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Abstract. Knowing the source and runout of debris flows can

help in planning strategies aimed at mitigating these hazards.

Our research in this paper focuses on developing a novel ap-

proach for optimizing runout models for regional suscepti-

bility modelling, with a case study in the upper Maipo River

basin in the Andes of Santiago, Chile. We propose a two-

stage optimization approach for automatically selecting pa-

rameters for estimating runout path and distance. This ap-

proach optimizes the random-walk and Perla et al.’s (PCM)

two-parameter friction model components of the open-source

Gravitational Process Path (GPP) modelling framework. To

validate model performance, we assess the spatial transfer-

ability of the optimized runout model using spatial cross-

validation, including exploring the model’s sensitivity to

sample size. We also present diagnostic tools for visualizing

uncertainties in parameter selection and model performance.

Although there was considerable variation in optimal param-

eters for individual events, we found our runout modelling

approach performed well at regional prediction of potential

runout areas. We also found that although a relatively small

sample size was sufficient to achieve generally good runout

modelling performance, larger samples sizes (i.e. ≥ 80) had

higher model performance and lower uncertainties for esti-

mating runout distances at unknown locations. We anticipate

that this automated approach using the open-source R soft-

ware and the System for Automated Geoscientific Analy-

ses geographic information system (SAGA-GIS) will make

process-based debris-flow models more readily accessible

and thus enable researchers and spatial planners to improve

regional-scale hazard assessments.

1 Introduction

Knowledge of where debris flows are initiated and how far

they travel is crucial for assessing their impact over large

regions (Aleotti and Chowdhury, 1999; van Westen et al.,

2006). Commonly, debris-flow runout modelling for large ar-

eas is performed by first delineating source areas and then

applying empirical–statistical or process-based numerical

methods for simulating the runout characteristics (Blahut et

al., 2010a; Horton et al., 2013; Mergili et al., 2019). There is

a wide selection of heuristic, statistical and machine-learning

methods suitable for predicting source areas in large regions

(Chung and Fabbri, 1999; Carrara et al., 1999; Brenning,

2005; Goetz et al., 2015b; Lombardo et al., 2018). There are

also many empirical–statistical and numerical methods avail-

able to model runout patterns; see McDougall (2017) for an

overview.

Not all runout methods are suitable for application to large

areas. Many of the physically based methods require event-

specific geotechnical and rheological parameters, such as

material composition (e.g. bulk density and source depths)

and flow characteristics (e.g. flow discharge rates). These pa-

rameters, such as debris-flow volume, can be extremely dif-

ficult to obtain for large areas, let alone single unobserved

events (Marchi and D’Agostino, 2004; Dong et al., 2009).
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Consequently, runout modelling at larger scales has been pro-

gressing towards applying simplified conceptual models to

simulate debris-flow patterns across different environmental

conditions. These models combine spreading algorithms to

control the runout path with empirical–statistical or numer-

ical friction models to simulate likely runout paths and dis-

tances (Guthrie et al., 2008; Horton et al., 2013; Wichmann,

2017; Mergili et al., 2019). Many of the spreading algo-

rithms, including multiple flow direction models (Holmgren,

1994), cellular automata (Guthrie et al., 2008) and random

walk (Gamma, 2000; Mergili et al., 2015), simulate runout

paths using only topographic data.

Calibration of model parameters continues to be one of

the main challenges in runout modelling for single events

and over large areas (Hungr, 1995; van Westen et al., 2006;

Schraml et al., 2015; McDougall, 2017; Mergili et al., 2019).

The objective of model calibration is to determine parame-

ter values that best capture main debris-flow characteristics,

such as runout distance, velocity and distribution of deposits

(Hungr, 1995; McDougall, 2017). Approaches for model cal-

ibration include adjusting parameters based on visual inspec-

tion (i.e. trial and error; Hungr, 1995; Mergili et al., 2012),

expert knowledge (Horton et al., 2013), posterior analysis

(Mergili et al., 2019; Aaron et al., 2019) and optimization

algorithms that aim to minimize a cost function, i.e. a quanti-

tative measure of runout model performance. Some measures

of performance include estimates of the intersection over

union (Galas et al., 2007), area under the receiver-operating

characteristic curve (AUROC; Cepeda et al., 2010; Mergili et

al., 2015) and depth error (Aaron et al., 2019) of simulated

and observed debris flows. Since most of these calibration

approaches are for single observed events, they rarely con-

sider how transferable tuned parameter sets are from local to

regional applications.

Assessing spatial transferability is essential for testing the

assumption a trained model based on a sample of events cap-

tures the generic debris-flow characteristics across a region

(Fabbri et al., 2003). The distribution of training data and the

sample size can have a strong influence on the model calibra-

tion and performance of regional models (Heckmann et al.,

2014; Petschko et al., 2014; Rudy et al., 2016). For spatially

distributed models, spatial transferability can be assessed by

exploring model parameter selection and performance under

different spatial partitioning scenarios of training and test

data (Wenger and Olden, 2012; Brenning, 2012; Schratz et

al., 2019; Mergili et al., 2019). Although spatial transferabil-

ity has been well explored for regional landslide susceptibil-

ity models (Brenning, 2005; Lombardo et al., 2014; Petschko

et al., 2014; Goetz et al., 2015b; Cama et al., 2017; Knevels

et al., 2020), such analysis is not common for regional runout

modelling.

In this study, we developed an optimization procedure

for process-based models applied for regional simulation of

debris-flow runout patterns. The performance evaluation fo-

cuses on the spatial transferability and sensitivity to sam-

Table 1. Runout characteristics of the debris-flow inventory.

Median IQR Minimum Maximum

Runout surface area (ha) 3.7 7.5 0.1 358.1

Runout distance (m) 729 823 54 5668

Max. elevation (m a.s.l.) 2695 714 1256 4768

Note: IQR is the interquartile range.

ple size of an optimized regional debris-flow runout model.

We achieve this by utilizing the open-source statistical R

software to add optimization and evaluation functionality

to the open-source Gravitational Process Path (GPP) mod-

elling framework (Wichmann, 2017). Additionally, this study

demonstrates the use of spatial cross-validation and visual-

ization techniques to diagnose uncertainties in the prediction

of source areas, runout paths and runout distances, including

the sensitivity of optimized parameter selection. The aim of

this research is to contribute to improving the development

of quantitative techniques for runout model calibration and

uncertainty estimation (McDougall, 2017). This is especially

important in large and inaccessible mountainous areas where

various types of mass movements pose unique challenges to

the safety of the local population, the integrity of transporta-

tion infrastructure and the reliability of drinking water sup-

plies.

2 Materials and methods

2.1 Study area

Our study area is the upper Maipo River basin (33◦03′ to

34◦18′ S; 800 to 6108 m a.s.l.), located in the semi-arid An-

des of central Chile. Debris-flow activity in remote and pop-

ulated areas of the Maipo River basin have caused many

deaths and severe disruptions to critical transportation and

water supply infrastructure supporting Chile’s capital city

Santiago (Hauser, 2002; Sepúlveda et al., 2015; Moreiras and

Sepúlveda, 2015).

High-intensity rainfall (Sepúlveda et al., 2015), rapid

snowmelt (Moreiras et al., 2012) and seismic activity (Serey

et al., 2019) are the main triggers of debris flows in this re-

gion. They occur in steep gullies and talus slopes consist-

ing of gravel, small boulders and a fine sandy–silty matrix.

Much of this material is from weathered volcanic and sedi-

mentary rocks of the Abanico and Farellones formations in

the western Main Cordillera (Sepúlveda et al., 2006). A typ-

ical runout track will cut through previously formed debris-

flow channels and alluvial fans, resulting in new erosion and

deposition paths (Sepúlveda et al., 2015). Rainfall-triggered

runout distances in this area have been observed up to 5.5 km,

and the thickness of deposits varies from 1 to 2 m in deposi-

tion areas (Sepúlveda et al., 2015).
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Figure 1. Map providing an overview of the debris-flow polygons and source points mapped in the upper Maipo River basin.

2.2 The debris-flow inventory

Debris-flow polygons and source points were mapped based

on photointerpretation of high-spatial-resolution (0.50 m)

satellite imagery (2000 to 2019) from CNES/Airbus and

Maxar Technologies available through Google Earth Pro

software, field observations, reviewed news articles and the

compilation of data collected by public authorities. Each

mapped polygon represents a debris-flow track that includes

source, runout and deposition area. In total, 541 source points

and 521 debris-flow polygons were mapped (Table 1). Manu-

ally mapping all debris flows across the upper Maipo basin is

a challenging task due to its large geographical extent and its

high abundance of mass movements. Therefore, a mapping

strategy was employed that divided the basin into 58 sub-

drainage basins (5439 km2), 45 (3936 km2) of which were

selected for mapping (Fig. 1).

2.3 Modelling debris-flow source areas

Potential debris-flow source areas were spatially predicted

using a generalized additive model (GAM). In general,

GAMs demonstrate good performance for susceptibility

modelling compared to other commonly used physically

based and machine-learning techniques (Goetz et al., 2011,

2015b). To improve model generality and avoid overfitting,

the GAM smoothing spline parameters were allowed a max-

imum five effective degrees of freedom (Wenger and Olden,

2012; Goetz et al., 2015a). The training and test data were

based on the common 1 : 1 sampling strategy (Heckmann et

al., 2014) of presence to absence of source points. The non-
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source (i.e. absence) points were randomly sampled within

the mapped sub-basins outside of the mapped debris-flow

polygons. The resulting training and test data contained 541

source points and 541 non-source points.

The predictor variables of source areas included hillslope

angle, elevation, catchment area, plan curvature and distance

to faults. These predictor variables generally have a high im-

portance for modelling debris-flow initiation susceptibility as

observed in previous works (Blahut et al., 2010b; Goetz et al.,

2015b; Angillieri, 2020). The publicly available ALOS PAL-

SAR radiometrically terrain corrected (RTC) high-resolution

(12.5 m) digital elevation model (DEM; ASF DAAC, 2011)

was used to derive terrain attributes. Before deriving the ter-

rain attributes, mesh denoising was applied to the DEM to

mitigate the propagation of artefacts such as high-frequency

noise (Brock et al., 2020) in the prediction of source ar-

eas (Sun et al., 2007; Stevenson et al., 2010). We used the

implementation of this algorithm in the System for Auto-

mated Geoscientific Analyses geographic information sys-

tem (SAGA-GIS). After denoising, an algorithm to fill sinks

(Planchon and Darboux, 2002) was applied to the DEM, and

the terrain attributes were processed. Distance to faults was

calculated as the Euclidean distance from the fault lines (Ser-

vicio Nacional de Geología y Minería de Chile 2003; scale

1 : 1000000).

The performance of the source-area prediction model was

assessed using repeated k-fold spatial cross-validation (Bren-

ning, 2012). Like cross-validation, spatial cross-validation

randomly splits the data (e.g. source points and non-source

points) into k disjoint subsets, where the model is trained

using k − 1 sets and tested with the remaining set during

each cross-validation iteration. For spatial cross-validation,

the data are divided into spatially disjoint sub-areas, in our

case using the k-means clustering algorithm (Ruß and Bren-

ning, 2010). This approach should provide a rigorous esti-

mate of the spatial transferability of a model by attempting to

reduce spatial autocorrelation between test and training data

(Brenning, 2005; Wenger and Olden, 2012; Schratz et al.,

2019). We estimated model performance by repeating 5-fold

spatial cross-validation 1000 times. Model performance was

measured using the AUROC, which is an overall measure of

goodness of fit that is independent of any particular decision

threshold.

2.4 Modelling debris-flow runout

The GPP (Wichmann, 2017) model was used to regionally

model runout. The GPP model is an open-source framework

in the SAGA-GIS software that provides users with various

model components to simulate runout path, distance, veloc-

ity and deposition of material of mass movements (e.g. snow

avalanches, rockfalls and debris flows). Due to the extent

and remoteness of the study area, we focus on modelling the

likely spatial patterns of runout. That is, we are not modelling

flow velocity and depth.

Runout path was modelled using the random-walk pro-

cess path component of the GPP model (Gamma, 2000).

It is a common approach for debris-flow runout path mod-

elling at medium scales (Mergili et al., 2012; Heckmann

and Schwanghart, 2013; Mergili et al., 2015). Random-walk

models the potential path of runout by iteratively simulating

(via Monte Carlo simulation) the downslope movement of

debris flows originating from source-area grid cells. These

simulations result in a grid with runout frequencies that in-

dicate how many times a grid cell is traversed: this is a cu-

mulative frequency based on simulations from all source ar-

eas. There are three parameters that need to be calibrated to

obtain a desired runout path: (1) a slope threshold (◦) defin-

ing where divergent flow is allowed; (2) the exponent of di-

vergence that controls the amount of divergence or lateral

spreading in areas below the slope threshold; and (3) a persis-

tence factor that controls the direction of movement (Wich-

mann, 2017). Flow path is determined using a 3 × 3 window

that first controls the path of a central cell by considering

only neighbouring cells with lower elevation. If the neigh-

bouring cells are above the slope threshold, the neighbouring

cell with the steepest descent is selected; otherwise, neigh-

bours are assigned transition probabilities based on slope.

These probabilities are adjusted using the exponent of di-

vergence and the persistence factor. A higher exponent of

divergence will result in more even probabilities across the

neighbouring cells, allowing for a higher likelihood of not se-

lecting the steepest descent path. The persistence factor con-

siders the previous flow direction in weighting the probabili-

ties. A higher persistence factor increases the probability that

the selected neighbour will follow the direction of the previ-

ous cell. Based on these transition probabilities, a pseudo-

random number generator selects a cell to define the flow

path (see Wichmann, 2017, for a more detailed description).

With this random-walk implementation, the flow path stops

when the neighbouring cells have a higher or equal elevation

compared to the central cell.

Runout distance was constrained using the two-parameter

friction model (PCM; Perla et al., 1980) component of the

GPP model. The PCM model, which is also a component

of the Flow-R model (Horton et al., 2013), has also been

used for modelling debris-flow behaviour at medium scales

(Mergili et al., 2012; Heckmann and Schwanghart, 2013;

Mergili et al., 2015). It is a centre-of-mass model where mo-

tion is mainly controlled by (1) the sliding friction coefficient

µ and (2) the mass-to-drag ratio (M/D). In the GPP imple-

mentation of the PCM model, the velocity (ms−1) at any grid

cell vi along a runout path can be characterized by the veloc-

ity of the previous grid cell vi−1 (ms−1), the local slope θ

(◦), distance between grid cells Li (m), the acceleration due

to gravity g (ms−2) and the friction parameters µ and M/D

(m):

vi =

√

αi · (M/D) · (1 − eβi ) + (v(i−1))2 · eβi · cos(1θi), (1)
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where

αi = g(sinθi − µi cosθi), (2)

βi =
−2Li

(M/D)i
, (3)

and

1θi =

{

θ(i−1) − θi if θ(i−1) > θi

0 if θ(i−1) ≤ θi

}

. (4)

For the case of a concave transition in the slope direction

between grid cells, a velocity correction (Eq. 4) based on

the conservation of linear momentum is applied (Wichmann,

2017). The µ controls the velocity of movement through the

runout path and M/D controls velocity movement over steep

terrain. The conditions for acceleration along the runout path

can be described by

tanθi > µi, (5)

and deceleration by

tanθi < µi . (6)

We can use Eq. (6) to help interpret µ, as it can be used to

characterize the slope angle under which deposition begins

and termination of runout occurs (Perla et al., 1980).

2.4.1 Optimizing model parameters

For regionally applying the runout model, we needed to de-

termine the combination of model parameters that result in

the best match to our debris-flow inventory. Determining op-

timal parameters was based on two criteria: (1) the ability

of the model to capture our observed runout paths and (2)

its ability to match the observed runout distances. Therefore,

we performed this optimization task using a two-stage ap-

proach that first optimizes the random-walk model and then

the PCM model parameters.

A random sample of 100 debris-flow tracks and corre-

sponding source points was used for optimizing the runout

models. This sample of the inventory was chosen to facilitate

quality control and reduce the computational complexity of

the optimization. Source areas were determined by buffering

each source point by 50 m and masking away the buffered

area that exceeds the runout trimline; this ensures the source

area is contained within a mapped debris-flow polygon. A

sink-filled version of the original DEM was used for the

runout modelling.

For each model component, an exhaustive grid search in

parameter space was used to find parameter sets that achieve

optimal model performance across all sampled debris flows.

The search ranges were similar to Wichmann’s (2017) sug-

gested parameter limits for debris flows (see Table 2 for

value ranges). We additionally tested the use of a spatially

varying sliding friction coefficient. The value for this spa-

tially varying sliding friction coefficient µi was calculated as

a function of catchment area a (km2) for maximum runout

(Gamma, 2000; Wichmann and Becht, 2006; Mergili et al.,

2012; Wichmann, 2017):

µi = 0.13a−0.25. (7)

Similar to Mergili et al. (2012) and suggested by Wichmann

(2017), the spatially varying µi was set to a maximum of 0.3

and minimum of 0.045. Runout was computed using 1000

model iterations.

The AUROC was used as a performance measure for the

random-walk model. The receiver-operating characteristic

(ROC) is a plot of the true positive rate versus the false posi-

tive rate. AUROC values range from 0.5 (random discrimina-

tion between classes) to 1.0 (a perfect classifier; Zweig and

Campbell, 1993). Model performance was rated higher if the

random-walk model contained observed debris-flow tracks

within its simulated paths. After optimizing the random-walk

model, we fixed these parameters for the PCM model and op-

timized the µ and M/D parameters for determining runout

distance. The performance of the PCM model was measured

using the relative error of runout distance. Relative error was

used so that each debris flow was weighted equally regard-

less of its magnitude. The AUROC was used to break any

ties in relative error performance between multiple optimal

parameter sets.

Runout distance was measured in terms of horizontal

length of the debris-flow track. This distance was measured

as the length of a minimum area bounding box containing

the observed debris-flow track (Fig. 2; Niculiţa, 2016; Tay-

lor et al., 2018). Estimated debris-flow tracks were defined as

grid cells with values greater than a median runout frequency

(Fig. 2). In this case, the median value represents the most

typical simulated debris-flow track. It also provides a conser-

vative estimate of runout distance, which helps mitigate the

chance that the optimized model regionally underestimates

runout distances.

In addition to determining a global optimal parameter set,

the best-performing parameters for individual debris-flow

events were also explored. We similarly applied a grid search

to each event and determined optimal parameter sets based

on the performance (AUROC and relative error) of each

runout model component.

2.4.2 Assessing spatial transferability

Based on our random sample of 100 debris-flow tracks,

we assessed the transferability of optimized runout model

(random-walk and PCM) parameters by performing 5-fold

spatial cross-validation with 1000 repetitions (Fig. 3). This

approach allows us to explore the sensitivity of grid-search

optimized parameter combinations to spatial variation in

training and test data. To do this, we observed the frequency

of variations in optimized parameter combinations within all

cross-validated iterations. Optimal parameter combinations

that occurred more frequently were considered to have a

https://doi.org/10.5194/nhess-21-2543-2021 Nat. Hazards Earth Syst. Sci., 21, 2543–2562, 2021



2548 J. Goetz et al.: Optimizing and validating the Gravitational Process Path model

Table 2. Runout model grid-search optimization setup and results. Optimization performance was assessed using spatial cross-validation

(CV).

Model component Model parameter Grid search Grid search Optimal value Spatial CV

value range steps performance

Runout path Slope threshold 20–40◦ 2◦ 40◦ AUROC

(random walk) Exponent of divergence 1.3–3.0 0.17 3.0 Median: 0.94

Persistence factor 1.5–2.0 0.05 1.9 IQR: 0.02

Runout distance Sliding friction 0.04–0.6 0.01 0.11 Relative error

(PCM model) coefficient µ Median: 0.11

M/D 20–150 m 5 m 40 m IQR: 0.09

Runout distance Sliding friction 0.13a−0.25 – – Relative error

(spatially varying coefficient µi – Median: 0.19

friction PCM model) M/D 20–150 m 5 m 95 m IQR: 0.06

Note: IQR is the interquartile range; a is the catchment area (km2).

Figure 2. Illustration of runout-distance optimization of the sliding friction coefficient µ using a minimum-area bounding box as a measure

of travel distance – M/D fixed at 40 m.

Figure 3. An example realization of random partitions based on k-means clustering of debris-flow polygons for a single repetition of 5-fold

spatial cross-validation. The selection of these debris-flow polygons was based on a random sample.

higher degree of transferability, thus being considered more

reliable for application to the entire study area.

We also assessed if there were any spatial patterns in

the optimized performance for each model component. That

is, were there any spatial trends in model performance that

may indicate our model is locally overfitting? We explored

such spatial trends by mapping the distribution of individ-

ual debris-flow runout model performance based on the op-

timized parameters. Additionally, we were concerned if the

optimized parameters had a stronger fit to debris flows of

Nat. Hazards Earth Syst. Sci., 21, 2543–2562, 2021 https://doi.org/10.5194/nhess-21-2543-2021
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a certain magnitude or initiating conditions. Therefore, the

potential to overfit to certain debris-flow characteristics was

assessed by determining Spearman’s rank correlation (ρ) of

individual debris-flow performance (for each model compo-

nent) with observed runout distance and the elevation, catch-

ment area and hillslope angle of the corresponding source

points.

2.4.3 Testing sample-size dependence of performance

We explored how runout model parameter selection, perfor-

mance and robustness were affected by the number of debris

flows used for optimization. Spatial cross-validation was ap-

plied to data sets of varying training sample sizes using the

random sample of 100 debris flows used for model optimiza-

tion. To ensure a fair comparison, the size of the test data

for each cross-validation iteration was set to 20 debris flows,

which is the maximum test sample size when performing

5-fold spatial cross-validation with a sample of 100 debris

flows. We tested training samples sizes from 10 to 80. Model

performance for each runout modelling component was sum-

marized using the median and interquartile range (IQR) (AU-

ROC and relative error). The optimal parameter sets for a

given sample size were determined as the parameter combi-

nations that were most frequent.

2.4.4 Finding a suitable source-area prediction

threshold

For regionally applying the runout model for susceptibility

mapping or exposure analysis, a dichotomous classification

of the predicted source areas is required to define the grid

cells where simulated debris flows initiate. In the case of

basing the source areas on a susceptibility model, a suitable

threshold of the prediction values needs to be selected. In this

study, we determine a suitable prediction threshold to clas-

sify source areas by searching for the threshold that results

in the best-performing runout model for the entire area. Us-

ing the optimized model parameters, we tested runout models

based on source areas that were delineated using prediction

thresholds from 0.5 to 0.95 with a step of 0.05. The perfor-

mance of each these models was measured using the AU-

ROC. The AUROC was calculated using a sample of 1000

debris-flow runout locations and 1000 locations outside of

the debris-flow polygons. The source-area prediction thresh-

old resulting in the highest AUROC values was selected for

regionally computing a debris-flow runout map for our study

area.

2.5 Geocomputing and visualization software

The methods for runout modelling optimization, validation

and visualization of the source-area prediction and runout

modelling were implemented using the open-source statis-

tical software R (ver. 3.6.2; R Core Team, 2019) and SAGA

GIS (version 6.1; Conrad et al., 2015) with its GPP model

tool (Wichmann, 2017). Coupling SAGA GIS with R was

done using a combination of the RSAGA (Brenning et al.,

2018) and Rsagacmd (Pawley, 2019) packages. The GAM

was implemented using the mgcv package (Wood, 2011).

General handling of spatial data in R used the sf (Pebesma,

2018), sp (Pebesma and Bivand, 2005), rgeos (Bivand and

Rundel, 2019), rgdal (Bivand et al., 2019) and raster (Hij-

mans, 2020) packages; spatial cross-validation was applied

using the sperrorest (Brenning, 2012) and ROCR (Sing et

al., 2005) packages. Parallelization of the optimization and

validation procedure used foreach (Microsoft and Weston,

2020). Visualization was done using R’s ggplot2 (Wickham,

2009) and metR (Campitelli, 2020) packages and ESRI’s Ar-

cMap (ver. 10.5).

3 Results

3.1 Source-area model performance

The overall performance of the source-area prediction based

on the GAM was good with a spatially cross-validated me-

dian AUROC of 0.80 and an IQR of 0.001. We found the

source-area prediction map was also geomorphologically

plausible. Locations most likely to be source areas were

within steep terrain associated with channels, gullies and

scree slopes. Shallow-flat terrain and areas along ridgelines

were modelled as least likely to be source areas (Fig. 4). This

geomorphological knowledge was also expressed in the plots

of the GAM spline transformations (Fig. 5). Relatively steep

terrain, slightly concave plan curvature and areas near faults

were modelled as more likely being source areas.

3.2 Runout model parameter optimization

The parameter optimization produced runout models with a

good spatially cross-validated performance. The optimal pa-

rameters for the runout-path model were a slope threshold

of 40◦, an exponent of divergence of 3.0 and a persistence

factor of 1.9 with a median AUROC of 0.94 (IQR = 0.02;

Table 2). Using these values as plug-in estimates for the

PCM runout-distance model component, the optimal µ and

M/D were 0.11 and 40 m, respectively. The median spatially

cross-validated relative length error of the runout-distance

model was 0.11 or 11 % (IQR = 0.09). We also found that

the model based on a global µ estimate performed better than

the runout-distance model using the spatially varying µi (op-

timal M/D = 95 m; Table 2), which had a median relative

error of 0.19 (IQR 0.09).

By visualizing the runout-distance optimization results

across grid search space, we can observe model performance

and sensitivity to different parameter combinations. In this

case, we observed only slight model performance differences

for µ values just under 0.2 to 0.04 and M/D values from 20

to 150 m (Fig. 6a). In general, the values in this band across

grid search space would result in good performance with me-
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Figure 4. Map of the debris-flow source-area prediction based on a GAM.

dian relative errors ≤ 0.15. However, in terms of controlling

the spread of error (Fig. 6b), µ values from about 0.05 to

0.15 and M/D values from 20 to 95 m had the lowest IQRs

(≤ 0.2).

Exploring the optimal combination of parameter values

using spatial cross-validation provides insights into per-

formance reliability of the optimized model. Given differ-

ent spatial combinations of testing and training data, we

found that the optimal combinations of parameters were

associated with high performance values (AUROC = 0.94,

relative error = 0.11) and high relative frequencies (61 %–

69 %) of occurring in each cross-validation iteration (Fig. 7).

Additionally, the spatial-cross-validated optimal parameter

sets were generally clustered in grid search space, showing

there was little variation in optimized parameters depend-

ing on the spatial partitions (Fig. 7). In terms of obtaining

multiple optimal solutions, only 5 % of the total 5000 cross-

validation iterations had ties in relative error performance.

3.3 Thresholding source areas for runout analysis

The best threshold for delineating source areas from the

GAM prediction for runout modelling was 0.7, which results

in runout affecting 22 % of the study area. This threshold

had the peak AUROC value of 0.83. The performance of the

runout model drastically decreased with thresholds > 0.8 and

gradually decreased towards a threshold of 0.5: lower thresh-

olds spatially predicted more runout area (Fig. 8). The runout

prediction map resulting from the best threshold (Fig. 9) ap-

pears to be geomorphologically plausible. The locations of

the runout deposit areas are similar to what we have ob-

served in the satellite imagery. Additionally, lateral spread-

ing is generally low in narrow gullies and much broader on

talus slopes, which is what we would expect for debris flows

occurring in our study area.

3.4 Exploring patterns in model performance

We observed no clear spatial pattern of individual debris-

flow performance of the runout model components (Fig. 10),
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Figure 5. Transformation of predictor variables in the generalized additive model, where the y axis can be interpreted as the associated

likelihood (log odds) of being a source area. Terms of the form s(predictor) indicate a nonlinear smoothing spline transformation. The

effective degrees of freedom (EDFs) refer to the flexibility of the smoothers. The dashed lines represent confidence bands at a 95 % level.

which is evidence that there was no local overfitting to a par-

ticular region of the study area. The distribution of individual

AUROC performance of the runout path model was gener-

ally high for most of the region, showing that optimization

of the path model performs well across the study area. One

debris flow was not captured within the runout path model

(AUROC < 0.5; Figs. 10 and 11). Having a closer look at this

occurrence, we found that the modelled runout paths failed

to follow the flow direction of the observed debris flow and

source point.

The runout-distance model had generally more spatial het-

erogeneity in performance (Fig. 10), but again no clear spa-

tial patterns in the distribution of relative errors were ob-

served. We investigated the debris flows that did not perform

well for modelling runout distance (relative error > 0.8) by

looking at the satellite imagery used for mapping and the

DEM derived hillslope angle. It was found that these cases

were related to misclassifying stream erosion in relatively

shallow and long-hillslope channels as debris flows.

Overall, the regionally optimized runout modelled dis-

tances fit well with our mapped observations (Fig. 11). It

tended to slightly overestimate debris-flow travel lengths

with a median runout-distance error of 16.6 m (Fig. 11). This

error is just slightly over a single grid cell size of the DEM.

The highest runout-distance errors were due to misclassified

debris flows, as previously mentioned. The optimization of

the runout model avoided overfitting to debris-flow tracks

of a certain magnitude and general terrain conditions. That

is, we did not observe a strong correlation between runout-

distance performance to length of observed debris flow (ρ =

−0.36), starting elevations (−0.21), catchment area (0.11) or

hillslope angle (0.29) of source points used for model train-

ing.

3.5 Optimization for individual debris flows

The optimal parameters for individual debris flows were also

computed for general comparison to the regional model.

We found that the optimized runout model parameters were

highly variable for individual debris flows (Fig. 12). The rela-

tive errors were low (median = 0.002, IQR = 0.007), except

for a few debris flows that failed to optimize (Fig. 11). Mul-

tiple optimal solutions for the PCM model occurred in 56 %

of the events. However, after tie breaking using the AUROC,

the number of multiple optimal solutions was down to 3 %.

Most individual events optimized runout paths with pa-

rameter sets leading to high lateral spreading. The optimal-

path parameters for most of the individual events had a 40◦

slope threshold, high exponent of divergence and low persis-

tence values (Fig. 12a). By individually examining the opti-

mal simulated paths for each training event, we observed that

∼ 60 % of the observed debris-flow tracks did occur within

the most frequent simulated paths. The other events were typ-

ically located on the fringes of the most frequent paths.
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Figure 6. Density contour plots of parameter optimization of sliding friction coefficient µ and M/D in the PCM model, illustrating median

relative runout length errors (a) and the associated variations in relative error (b) using the IQR.

There was no clear spatial pattern in optimal µ and M/D

parameter combinations across the study area, which shows

that runout characteristics were quite diverse for individual

debris flows across this large study area (Fig. 13). We also ob-

served no strong relationships between terrain attributes and

optimal parameters. Spearman’s correlations of µ and M/D

with elevation, slope and catchment area were ≤ |0.29|.

3.6 Runout model robustness to sample size

Runout model performance and variation tends to improve

slightly when using larger sample sizes (Fig. 14). Large

sample sizes also resulted in more consistently selected

model parameters across spatial-cross-validation iterations

(Fig. 15). The larger spread across grid search space of the

relative frequency of optimal parameter combinations for

smaller sample sizes illustrates that we may be less likely to

find the best model parameters that generalize well for a large

region (Fig. 15). In general, as we increased sample size, we

reduced sampling variability and narrowed the number of op-

timal combinations of parameters in grid search space, mean-

ing we became more confident that the selected parameters

would transfer better to estimate runout distance in adjacent

areas.

4 Discussion

4.1 Model performance and transferability

Assessing the spatial transferability of runout models is es-

sential when extending their use from single or local events to
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Figure 7. Model performance and frequency of optimal parameters for the runout path (a; given an optimized slope threshold of 40) and

runout-distance models (b) estimated using 1000 repetitions of 5-fold spatial cross-validation. Relative frequency is the percentage of all

repeated spatial-cross-validation iterations where a given parameter combination was optimal.

Figure 8. Performance of debris-flow runout model for different

source-area thresholds (a) and percentage of study area impacted

by runout (b). Optimal threshold was a threshold of 0.70 (AUROC

= 0.83) with runout affecting 22 % of the study area.

regionally modelling runout across unknown space. Overall,

this study demonstrates that our novel optimization approach

performed well at regionally modelling the spatial distribu-

tion of runout path and distances across the upper Maipo

River valley basin. A key component of the success of our

modelling approach was its ability to generalize. The trans-

ferability of a regional runout model can be affected by the

generalization ability of both the source-area prediction and

the optimized process-based runout model.

4.1.1 Source-area modelling

In the development of our source-area prediction model, we

aimed to produce a simplified empirical model that would

result in good performance and transferability. Wenger and

Olden (2012) recommended to control the flexibility of the

GAM smoothing parameters to avoid overfitting that would

lead to poorer model transferability. Therefore, similarly

to previous landslide susceptibility studies using the GAM

(Goetz et al., 2011, 2015a; Bordoni et al., 2020), we limited

the degrees of freedom for smoothing-spline fitting.

A detailed model based on a large set of predictors can im-

pede its ability to transfer to other locations (Tuanmu et al.,

2011). As we and others have demonstrated, good predic-

tive performance of susceptibility models of debris flows can

be achieved with a relatively small set of predictors, which

are primarily DEM-derived terrain attributes (Blahut et al.,

2010b; Heckmann et al., 2014; Goetz et al., 2015b). Addi-

tionally, by fitting our models with multi-temporal data, we

may be more likely to achieve better transferability in time

(Tuanmu et al., 2011; Knevels et al., 2020). Event-specific

inventories may not be large enough for regional optimiza-

tion and risk the potential of overfitting source conditions to

spatially varying conditions of that event (e.g. precipitation

and snowmelt patterns). A smaller sample may also lead to

not capturing the range of terrain conditions across the study

area required for robust empirical modelling of source-area

locations (Petschko et al., 2014; Rudy et al., 2016).

The interpretability of the GAM allows us to explore mod-

elled behaviour. For our study, the GAM did well at repre-

senting the general geomorphic characteristics of source ar-

eas. Some of the relationships between predictors, such as
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Figure 9. Map of optimized debris-flow runout model based on global parameters and source-area threshold of 0.70.

elevation, and debris-flow activity can be complex. In the up-

per Maipo River basin, elevation can be a proxy for vegeta-

tion, snow cover duration, terrain ruggedness, permafrost and

glacial bodies, and geology. It is therefore difficult to discern

any direct relationships between elevation and likelihood of

being debris source areas. However, we suspect that lower

elevations were predicted to be less prone to be source ar-

eas due to increased vegetation cover and less rugged terrain.

The decrease observed at the highest elevations may relate

to permafrost and glacial bodies holding potentially mobi-

lized sediment (e.g. Sattler et al., 2011). A decrease in pre-

dicted likelihood of source areas occurring at high slope an-

gles (∼> 45◦) may be associated with steep rock faces that

were more likely sources of rockfalls than debris flows (Loye

et al., 2009).

4.1.2 Runout analysis

The best-performing regional random-walk parameters al-

lowed for maximum lateral spreading of the runout path

given the range of parameters for optimization. Individual

events tended to also optimize for high lateral spreading but

not as strongly as the regional model. We believe this high

lateral spreading may be due to the location of the observed

debris flows relative to simulated paths and the quality of

the DEM. A large proportion of the observed debris-flow

tracks were located at the fringe of the most frequent sim-

ulated paths. Thus, a higher slope threshold and exponent of

divergence are required to capture these fringe debris flows.

Additionally, the surface of DEMs with resolutions greater

than 20 m can be too general to capture minor gullies that

may have high flow accumulation (Blahut et al., 2010b).

The 12.5 m resolution ALOS DEM used in this study is de-

rived from downsampled Shuttle Radar Topography Mission

(SRTM) data and would likely contain some of the topo-

graphic generalizations of the original DEM (∼ 30 m spatial

resolution). Despite potential issues with DEM quality, sim-

ilarly to Horton et al. (2013), we illustrated valuable results

can still be achieved.

By optimizing the runout-distance model using the median

relative error as a metric, we managed to reduce the impact

of possible outliers in our training and test data. We addition-

ally reduced our chances of overfitting the regional model to

larger debris-flow events, which was crucial for a model to
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Figure 10. Maps of the performance of the runout path (a) and runout-distance models (b) for individual debris flows based on the global

optimal parameters.

maintain a generalization that makes it transferable across

large areas.

Plotting the individual optimized models and exploring

correlations between terrain attributes and optimal parame-

ters allowed us to see if there were any broad trends in the

parameter selection. In our study, we observed high variabil-

ity in optimal parameters of the PCM model. While apply-

ing a trial-and-error approach, Mergili et al. (2012) also ob-

served different optimal parameter combinations for individ-

ual events when modelling runout for a couple of debris flows

just north of our study area. It seems apparent that determin-

ing runout parameter values for regional modelling without

an optimization procedure would be difficult. It is also no

surprise that the errors of the individually optimized debris

flows were low (Fig. 12). Whether meaningful or not, the

optimization approach should be able to match the runout

distance with very low error. Poorly individually optimized

events could be attributed to locally poor DEM quality (Hor-

ton et al., 2013) and mapping uncertainties (Ardizzone et al.,

2002).

The two-parameter PCM model has a uniqueness problem

(Perla et al., 1980). Possibly infinitely many pairs of µ and

M/D can result in the same runout distances. When opti-

mizing individual events, we did observe this phenomenon.

The majority of individual events had more than one optimal

combination of parameters. Obtaining a unique solution was

not an issue for the regional optimization in our study for the

given grid search space. Likely this is due to having to sat-

isfy the runout distances for a variety of hillslope conditions

and lengths across the study area. The observed reduced vari-

ability in optimal solutions for larger sample sizes (Fig. 15)

provides some evidence for this conjecture.

Although we obtained a unique regional model solution,

runout-distance relative errors were only slightly higher than

the best performer for combinations of µ and M/D across

a band in grid-search space of lower µ values (Fig. 6). We

believe this model performance insensitivity to µ is due to

decrease in slope being one of the main factors controlling

runout distance. The lowest relative errors tended to occur

when the slope condition for deceleration was in the range

of 2.3 to 11.3◦, and the optimal was 6◦ (µ > 0.04, µ > 0.20

and µ > 0.11; Eq. 6; Fig. 6). This range matches well to the

slope values observed at or near the stopping locations of

the debris flows used to train the PCM model. These results
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Figure 11. Histogram of performance of the runout path (a), runout-distance models based on relative error (b), actual runout length error

(c) and a plot of observed runout lengths versus modelled runout lengths (d).

Figure 12. Performance and frequency of runout path (a, b) and distance (c) optimal parameters determined for individual debris flows.

Relative frequency is the percentage of all repeated spatial-cross-validation iterations where a given parameter combination was optimal.
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Figure 13. Map of runout-distance model optimal parameters de-

termined for individual debris flows.

are also very similar to modelled observations of debris-flow

runout in the semi-arid Andes by Mergili et al. (2012). They

observed that best PCM runout modelling results for individ-

ual events occurred when deposition began at slope angles

ranging from 2.6 to 14.0◦ (µ > 0.045 and µ > 0.25). Addi-

tionally, this range fits within other global observations of

debris-flow deposition occurring on slopes smaller than 6 to

17◦ (Hungr et al., 1984; Ikeya, 1989; Rickenmann and Zim-

mermann, 1993; Bathurst et al., 1997; Lorente et al., 2003).

The insensitivity across M/D values (Fig. 6) is due to many

possible solutions for obtaining similar runout distances with

different combinations of µ and M/D (i.e. the uniqueness

problem). The range of µ values resulting in low relative er-

ror only slightly increased with higher M/D value, which

indicates that µ had a much stronger role than M/D in gov-

erning runout distances.

In theory, it is possible that the minimum area-bounding

box could contribute to parameter insensitivity. Abrupt

changes in flow perpendicular to the initial flow direction,

such as a flow meeting a channel, may only slightly increase

the length of the bounding box for several iterations of de-

creasing µ (or increasing M/D). However, we did not ob-

serve this to be an issue within our training data for our given

parameter ranges of µ and M/D.

4.2 Regionally optimizing runout models

As with any optimization problem, using a suitable cost func-

tion is critical to ensure the model parameters are optimized

Figure 14. Comparison of runout path (a) and distance (b) perfor-

mance for different model training samples sizes assessed using

spatial cross-validation. The error bars indicate the standard devi-

ation in performance.

to solve a very specific problem. It can be difficult to de-

fine a single metric that simultaneously measures both per-

formance of path and distance simulations. As shown in this

study, it may also not be necessary. The modular framework

of the GPP model provides the ability to optimize two dis-

tinct runout components, the runout path including lateral

spreading and the runout distance. In our study, we used the

random-walk and PCM components of the GPP model to

simulate spatial extent of runout. By using the two-stage ap-

proach to optimization, where we first optimize the runout

path model and then plug in those values to optimize the

runout-distance model component, we can considerably re-

duce computational complexity, while ensuring that our fi-

nal model result explicitly optimizes for runout distance –

a key characteristic for spatially predicting areas potentially

impacted by debris-flow runout. In our case, we only needed

to solve two separate problems with three (random-walk) and

two (PCM) unknown parameters, as opposed to solving si-

multaneously for five unknowns. We used an exhaustive grid

search to optimize the runout model components because it

allowed us to visualize and assess model performance across

parameter space. However, a drawback of this optimization

method is that it can be computationally slow to explore all

candidate parameter combinations. If speed is a requirement
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Figure 15. Relative frequencies of optimal parameter combinations for different training sample sizes computed using spatial cross-

validation.

for regional runout analysis, then a faster method like ran-

dom search (Bergstra and Bengio, 2012) may be preferred

(Schratz et al., 2019).

In terms of model improvement, analysis of the spatial dis-

tribution of optimal parameters may lead to better parameter

optimization based on terrain or geological characteristics.

The spatially varying values used in this study were based

on modelling for alpine regions (Gamma, 2000) and do not

account for the potential variability in sliding conditions be-

tween different catchments (Guthrie, 2002). This challenge

may be overcome by using regional modelling strategies

already applied for landslide initiation susceptibility mod-

elling, where the study area is divided into geologically simi-

lar regions, runout model optimization is performed for each

region and then combined (e.g. Petschko et al., 2014).

5 Conclusions

Modelling the spatial pattern of debris-flow runout in large,

mainly remote areas, with sparse data, requires model cal-

ibration and validation methods that ensure spatial trans-

ferability. In this study, we demonstrated that the combina-

tion of the statistical prediction (GAM) of source areas and

our regional optimization of the GPP runout model (random

walk and PCM) performed well at generalizing runout pat-

terns across the upper Maipo River basin. In addition to high

model performance, the transparency and interpretability of

the GAM provided further confidence in the prediction of

source areas by illustrating regionally geomorphically plausi-

ble modelled behaviour. The optimized runout model param-

eters sets were consistently similar within grid search space

when assessing transferability using spatial cross-validation.

We believe this strong transferability of our runout model

was due to the hillslope gradient of the deposition area be-

ing one of the major controls of runout distance in the PCM

model. The regionally optimized runout model also resulted

in geomorphically plausible results, with best-performing µ

and M/D combinations occurring when simulated debris-

flow deposition and termination occurred on slopes less than

11◦. Although obtaining unique PCM parameter solutions for

individual events can be an issue, we were able to obtain a

unique PCM model solution for our regional model. In gen-

eral, we found unique regional-optimal PCM model solutions

were more prone with larger sample sizes, as well as higher

model performance and lower uncertainties. Future improve-

ments to our approach may include building a model that

allows for more spatial variation in optimized parameters,

especially in regions with better availability of soil physical

information. Overall, our open-source modelling approach,

which enhanced the GPP model by adding support for auto-

mated model calibration and transferability assessment, pro-

vides an accessible and extendible modelling framework for

such advances in regional runout modelling.

Code availability. To complement this paper, we developed the

runoptGPP R package for optimizing mass movement runout mod-

els using the random-walk and PCM model components of the

GPP tool in SAGA-GIS. It is available for download from Zenodo:

https://doi.org/10.5281/zenodo.4428050 (Goetz, 2021). This pack-

age contains tutorials on how to apply the optimization methods

regionally or for single runout events. The GitHub repository also

contains the R code used to conduct our analysis.
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Data availability. The data are available for download from Zen-

odo: https://doi.org/10.5281/zenodo.4428080 (Parra-Hormazábal et

al., 2021).
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