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Abstract

In multiple-image super-resolution, a high resolution image is estimated from
a number of lower-resolution images. This involves computing the parame-
ters of a generative imaging model (such as geometric and photometric reg-
istration, and blur) and obtaining a MAP estimate by minimizing a cost func-
tion including an appropriate prior.

We consider the quite general geometric registration situation modelled
by a plane projective transformation, and make two novel contributions: (i) in
previous approaches the MAP estimate has been obtained by first computing
and fixing the registration, and then computing the super-resolution image
with this registration. We demonstrate that superior estimates are obtained
by optimizing over both the registration and image; (ii) theparameters of
the edge preserving prior are learnt automatically from thedata, rather than
being set by trial and error.

We show examples on a number of real sequences including multiple
stills, digital video, and DVDs of movies.

1 Introduction

Multi-frame image super-resolution refers to the process where a group of images of the
same scene are fused to produce an image or images with a higher spatial resolution,
or with more visible detail in the high spatial frequency features [9]. The limits on the
resolution of the original imaging device can be improved byexploiting the relative sub-
pixel motion between the scene and the imaging plane. Such problems are common, with
everything from holiday snaps and DVD frames to satellite terrain imagery providing col-
lections of low-resolution images to be enhanced, for instance to produce a more aesthetic
image for media publication [17], or for higher-level vision tasks such as object recogni-
tion or localization [7]. Figure 1 shows two examples of multi-frame super-resolution.

The problem is often broken down into several distinct stages: image registration or
motion estimation, low-resolution image blur estimation,selection of a suitable prior, and
super-resolution image estimation. However, these stagesare seldom truly independent,
and this is too often ignored in current super-resolution techniques [1, 2, 4, 9, 14].

In this work we introduce an algorithm to estimate a super-resolution image at the
same time as finding the low-resolution image registrations, and show that thissimulta-
neous approach offers visible benefits on results obtained from real data sequences. The
registration model we handle is fully projective, and we also incorporate a photometric
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(b) super−resolved

(a) input 1/30 (c) input 1/29 (d) interp. x 4 (e) super−resolved

Figure 1: (a) One of 30 close-ups from a digital camera sequence; (b) automatic super-
resolution output. (c) Close-up from one of 29 DVD movie frames; (d) interpolated to
correct aspect ratio (for comparison only); (e) automatic super-resolution output.

model to handle brightness changes often present in images captured in a temporal se-
quence. This makes the model far more general than most super-resolution approaches.
Additionally, the algorithm learns parameters for the high-resolution image prior (or reg-
ularizer). Each scene will have different underlying imagestatistics, so by adapting to
these, the algorithm preserves as much richness and detail as possible from the original
scene without encountering problems with conditioning.

1.1 Background

The vast majority of current super-resolution methods either pre-register the inputs using
standard registration techniques, or assume that a perfectregistration is givena priori [4,
9]. In most cases, the selection of values for the prior and blur functions are deferred to
the user, rather than chosen with reference to the input data. A few methods assume no
scene motion, and use other cues such as lighting or varying zoom [10].

There are two notable methods which learn a registration using the super-resolution
model. Hardieet al. [7] use their high-resolution estimate to reconsider the registrations,
but limit themselves to shifts on a14 -pixel-spaced grid, so registration is a search across
grid locations, which would quickly become infeasible withmore degrees of freedom.
Tipping and Bishop [18] marginalize out the high-resolution image to learn a Euclidean
registration directly, but with such a high computational cost that their inputs are restricted
to 9× 9 pixels. Both these approaches also rely on Gaussian image priors.

The Generalized Cross Validation (GCV) work of Nguyenet al. [14] also learns a blur
width (though not registrations), then learns a regularization coefficient based on the data,
though also restricted to a Gaussian (i.e. not edge-preserving) prior. Taken together, these
techniques motivate the development of an approach capableof registering the images at
the same time as super-resolving, but without the need for the Gaussian form of prior.

2 The anatomy of multi-frame super-resolution

A high-resolution scenex, with N pixels, is assumed to have generated a set ofK low-
resolution imagesy(k), each withM pixels. For each image, the warping, blurring and
subsampling of the scene is modelled by anM × N sparse matrixW(k) [4, 18], and
a global affine photometric correction results from addition and multiplication across all
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pixels by scalarsλα andλβ respectively [4]. Thus the generative model is

y(k) = λ(k)
α W(k)x + λ

(k)
β 1 + ǫ(k), (1)

whereǫ(k) represents noise on the low-resolution image, and consistsof i.i.d. samples
from a zero-mean Gaussian withstd σN , and imagesx andy(k) are represented as vectors.
Given

{
y(k)

}
, the goal is to recoverx, without any prior knowledge of

{
W(k),λ(k), σN

}
.

The problem is almost always poorly conditioned, so a prior overx is usually required to
avoid solutions which are subjectively very implausible tothe human viewer.

The Maximum a Posteriori (MAP) equation is derived from the combination of the
generative model of equation (1) with an image prior based onthe Huber function,ρ(.),
which has previously been shown to be a good selection for image super-resolution [3, 4].
The objective function takes the form
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(2)

where the prior term will be explained in section 2.3. In the main body of the algorithm
proposed here,F is optimized explicitly with respect tox, the set of geometric registration
parametersφ (which parameterizeW), and the set ofλα andλβ values,λ, at the same
time. This is alternated with a cross-validation-driven update of the prior parametersν
andα, and the algorithm is run with a selection of point-spread function (PSF) kernels.
A discussion of the registration, point-spread function and image prior concerns is given
below, followed by implementation details for our approachin section 3.

2.1 Image Registration

Standard approaches to super-resolution first determine the registration, then fix it and
optimize a function likeF with respect only tox to obtain the final super-resolution
estimate. However, if the set of input images is assumed to benoisy, it is reasonable to
expect the registration to be adversely affected by the noise. In contrast, we make use of
the high-resolution image estimate common to all the low-resolution images.

The registration problem itself is not convex, and repeating textures can cause naı̈ve
intensity-based registration algorithms to fall into a local minimum, though when ini-
tialized sensibly, very accurate results are obtained. Thepathological case where the
footprints of the low-resolution images fail to overlap in the high-resolution frame can
be avoided by adding an extra term toF to penalise large deviations in the registration
parameters from the initial registration estimate (see section 3.3).

Errors in either geometric or photometric registration in the low-resolution dataset
have consequences for the estimation of other super-resolution components. The uncer-
tainty in localization can give the appearance of a larger PSF because the effects of a
scene point on the low-resolution image set is more dispersed. Uncertainty in photomet-
ric registration increases the variance of intensity values at each spatial location, giving
the appearance of more low-resolution image noise, becauselow-resolution image values
will tend to lie further from the values of the back-projected estimate. Increased noise in
turn is an indicator that a change in the prior weighting is required, thus lighting parame-
ters can have a knock-on effect on the image edge appearances.
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2.2 The point spread function

By far the most difficult component of most super-resolutionsystems to determine is
the point-spread function (PSF), which is of crucial importance, because it describes how
each pixel inx influences pixels in the observed images. Resulting from optical blur in the
camera, artifacts in the sensor medium (film or a CCD array), and potentially also through
motion during the image exposure, the PSF is almost invariably modelled either as an
isotropic Gaussian or a uniform disk in super-resolution, though some authors suggest
other function derived from assumptions on the camera optics [2, 3]. The exact shape of
the kernel depends on the entire process from photon to pixel.

Identifying and reversing the blur process is the domain ofBlind Image Deconvo-
lution. Approaches based on Generalized Cross-Validation [16] orMaximum Likeli-
hood [12] are less sensitive to noise than other available techniques [11], and both have
direct analogues in current super-resolution work [14, 18]. Because of the parametric
nature of both sets of algorithms, neither is truly capable of recovering an arbitrary point-
spread function. With this in mind, we choose a few sensible forms of PSF and concen-
trate on super-resolution which handles mismatches between the true and assumed PSF
as gracefully as possible.

2.3 The super-resolution image prior

Super-resolution is an ill-posed problem, and ML solutionsare usually corrupted by
“chequer-board” patterns resulting from fitting to noise onthe input dataset. The Huber
potential function has been shown to be a good choice for an edge-preserving prior [3, 4],
and is defined over pair-wise image gradient estimates in thehorizontal, vertical and two
diagonal directions, leading to an eight-neighbour graph structure over the image, denoted
G(x). The Huber function is

ρ(z, α) =

{
z2 if |z| < α

2α|z| − α2 otherwise
(3)

whereα is the single parameter.
Many authors favour a Gaussian form for the prior overx for its simplicity and con-

jugacy with the data likelihood term of the optimization, though it tends to have the un-
desirable effect of softening black-white transitions at image edges. In super-resolution
images, edges are preserved better with functions like the Huber potential, or Bilinear
Total Variation [5], which are more tolerant of outliers, oreven patch-based texture pri-
ors [15, 20]. These approaches have partition functions which are very costly to compute
directly, and so it can be expensive to learn the prior parameters directly.

3 Super-resolution with motion and prior estimation

In this section, we fill out the remaining details of the simultaneous super-resolution ap-
proach, which consists of three distinct components. First, there are convenient initializa-
tions for the registrations and the estimate ofx, which by themselves even give a quick
and reasonable super-resolution estimate. The second and third algorithm components
form the body of the iterative loop: the MAP estimation, and the cross-validation regu-
larizer update. Convergence is defined to be the point at which all parameters change by
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less than a preset threshold in successive iterations. The loop is repeated till this point,
typically taking 3-10 iterations. The algorithm is summarized in figure 2.

3.1 Initialization

Input images are assumed to be pre-registered by a standard algorithm [8] so that points
at the image centres correspond to within a small number of low-resolution pixels.

A candidate PSF is selected in order to compute theaverage image, a, which is a stable
though excessively smooth approximation tox. Each pixel ina is a weighted combination
of pixels iny, such thatai depends strongly onyj if yj depends strongly onxi, according
to the weights inW. Lighting changes must also be taken into consideration, so

a = S−1WT Λ−1
α (y −Λβ), (4)

whereW, y, Λα andΛβ are the stacks of the K groups ofW(k), y(k), λ
(k)
α I, andλ

(k)
β 1

respectively, andS is a diagonal matrix whose elements are the column sums ofW.
Notice that both inverted matrices are diagonal, soa is simple to compute. Usinga in
place ofx, we optimize the first term ofF with respect toφ andλ only. This provides a
good estimate for the registration parameters, without requiring x or the prior parameters.

To initailisex, the Scaled Conjugate Gradients algorithm is applied to theML solu-
tion, but terminated after aroundK4 steps, before the instabilities dominate. This gives a
sharper result than initializing witha as in [4]. When only a few images are available, a
more stable ML solution can be found by using a constrained optimization to bound the
pixel values so they must lie in the permitted image intensity range.

The prior parameters are initialized to aroundα = 0.01 andν = 0.1; as these are
both strictly positive quantities, logs of the values are used. For the PSF, a Gaussian with
std ≈ 0.45 low-resolution pixels is reasonable for in-focus images, and a disk of radius
upwards of0.8 is suitable for slightly defocused scenes.

3.2 Learning the prior parameters with unknown registration

It is necessary to determineν andα while still in the process of converging on the es-
timates ofx, φ andλ. This is done by removing someindividual low-resolution pixels

1. Initialize PSF, image registrations, super-resolution image and prior parameters accord-
ing to section 3.1.

2. (a) (Re)-sample the set of validation pixels

(b) Updateα andν (prior parameters) using cross-validation-style Gradient Descent
(section 3.2). This includes a few steps of a sub-optimization ofF w.r.t. x.

(c) OptimizeF (equation 2) jointly with respect tox (super-resolution image),λ
(photometric transform) andφ (geometric transform).

3. If the maximum absolute change inα, ν, or any element ofx, λ or φ is above preset
convergence thresholds, return to 2.

Figure 2: Basic structure of our multi-frame super-resolution algorithm.
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from the problem, solving forx using the remaining pixels, then projecting this back into
the original image frames to determine its quality using thewithheld validation pixels
using the robust L1 norm. The selectedα andν should minimize this cross-validation
error.

This defines a subtly different cross-validation approach to those used previously for
image super-resolution, because validation pixels are selected at random from the col-
lection of K × M individual linear equations comprising the overall problem, rather
than from theK images. This distinction is important when uncertainty in the registra-
tions is assumed, since validationimages can be misregistered in their entirety. Assuming
independence of the registration error on each frame givenx, the pixel-wise validation
approach has a clear advantage.

In determining a search direction in(ν, α)-space,F can be optimizedw.r.t. x, start-
ing with the currentx estimate, forjust a few steps to determine whether the parameter
combination improves the estimate. This intermediate optimization does not need to run
to convergence in order to provide a gradient direction worthy of exploration. This is
much faster than the usual approach of running a complete optimization for a number of
parameter combinations, especially useful if the initial estimate is poor. An arbitrary 5%
of pixels are used for validation, ignoring regions within afew pixels of edges, to avoid
boundary complications, and because inputs are centred on the region of interest.

3.3 Optimization and Implementation Details

This problem closely resembles the well-studied problem ofBundle Adjustment [19], in
that the camera parameters and image features are found simultaneously. Because most
high-resolution pixels are observed in most frames, the super-resolution problem is clos-
est to the “strongly convergent camera geometry” setup, andconjugate gradient methods
are expected to converge rapidly [19]. Using the Scaled Conjugate Gradients (SCG) im-
plementation from Netlab [13], rapid convergence is observed up to a point, beyond which
a slow steady decrease inF gives no subjective improvement in the solution, but this can
be avoided by specifying sensible convergence criteria.

The elements ofx are scaled to lie in the range[− 1
2 , 1

2 ], and the geometric registration
is decompose into a “fixed” component, which is the initial mapping fromy(k) to x, and
a projective correction term, which is itself decomposed into constituent shifts, rotations,
axis scalings and projective parameters, which are theφ parameters, then concatenated
with λ to give one parameter vector. This is then “whitened” to be zero-mean and have
a std of 0.35 units, which is approximately the standard deviation of x. The prior over
registration values suggested in section 2.1 is achieved simply by penalising large values
in this registration vector.

Boundary conditions are treated as in [18], making the super-resolution image big
enough so that the PSF kernel associated with any low-resolution pixel under any expected
registration is adequately supported. Gradients with respect tox andλ can be found
analytically, and those with respect toφ are found numerically.

4 Experimental Results

The performance of simultaneous registration, super-resolution and prior updating, is
evaluated using real data from a variety of sources. This is contrasted with a “registration-
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fixing” approach, whereby registrations between the inputsare found then fixed before the
super-resolution process. This fixed registration is also initialised as in section 3.1, then
refined using an intensity-based scheme. FinallyF is optimizedw.r.t. x only to obtain a
high-resolution estimate.

Experiments are first performed on synthetic data, generated using (1) applied to256×
256-pixel images at a zoom factor of 4. Values forφ andλ are sampled randomly from
a Gaussian withstd of 0.25 units. For both algorithms, registrations for the set of images
usually agree with each other to within a few tenths of a pixelin the high-resolution
frame, but this variance is smaller in the simultaneous super-resolution method than for
registrations found without using the fixed model.

Surrey Library Sequence: An area of interest is highlighted in the 30-frame Sur-
rey Library sequence fromhttp://www.robots.ox.ac.uk/∼vgg/data4.html. The
camera motion is a slow pan through a small angle, and the signon a wall is illegible given
any one of the inputs alone. Gaussian PSFs withstd = 0.375, 0.45, 0.525 are selected,
and used in both algorithms. There are 77003 elements iny, andx has 45936 elements
with a zoom factor of 4.W has around3.5 × 109 elements, of which around0.26%
are nonzero with the smallest of these PSF kernels, and0.49% with the largest. Most
instances of the simultaneous algorithm converge in 2 to 5 iterations. Results appear in
figure 3, showing that while both algorithms perform well with the middle PSF size, the
simultaneous-registration algorithm handles the worse PSF estimates more gracefully.

(f) Simul. reg. σ = 0.525(e) Simul. reg. σ = 0.45(d) Simul. reg. σ = 0.375

(c) Fixed reg. σ = 0.525(b) Fixed reg. σ = 0.45(a) Fixed reg. σ = 0.375

Figure 3: Surrey Library sequence. (a,b,c) Super-resolution found using fixed registra-
tions. (d,e,f) Super-resolution images using our algorithm. One of the 30 low-resolution
images can be seen in figure 1 (a).

Eye-test Card Sequence:The second experiment uses just 10 images of an eye-
test card, captured using a webcam. The card is tilted and rotated slightly, and image
brightness varies as the lighting and camera angles change.Gaussian PSFs withstd =
0.3, 0.375, 0.45 are used in both super-resolution algorithms. The results appear in the
left portion of figure 4.

Camera “9” Sequence:The model is adapted to handle DVD input, where the aspect
ratio of the input images is 1.25:1, but they represent 1.85:1 video. The correction in the
horizontal scaling is incorporated into the “fixed” part of the homography representation,
and the PSF is assumed to be anisotropic. This avoids an undesirable interpolation of the
inputs prior to super-resolving, which would lose high-frequency information, or working
with squashed images throughout the process, which would violate the assumption of an
isotropic prior onx. The sequence consists of 29 I-frames1 from the movieGroundhog
Day. An on-screen hand-held TV camera moves independently of the real camera, and

1I-Frames are encoded as complete images, rather than requiringnearby frames in order to render them.
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(a) section from initial frame

(c) Interpolated

(b) Low−resolution image

(d) original DVD frame (camera sequence)

Fixed  σ = 0.3

Fixed  σ = 0.375

Fixed  σ = 0.45

Sim.  σ = 0.3

Sim.  σ = 0.375

Sim.  σ = 0.45

Fixed  r = 1

Fixed  r = 1.4

Fixed  r = 1.8

Sim.  r = 1

Sim.  r = 1.4

Sim.  r = 1.8

Figure 4: (a,b,c) Input and interest region (raw and interpolated) for 10-frame eye-test
card sequence; (d) raw DVD frame for Camera “9” sequence (seefigure 1 for interest
region); Lower section, first and third columns: results obtained by fixing registration
prior to super-resolution; Lower section, second and fourth columns: results obtained
using the simultaneous approach.

the logo on the side is chosen as the interest region. Disk-shaped PSFs with radii of 1,
1.4, and 1.8 pixels are used. In both the eye-test card and camera “9” sequences, the
simultaneously-optimized super-resolution images againappear subjectively better to the
human viewer, and are more consistent across different PSFs.

Finally, a selection of results obtained from difficult DVD input sequences take from
the movieLola Rennt is show in figure 5. In the “cars” sequence, there are just 9 I-frames
showing a pair of cars, and the areas of interest are the car number plates. The “badge”
sequence shows the badge of a bank security officer. Seven I-frames are available, but all
are dark, making the noise level proportionally very high. Significant improvements at a
zoom factor of 4 (in each direction) can be seen.
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original DVD frame (cars sequence) original DVD frame (badge sequence)

(a) raw input

(d) Sim. x 4, σ = 0.55 

(b) raw input

(e) Sim. x 4, σ = 0.55

(c) raw input

(f) Sim. x 4, r = 1.2

Figure 5: Results from the movieLola Rennt on DVD. Top row: two raw DVD frames.
Middle Row: the selected interest regions, shown at the DVD aspect ratio. Bottom Row:
The same interest regions super-resolved using the simultaneous method. (a, d) black car’s
number plate, (b, e) white car’s number plate, (c, f) security guard’s ID badge (intensities
have been scaled for ease of viewing).

5 Conclusion

A novel method for combining super-resolution with image registration and the learning
of a Huber edge-preserving image prior has been presented. Results on real data from
several sources show this approach to be superior to the practice of fixing the registra-
tion prior to the super-resolution process. Future work directions include methods for
selecting the parametric family of point-spread function kernels, extending the model to
handle nonplanar registrations,e.g. with the probabilistic optic flow framework [6], and
incorporating a better model for the lossy DVD compression.
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