼ 1 were able to
solve the task, indicating that a large memory was not the primary
factor in success. However, LSTM agents could learn only for
small values of P2 reward variance; performance degraded with
increasing variance (Fig. 4c, dark to light green curves). In type 2
causation tasks, the TVT algorithm specifically assisted credit
assignment in low SNR conditions. For the same setting as
Fig. 4b, we calculated the variance of the TVT bootstrapped

return ~Rt for each time point, over 20 episodes, and compared on
the same episodes to the variance of the undiscounted return,
P

t0�trt0 (Fig. 4d). Because it exploits discounting, the variance of

the bootstrapped return of TVT was nearly two orders of
magnitude smaller in P1. We next asked whether the agent
attributed the fictitious reward transported to P1 in an intelligent
way to the key pickup. In P1, using a saliency analysis31, we
calculated the derivative of the value prediction with respect to

the image ∇It
V̂ tðztÞ and shaded the original input image

proportionally to its magnitude (Supplementary Methods 7). In
Fig. 4e, we see this produced a direct segmentation of the key. As
a control experiment, in Supplementary Fig. 7, we tested whether
there needed to be any surface similarity between visual features
in P3 and the encoded memory in P1. With a blue instead of
black key, TVT also solved the task as easily, indicating that the
memory searches could flexibly find information with a some-
what arbitrary relationship to current context.

The introduction of transported value can come at a cost.
When a task has no need for LTCA, spurious triggering of splice
events can send value back to earlier time points and bias
behavior. To study this issue, we examined a set of independent
tasks designed for standard discounted RL. We compared the
performance of the LSTM agent, the LSTM+Mem agent, RMA,
and TVT. TVT generally performed on par with RMA on many
tasks but slightly worse on one, Arbitrary Visuomotor Mapping
(AVM) (Supplementary Figs. 8 and 9), and outperformed all of
the other agent models, including LSTM+Mem. In AVM,
memory access is useful but LTCA unnecessary.

TVT could also function when P3 reward was strictly negative,
but action in P1 could avert disaster. In the Two Negative Keys task
(Supplementary Fig. 10), the agent is presented with a blue key and
red key in a room in P1. If the agent picks up the red key, it will be
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able to retrieve a P3 reward behind a door worth �1; if it picks up
the blue key, it will be able to retrieve a reward worth�10, and if it
does not pick up a key at all, it is penalized �20 in P3.

Having established that TVT was able to solve simple
problems, we now demonstrate TVT’s capability in two more
complex scenarios. The first of these is an amalgam of the KtD
and the Active Visual Match task, which demonstrates TVT
across multiple phases—the Key-to-Door-to-Match task
(KtDtM); here an agent must exhibit two non-contiguous
behaviors to acquire distal reward.

In this task, we have phases P1–P5 (Fig. 5a). P2 and P4 are
both long distractor phases involving apple collection distractor
rewards. In P1 and P3, there are no rewards. In P1, the agent
must fetch a key, which it will use in P3 to open a door to see a
colored square. In P5, the agent must choose the groundpad in
front of the colored square matching the one behind the door in
P3. If the agent does not pick up the key in P1, it is locked out of
the room in P3 and cannot make the correct P5 choice. TVT
solved this task reliably (Fig. 5b), whereas all other agents solved
this problem only at chance in P5 and did not pursue the key in
P1. As might be expected, the TVT value function prediction rose
in P1, P3, and P5 (Fig. 5c) with two humps where the P1 and P3
value functions were above the discounted return traces. Because
the discount factor α for TVT transport was relatively large (0.9),
the two humps in the value prediction were of comparable
magnitude.

Finally, we look at a richer task, Latent Information
Acquisition (Fig. 6a). In P1, the agent begins in a room
surrounded by three objects with random textures and colors
drawn from a set. During P1, each object has no reward
associated with it. When an object is touched by the agent, it
disappears and a color swatch (green or red) appears on the
screen. Green swatches indicate that the object is good and red
swatches bad. The number of green- and red-associated objects

was balanced. In P2, the agent again collects apples for 30 s. In P3,
the agent must collect only the objects associated with green.

The TVT agent alone solved the task (Fig. 6b, black curve),
usually touching all three objects in P1 (Fig. 6d), while the RMA
only touched one object on average (Fig. 6b, other colors). In P1,
the objects were situated on a grid of six possible locations (with
no relationship to P3 location). Only TVT learned an exploratory
sweeping behavior whereby it efficiently covered the locations
where the objects were present (Fig. 6c); RMA reliably moved
into the same corner, thus touching by accident one object.

Discussion
There is abundant literature on interactions between memory and
RL in both neuroscience and AI. Research has particularly
stressed the capacity for episodic memory to support rapid
learning by quick revision of knowledge regarding the structure of
the environment24,25,32–34. By contrast, comparatively little
attention has been accorded to how episodic memory can support
LTCA in AI.

The mechanism of TVT should be compared to other recent
proposals to address the problem of LTCA. The SAB algorithm35

in a supervised learning context uses attentional mechanisms over
the states of an RNN to backpropagate gradients effectively. The
idea of using attention to the past is shared; however, there are
substantial differences. Instead of propagating gradients to shape
network representations, in the RMA we have used reconstruc-
tion objectives to ensure that relevant information is encoded.
Further, backpropagating gradients to RNN states would not
actually train a policy’s action distribution, which is the crux of
RL. Our approach instead modifies the rewards from which the
full policy gradient is derived. Like TVT, RUDDER36 has recently
been proposed in the RL context to address the problem of
learning from delayed rewards. RUDDER uses an LSTM to make
predictions about future returns and sensitivity analysis to
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distribute those returns as rewards throughout the episode. TVT
explicitly uses a reconstructive memory to compress high-
dimensional observations in partially observed environments
and retrieve them with content-based attention. At present, we
know of no other algorithm that can solve type 1 information
acquisition tasks.

TVT is a heuristic algorithm and one we expect will be
improved upon. In tasks where only short-term credit assignment
is needed, transporting value biases the policy objective and can
be counter-productive (Supplementary Figs. 8 and 9). It is pos-
sible that new methods can be developed that exhibit no bias and
that are almost always helpful. Further, although TVT improved
performance on problems requiring exploration, for the game
Montezuma’s Revenge, which requires the chance discovery of an
elaborate action sequence to observe reward, the TVT mechanism
was not triggered (Supplementary Fig. 21; see Supplementary
Fig. 20 for an Atari game where it did improve results).

However, TVT expresses coherent principles we believe will
endure: past events are encoded, retrieved, and revaluated. TVT
fundamentally connects memory and RL: attention weights on
memories specifically modulate the reward credited to past
events. While not intended as a neurobiological model, there is
much evidence supporting the notion that short-term credit
assignment and LTCA is dependent on episodic memory34.
Numerous studies of hippocampal lesions to rats have

demonstrated increases in impulsivity and discounting4. Further,
there is evidence consistent with the theme that episodic mem-
ory37, planning, attention, and credit assignment are inter-related
and underlie decision-making with delayed reward38,39. In one
study, human subjects cued to recall planned future events were
willing to trade immediate monetary rewards for larger monetary
rewards contemporaneous to those events; quantitatively, the
subjects discounted the future less than control subjects4. In a
study of action sequence learning, subjects were found to master
early actions in the sequence first; however, in an attentionally
disrupted condition, the subjects mastered the later actions first—
those nearer in time to reward. Here explicit attention was a
necessary component of non-local temporal credit assignment40,
a feature of TVT.

Throughout this work, we have seen that RL algorithms are
compromised when solving even simple tasks requiring long-
term behavior. We view discounted utility theory, upon which
most RL is predicated, as the source of the problem, and our work
provides evidence that other paradigms are not only possible but
can work better. In economics, paradoxical violation of dis-
counted utility theory has led to diverse, incompatible, and
incomplete theories2. We hope that a cognitive mechanisms
approach to understanding inter-temporal choice—where choice
preferences are decoupled from a rigid discounting model—will
inspire ways forward. The principle of linking remote events
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based on episodic memory access may offer a promising vantage
for future study.

The complete explanation of how we problem solve and
express coherent behaviors over long spans of time remains a
profound mystery about which our work only provides insight.
TVT learns slowly, whereas humans can quickly discover causal
connections over long intervals. Human cognition is conjectured
to be more model based than current AI models41 and can
provide causal explanations42. When the book is written, it will
likely be understood that LTCA recruits nearly the entirety of our
cognitive apparatus, including systems designed for prospective
planning, abstract reasoning, commitment to goals over indefinite
intervals, and language. Some of this human ability may well
require explanation on a different level of inquiry altogether:
among different societies, norms regarding savings and invest-
ment vary enormously43. There is in truth no upper limit to the
time horizons we can contemplate.

Methods
Agent model. At a high level, the RMA consists of four modules: an encoder for
processing observations at each time step; a memory augmented RNN, which
contains a deep LSTM controller network and an external memory that stores a
history of the past; its output combines with the encoded observation to produce a
state variable representing information about the environment (state variables also
constitute the information stored in memory); a policy that takes the state variable
and the memory’s recurrent states as input to generate an action distribution; a
decoder, which takes in the state variable and predicts the value function as well as
all current observations.

We now describe the model in detail by defining its parts and the loss functions
used to optimize it. Parameters given per task are defined in Supplementary
Table 1.

The encoder is composed of three sub-networks: the image encoder, the action
encoder, and the reward encoder. These act independently on the different
elements contained within the input set ot � ðIt ; at�1; rt�1Þ, where It is the current
observed image and at�1 and rt�1 are the action and reward of previous time step.
The outputs from these sub-networks are concatenated into a flat vector et .

The image encoder takes in image tensors It of size 64 ´ 64 ´ 3 (3 channel RGB).
We then apply six ResNet44 blocks with rectified linear activation functions. All
blocks have 64 output channels and bottleneck channel sizes of 32. The strides for
the 6 blocks are ð2; 1; 2; 1; 2; 1Þ, resulting in 8-fold spatial down-sampling of the
original image. Therefore, the ResNet module outputs tensors of size 8 ´ 8 ´ 64. We
do not use batch normalization45, a pre-activation function on inputs, or a final
activation function on the outputs. Finally, the output of the ResNet is flattened
(into a 4096-element vector) and then propagated through one final linear layer
that reduces the size to 500 dimensions, upon which a tanh nonlinearity is applied.

In all environments, the action from the previous time step is a one-hot binary
vector at�1 (6-dimensional here) with a0 � 0. We use an identity encoder for the
action one-hot. The reward from the previous time step rt�1 is also processed by an
identity encoder.

The decoder is composed of four sub-networks. Three of these sub-networks are
matched to the encoder sub-networks of image, previous action, and previous
reward. The fourth sub-network decodes the value function. The image decoder
has the same architecture as the encoder except the operations are reversed. In
particular, all two-dimensional (2D) convolutional layers are replaced with
transposed convolutions46. In addition, the last layer produces a number of output
channels that parameterize the likelihood function used for the image
reconstruction loss, described in more detail in Eq. (8). The reward and action
decoders are both linear layers from the state variable, zt , to, respectively, a scalar
dimension and the action cardinality.

The value function predictor is a multi-layer perceptron (MLP) that takes in the
concatenation of the state variable with the action distribution’s logits, where, to
ensure that the value function predictor learning does not modify the policy, we
block the gradient (stop gradient) back through to the policy logits. The MLP has a
single hidden layer of 200 hidden units and a tanh activation function, which then
projects via another linear layer to an one-dimensional output. This function is a

state-value function V̂
π

t � V̂
π
ðzt ; StopGradientðlogπtÞÞ.

The RNN is primarily based on a simplification of the Differentiable Neural
Computer (DNC)24,28. It is composed of a deep LSTM and a slot-based external
memory. The LSTM has recurrent state ðht ; ctÞ (output state and cells,
respectively). The memory itself is a 2D matrix Mt of size N ´W, where W is the
same size as a state variable z and N is the number of memory slots, which is
typically set to be the number of time steps in the episode. The memory at the
beginning of each episode is initialized blank, namely, M0 ¼ 0. We also carry the

memory readouts mt � ½m
ð1Þ
t ;m

ð2Þ
t ; ¼ ;m

ðkÞ
t �, which is a list of k vectors read from

the memory Mt , as recurrent state.

At each time step, the following steps are taken sequentially: (1) Generate the
state variable zt with et , ht�1 , and mt�1 as input; (2) Update the deep LSTM state
with ht ¼ LSTM ðzt;mt�1; ht�1Þ; (3) Construct the read key and read from the
external memory; (4) Write the state variable zt to slot t in the external memory.

State variable generation. The first step is to generate a state variable, zt , combining
both the new observation with the recurrent information. We take the encoded
current observation et concatenated with the recurrent information ht�1 and mt�1

as input through a single hidden-layer MLP with the hidden layer of size 2 ´Wtanh
units and output layer of size W.

Deep LSTMs. We use a deep LSTM47 of two hidden layers. Although the deep
LSTM model has been described before, we describe it here for completeness.
Denote the input to the network at time step t as xt . Within a layer l, there is a

recurrent state hlt and a “cell” state clt , which are updated based on the following

recursion (with σðxÞ � ð1þ expð�xÞÞ�1):

gilt ¼ σ W l
i½xt ; h

l
t�1; h

l�1
t � þ bli

� �

gf lt ¼ σ W l
f ½xt ; h

l
t�1; h

l�1
t � þ blf

� 	

clt ¼ gf lt � clt�1 þ gilt � tanh W l
c½xt ; h

l
t�1; h

l�1
t � þ blc

� �

golt ¼ σ W l
o½xt ; h

l
t�1; h

l�1
t � þ blo

� �

hlt ¼ golt tanhðc
l
tÞ;

where � is an element-wise product. To produce a complete output ht , we con-

catenate the output vectors from each layer: ht � ½h
1
t ; h

2
t �. These are passed out for

downstream processing.

LSTM update. At each time step t, the deep LSTM receives input zt , which is then
concatenated with the memory readouts at the previous time step mt�1 . The input
to the LSTM is therefore xt ¼ ½zt ;mt�1�. The deep LSTM equations are applied,
and the output ht is produced.

External memory reading. A linear layer is applied to the LSTM’s output ht to
construct a memory interface vector it of dimension k ´ ðW þ 1Þ. The vector it is

then segmented into k read keys k
ð1Þ
t ; k

ð2Þ
t ; ¼ ; k

ðkÞ
t of length W and k scalars

sc
ð1Þ
t ; ¼ ; sc

ðkÞ
t , which are passed through the function SoftPlus ðxÞ ¼ logð1þ

expðxÞÞ to produce the scalars β
ð1Þ
t ; β

ð2Þ
t ¼ ; β

ðkÞ
t .

Memory reading is executed before memory writing. Reading is content based.

Reading proceeds by computing the cosine similarity between each read key k
ðiÞ
t

and each memory row j: c
ðijÞ
t ¼ cosðk

ðiÞ
t ;Mt�1½j; ��Þ ¼

k
ðiÞ
t �Mt�1 ½j;��

jk
ðiÞ
t jjMt�1 ½j;��j

. We then find

indices j
ðiÞ
1 ; ¼ ; j

ðiÞ
topK

corresponding to the topK largest values of c
ðijÞ
t (over index j).

Note that, since unwritten rows of Mt�1 are equal to the zero vector, some of the
chosen j1; ¼ ; jtopK may correspond to rows of Mt�1 that are equal to the zero

vector.
A weighting vector of length N is then computed by setting:

w
ðiÞ
t ½j� ¼

expðβ
ðiÞ
t c
ðijÞ
t Þ

P

j0 2fj
ðiÞ
1

;¼ ;j
ðiÞ
topK

g
expðβ

ðiÞ
t c
ðij0 Þ
t Þ

; for j 2 fj
ðiÞ
1 ; ¼ ; j

ðiÞ
topK
g

0; otherwise :

8

>

<

>

:

Reading is restricted to slots that have been written to so far, so it is possible to use
a pre-allocated memory that is larger than the number of time steps in the episode.
We demonstrate this in Supplementary Fig. 16. For each key, the readout from

memory is m
ðiÞ
t ¼ M>t�1w

ðiÞ
t . The full memory readout is the concatenation across

all read heads: mt � ½m
ð1Þ
t ; ¼ ;m

ðkÞ
t �.

External memory writing. Writing to memory occurs after reading, which we also
define using weighting vectors. The write weighting vwrt has length N and always
appends information to the tth row of the memory matrix at time t, i.e., vwrt ½i� ¼

δi;t (using the Kronecker delta). The information we write to the memory is the

state variable zt . Thus the memory update can be written as

Mt ¼ Mt�1 þ vwrt z>t ; ð7Þ

Policy. The policy module receives zt , ht , and mt as inputs. The inputs are passed
through a single hidden-layer MLP with 200 tanh units. This then projects to the
logits of a multinomial softmax with the dimensionality of the action space. The
action at is sampled and executed in the environment.

Loss functions. We combine a policy gradient loss with reconstruction objectives for
decoding observations. We also have a specific loss that regularizes the use of
memory for TVT.

The reconstruction loss is the negative conditional log-likelihood of the
observations and return, i.e., �log pðot ;Rt jztÞ, which is factorized into independent
loss terms associated with each decoder sub-network and is conditioned on the
state variable zt . We use a multinomial softmax cross-entropy loss for the action,
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mean-squared error (Gaussian with fixed variance of 1) losses for the reward and
the value function, and a Bernoulli cross-entropy loss for each pixel channel of the
image. Thus we have a negative conditional log-likelihood loss contribution at each
time step of

�log pðot ;Rt jztÞ � αimageLimage þ αvalueLvalue þ αrewLrew þ αactLact; ð8Þ

where

L image ¼
X

jWj;jHj;jCj

w¼1;h¼1;c¼1

½It ½w; h; c�logÎt ½w; h; c� þ ð1� It ½w; h; c�Þlogð1� Ît ½w; h; c�Þ�;

Lvalue ¼
1

2
½jjRt � V̂

π
ðzt ; StopGradientðlogπtÞÞjj

2�;

Lrew ¼
1

2
jjrt�1 � r̂t�1jj

2;

Lact ¼
X

jAj

i¼1

½at�1½i�logðât�1½i�Þ þ ð1� at�1½i�Þlogð1� ât�1½i�Þ�:

On all but the standard RL control experiment tasks, we constructed the target

return value as Rt ¼ rt þ γrtþ1 þ γ2rtþ2 þ � � � þ γT�trT . For the standard RL
control experiment tasks with episodes of length T , we use “truncation windows”48

in which the time axis is subdivided into segments of length τwindow . We can
consider full gradient as a truncated gradient with τwindow ¼ T . If the window
around time index t ends at time index k, the return within the window is

Rt :¼
rt þ γrtþ1 þ γ2rtþ2 þ � � � þ γk�tþ1V̂

π
ðzkþ1; logπkþ1Þ; if k <T;

rt þ γrtþ1 þ γ2rtþ2 þ � � � þ γT�trT ; if T 	 k:

(

ð9Þ

As a measure to balance the magnitude of the gradients from different
reconstruction losses, the image reconstruction loss is divided by the number of
pixel channels jWj ´ jHj ´ jCj.

We use discount and bootstrapping parameters γ and λ, respectively, as part of
the policy advantage calculation given by the Generalized Advantage Estimation

(GAE) algorithm49. Defining δt � rt þ γV̂
π
ðztþ1; logπtþ1Þ � V̂

π
ðzt ; logπtÞ, GAE

makes an update of the form:

Δθ /
X

ðkþ1Þτwindow

t¼kτwindow

X

ðkþ1Þτwindow

t0¼t

ðγλÞt
0�tδt0∇θ logπθðatjhtÞ: ð10Þ

There is an additional loss term that increases the entropy of the policy’s action
distribution. This and pseudocode for all of RMA’s updates are provided in
Supplementary Note 1.

For TVT, we include an additional regularization term Lread�regularization .

Comparison models. We introduce two comparison models: the LSTM+Mem
Agent and the LSTM Agent. The LSTM+Mem Agent is similar to the RMA. The
key difference is that it has no reconstruction decoders and losses. The value
function is produced by a one hidden-layer MLP with 200 hidden units:

V̂ðzt ; StopGradientðlogπtÞÞ.
The LSTM Agent additionally has no external memory system and is essentially

the same design as the A3C agent48. We have retrofitted the model to share the
same encoder networks as the RMA, acting on input observations to produce the
same vector et . This is then passed as input to a deep two-layer LSTM that is the
same as the one in RMA. The LSTM has two output “heads”, which are both one
hidden-layer MLPs with 200 hidden units: one for the policy distribution
πðat jzt ; htÞ and one for the value function prediction

V̂ðzt ; ht ; StopGradientðlogπtÞÞ. As for our other agents, the policy head is trained
using Eq. (10).

We hyper-parameter searched for the best learning rates on comparison models
(Supplementary Fig. 12). The throughput in environment steps taken per second
for RMA was about 70% of the LSTM agent (Supplementary Fig. 19). TVT ran as
fast as RMA.

Implementation and optimization. For optimization, we used truncated back-
propagation through time50. We ran 384 parallel worker threads that each ran an
episode on an environment and calculated gradients for learning. Each gradient
was calculated after one truncation window, τwindow . For all main paper experi-
ments other than the standard RL control experiments, τwindow ¼ T , the length of
the episode.

The gradient computed by each worker was sent to a “parameter server” that
asynchronously ran an optimization step with each incoming gradient. We
optimize the model using ADAM optimizers51 with β1 ¼ 0:9 and β2 ¼ 0:999.

The pseudocode for each RMA worker is presented in Supplementary
Methods 2. For all experiments, we used the open source package Sonnet available
at https://github.com/deepmind/sonnet. All network parameters were initialized to
its parameter defaults.

Temporal Value Transport. TVT works in two stages. First, we identify significant
memory read events, which become splice events. Second, we transport the value

predictions made at those read events back to the time points being read from,
where they modify the rewards and therefore the RL updates.

At time t0 , the read strengths β
ðiÞ
t0 are calculated as described in “External

Memory Reading.” To exclude sending back value to events in the near past, for

time points t0 where t0 � argmaxtwt0 ½t�< 1=ð1� γÞ, we reset β
ðiÞ
t0 :¼ 0 for the

remainder of the computation. We then identify splice events by first finding all

time windows ½t0�; t
0
þ� where β

ðiÞ
t0 � βthreshold for t0 2 ½t0�; t

0
þ� but β

ðiÞ
t0 < βthreshold for

t0 ¼ t0� � 1 and t0 ¼ t0þ þ 1.

We then set tmax to be the argmax over t0 of β
ðiÞ
t0 in the period for the included

points. For each tmax above, we modify the reward of all time points t occurred
more than 1=ð1� γÞ steps beforehand:

rt !
rt þ αw

ðiÞ
tmax
½t�V̂ tmaxþ1

; if t > tmax � 1=ð1� γÞ;

rt ; otherwise:

(

ð11Þ

We send back V̂ tmaxþ1
because that is the first value function prediction that

incorporates information from the read at time tmax. In addition, for multiple read
processes i, the process is the same, with independent, additive changes to the
reward at any time step. Pseudocode for TVT with multiple read processes is
provided in Supplementary Methods 2.

To prevent the TVT mechanism from being triggered extraneously, we impose
a small regularization cost whenever a read strength is above threshold.

Lread�regularization ¼ αread�regularization ´
X

k

i¼1

maxðβ
ðiÞ
t � βthreshold; 0Þ; ð12Þ

with αread�regularization ¼ 5 ´ 10�6 . This is added to the other loss terms.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Source data for experiments is available on request. A reporting summary for this article

is available as a Supplementary Information file.

Code availability
The simulation environments and a non-distributed working agent implementation will

be made available on publication at https://github.com/deepmind/tvt. Sonnet is available

at https://github.com/deepmind/sonnet. DeepMind Lab is available at https://github.

com/deepmind/lab.
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