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Abstrac t .  We investigate the problem of drawing an arbitrary n-node 
binary tree orthogonaJly in an integer grid using straight-line edges. We 
show that one can simultaneously achieve good area bounds while also 
allowing the aspect ratio to be chosen as being O(1) or sometimes even 
an arbitrary parameter. In addition, we show that one can also achieve 
an additional desirable aesthetic criterion, which we call "subtree separ- 
ation," We investigate both upward and non-upward drawings, achieving 
area bounds of O(nlog n) and O(nloglogn), respectively, and we show 
that, at least i~ the case of upward drawings, our area bound is optimal 
to within constant factors, 

1 I n t r o d u c t i o n  

B i na ry  t rees  are, of  course,  very c o m m o n  s t ruc tu res  in m a n y  app l ica t ion  

areas, so ob ta in ing  good  drawings of b ina ry  t rees  is an i m p o r t a n t  corn- 
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ponent in a wide variety of visualization tasks. Nevertheless, there are a 
number of interesting issues regarding binary-tree drawings that are still 
unresolved, including those related to drawings that optimize the easily- 
motivated aesthetic criterion of using straight line segments to display 
edges while also optimizing the area and aspect ratio of the drawing. 

Optimizing the area of a drawing is important, because a drawing 
typically needs to be displayed on a medium of limited area and resolution, 
such as a terminal window on a workstation screen. Formally, we define 
the area of a drawing to be the area of a smallest rectangle enclosing 
the drawing. Of course, this assumes a reasonable rule for defining the 
resolution of a drawing, such as that used in 9rid drawings, where all 
vertices are placed at integer grid points and edges are drawn as polygonal 
chains that bend only at integer grid points. AdditionMly, one may wish 
to restrict the drawing further to be an orthogonal drawing, which is a 
drawing where the polygonal chains representing edges must be composed 
of only vertical and horizontal segments. When drawn on a rastered device 
such as a laser printer or computer monitor, such drawings avoid the 
aliasing effect caused by the '~'staircased" drawing of edges that are neither 
vertical nor horizontal. 

An optimization parameter that is perhaps equal in importance to area 
for a drawing, however, is the aspect ratio of a drawing's enclosing rect- 
angle, i.e., the ratio of the width and height of the rectangle. A drawing 
that is, for example, tall and narrow would be difficult to display nicely 
on a printed page or in a screen window even if the area is reasonably 
small (although it might fit quite nicely on a cash-register tape). Ideally, 
the aspect ratio should be a parameter that could be chosen from a large 
range of values, or, failing that, it should at least be allowed to be that 
of a ~'well proportioned" rectangle (e.g., 1, 5/3, 8.5/11, or (1 + v~)/2) .  

Another aesthetic criterion that may be desirable in some applications 
is that a tree drawing be upward. That is, that  the tree be drawn so that 
no child is placed higher (in the y-direction) than. its parent. This criterion 
is desirable, for example, if the tree represents an inherently hierarchical 
relationship, such as the organizational structure of a large business. 

1.1 P r e v i o u s  r e l a t ed  r e sea rch  

There has been a fair amount of research involving area and aspect ra- 
tio tradeoffs of tree drawings (e.g., see the annotated bibliography of 
Di Battista et al. [4]). We summarize the previous bounds for planar 
polyline grid drawings, for example, where edges are drawn as polygonal 
chains that bend only at integer grid points, in Table 1. 
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Class Drawing Type Area 
degree-O(l) 
rooted tree 

upward 

Aspect Ratio(s) [Source 
[1/~ ~, ~'~] [5] 

binary tree' upward orthogonal O (n log log n) O (n log log n/log ~ n) 
degree-4 tree orthogonal O(n) O(1) 
degree-4 tree leaves-on-hull orthogonal O(nlogn) O(1) 

[5] 
[6, 7, 11] 

['] ] 

Table 1. Summary of some area/aspect ratio results for planar polyline grid drawings 
of trees. We use a to denote an arbitrary constant such that 0 _< o~ < 1. 

Notice tha t  each of the area bounds for polyline drawings are tight, to 
within constant factors, even for upward orthogonal drawings. The related 
issues for straight-line drawings are not as well-understood, however. We 
summarize relevant previous results for this class of drawings in Table 2. 

Class Drawing Type Area Aspect Ratio(s) 
rooted tree upward !ayered grid o(,;') o0)  
rooted tree upward grid O (n log n) 0 (n/log n) 
rooted tree strictly upward grid O (n log n) i 0 (n/log n) 
complete or 

Fibonacci tree 
strictly upward grid 

o(~) 
o (n log ,~) o (~/log ~) 

AVL tree strictly upward grid 
balanced tree of upward grid 
height O(log n) 

o(~) 

[(log~ ~)/,~, ~/(logZ ~)] 

ISourcel 
[s] 

[2, 9] 
[2] 

[2, 10] 

[a] 
[2, 9] 

Table 2. Summary of previous area/aspect ratio results for planar straight-line grid 
drawings. We use/3 to denote an arbitrary constant such that/3 > 1. 

We are not aware, for example, of any non-trivial previous work on 
straight-line orthogonal grid drawings of arbi t rary binary trees. This 
seems to be a fairly serious omission, since straight-line edges are easier for 
the eye to follow than polyline edges, and orthogonal drawings automat-  
ically avoid small angles between edges, which can also cause confusion, 
and they also avoid aliasing edges drawn on a rasterized device. 

1.2 S u b t r e e  s e p a r a t i o n  

There is, in fact, an additional desirable aesthetic property  for drawings 
of binary trees. We say that  a region R in the plane is rectilinearly convex 
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if the intersection of R and any vertical or horizontal line is connected. 
For any set S of integer grid points and edges, define the rectilinear convex 
hull of S to be the smallest rectilinearly-convex region containing S. Let 
T[v] denote the subtree of a tree T that is rooted at v C T and contains 
all the descendents of v in T, i.e., T[v] is the subtree of T induced by 
v. If, for any disjoint induced subtrees T[v] and T[w] in a binary tree 
T, the rectilinear convex hulls of T[v] and T[w] are disjoint in a drawing 
D of T, then we say that D achieves subtree separation. This property 
is desired for binary tree drawings, because it allows the eye to quickly 
distinguish between different parts of the tree. It also allows for multi- 
resolutional renderings of a drawing D, so that, for example, if D has too 
many nodes to all simultaneously fit in a screen window, then D can be 
rendered up to the resolution of the screen, with some induced subtrees 
rendered as filled-in rectilinearly-convex regions. Of course, it might not 
always be possible to achieve subtree separation while also optimizing for 
other aesthetic criteria. For example, many of the drawings produced by 
the algorithms of Garg et al. [5] do not achieve subtree separation. But it 
is certainly desirable to achieve this property whenever possible. 

1.3 O u r  resu l t s  

In this paper we present a general approach, based upon a simple "recurs- 
ire winding" paradigm, for drawing arbitrary binary trees in small area 
with good aspect ratio, for both upward and non-upward straight-line 
orthogonal drawing criteria. Intuitively, our recursive winding paradigm 
draws a binary tree T by laying down a small chain of nodes monoton- 
ically in the x-direction leading to a distinguished node, vk, and then 
"winding" by recursively laying out T[v'] and T[v"] in the other direc- 
tion, where v' and v" denote the children of v~. We apply this approach 
in both upward and non-upward drawing frameworks, and we also show 
that the area bound on our upward orthogonal straight-line drawings is 
optimal to within constant factors. Specifically, we establish the following 
results regarding a planar grid drawing, D, of an arbitrary n-node binary 
tree, T: 

- D can be made to realize an upward orthogonal straight-line drawing 
of T with O(nlogn) area and 0(1) aspect ratio. Moreover, D can be 
made to achieve subtree separation, and it can be produced in O(n) 
time. 

- There are n-node trees that require /2(nlogn) area in any upward 
orthogonal straight-line drawing that achieves an aspect ratio in the 
range [1/n~,nU], for any fixed c~ with 0 ~ c~ < 1. 
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- D can be made to realize a (non-upward) orthogonal straight-line 
drawing of T with O(nloglogn) area and aspect ratio in the range 
[(log n)/n, n~ log n]. Moreover, this D can be made to achieve subtree 
separation, and it can be produced in O(n) time. 

In Section 2 we describe our method for producing upward orthogonal 
straight-line tree drawings with O(1) aspect ratio. We give our lower 
bound showing that our O(nlogn) area bound in this case is optimal 
in Section 3. In Section 4 we describe how one can produce non-upward 
orthogonal straight-line tree drawings with arbitrary aspect ratios in area 
that is O(n log log n), and we conclude in Section 5. 

2 U p w a r d  O r t h o g o n a l  S t r a i g h t - L i n e  D r a w i n g s  

We begin by presenting our recursive winding paradigm and show how it 
can be applied to prove the following: 

T h e o r e m  1. Given any binary tree T with n nodes, there is a planar 
upward straight-line orthogonal grid drawing o fT  with height and width 
0 ( ~ ) .  Such a drawing can be constructed in O(n) time, and it 
achieves subtree separation. 

Without loss of generality, assume that each internal node has de- 
gree 2. Given an internal node v, let left(v) and right(v) denote the left 
child and the right child of v respectively. Let T[v] again denote the sub- 
tree ofT rooted at v, and let N[v] be the number of leaves in T[v]. Arrange 
the tree so that N[left(v)] <_ N[right(v)] at every node v. This prepro- 
cessing requires only linear time. We first review the following lemma: 

121 V2 

1 
Fig. 1. Drawing of a binary tree with O(log n) height and O(n) width. 

L e m m a 2  [2, 9]. If T has n leaves, then 
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(i) there is a planar upward orthogonal straight-line grid drawing of T 
with height at most [log 2 n] and width n - 1, and 

(ii) there is a planar "upward orthogonal straight-line grid drawing o/ T 
with width at most [log 2 n] and height n - 1. 

In both drawings, the root is placed at the upper left-hand corner and the 
construction time is O(n). 

Proof: The construction can be  described as follows. If n = 1, the drawing 
is trivial. Suppose n > 1 and v0 is the root of T. Letting T1 = T[left(vo)] 
and T2 = T[right(vo)], we can draw T as shown in Figure 1, where the 
subtrees T1 and T2 are drawn recursively. Since N[left(vo)] < g[right(vo)], 
it is not difficult to see that  the  height of the drawing is bounded  by  log 2 n. 
Part  (ii) can be  proven using a similar construction. [3 

Before we proceed to prove Theorem 1, we first analyze a certain recur- 

rence relation. 

L e m m a  3. Suppose A > 1 and f is a/'unction such that 

- i f n  < A, then f (n)  ~ 1; and 

- i f n  > A, then f (n)  <_ f(n')  + f(n") + 1 for some n' ,n" < n - A with 
n t + n" <_ n. 

Then f (n)  < 4n/A - 1 for all n > A. 

Proof: The proof  is by induction. Suppose the theorem is t rue for n r and 
n% If bo th  n I, n" < A, then f (n) _< 3 < 4n/A - 1. If n r _< A and n" > A, 

then 

f (n)  < f ( n " ) + 2  < 4n" /A+ l < 4 ( n - g ) / A + l  < 4 n / d - 1 .  

Finally, if bo th  n ~, n ~ > A, then 

f (n)  <_ f ( n ' ) + f ( n " ) + l  < 4 n ' / A + 4 n ' r / A - 1  <_ 4 n / A - 1 .  

[] 

We now use a recursive winding scheme to prove Theorem 1. Let H(n), 
W(n), and T(n) denote the height, width, and construction t ime for draw- 
ing a tree with n leaves. Fix a parameter  A > 1 to be  determined later. If  
n ~ A, then we use the scheme in Lemma 2. This provides the base case: 

H(n) ~_log 2n, W(n) < A, a n d T ( n ) - = O ( A )  i f n < A .  
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1; 1 

~ ~ 1 7 6 1 7 6  Vk. 2 

T' T" 

Fig. 2. The binary tree T. 

Suppose n > A. Define a sequence {vi} of vertices as follows: vl is the 
root a n d v i + l  = right(vi) for i = 1, 2 . . .  Let k > 1 be an index with 
N[vk] > n - A and N[vh+l] _< n - A; such an index can be found in O(k) 
time, since N[vl], N[v2], . . .  is a strictly decreasing sequence of integers. 
Let Ti = T[left(vi)] and ni = N[le]t(vi)] for i = 1 , . . . ,  k - 1. Let T ~ = 
T[left(vk)], T"  = T[right(vk)], n'  = N[lefl(vk)],  and n" = N[right(vk)].  
Note tha t  n ~ <_ n", since T is "right heavy." (See Figure 2.) Note also the 
following properties: 

1. n l  + . "  + nk-1  = n - -  N[Vk] < A, and 

2. max{n ' ,n"}  = N[vk+l] <_ n -  A. 

Now, consider the planar upward orthogonal straight-line drawing of T 
in Figure 3(a), (b), or (c), depending on whether  h = 1, k = 2, or k > 2. 
The root vl is placed at the upper left-hand corner. In (a), the subtrees 
T ~ and T r~ are drawn recursively below vl. In (b), the subtree T1 is drawn 
according to Lemma 2(i), while the subtrees T ~ and T"  are drawn recurs- 
ively below this. In (c), the subtrees T 1 , . . . ,  Tk-2 are drawn from left to 
right according to Lemma 2(i); the subtree Tk-1 is drawn down the right 
side according to Lemma 2(ii); and the subtrees T r and T ~ are drawn 
recursively below T1 , . . . ,  Tk-2 and then reflected so that  their roots are 
placed at upper r ight-hand corners (this is the "recursive winding"). 

In any case, the drawing can be made with the following bounds on 
the height, width, and construction time: 

H ( n )  < max{H(n ' )  + H(n" )  + log~ A + 3, n k - t  -- 1} 
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T, 

T,, 

V 
A 

V 2 , :  - 

T' 

T ~' 

(a) k = l  (b) k=2 

T, 

T,, 

v k_l 

rk_l 

(c) k > 2 

Fig. 3. Drawing of the binary tree T with O ( V ~  height and width. 

W(n) < max{W(n') + 1, W(n"), nl + . . .  +nk-2} + log~nk-1 + 1 
T(n) < T(u') + T(n") + O(nl + . . .  + nk-1 + 1). 

By property 1, we can write the recurrences as 

H(n) <_ max{H(n ' )  + H(n") + O(log A), A) 

W(n) < max{W(n ' ) ,  W(n"), A) + O(logA) 
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T(n) <_ T(n') + T(n") + O(A). 

By property 2, we can see that  W(n) = O(In/A 1 logA + A). Using in 
addition the fact that  n '  + n" ~ n, we can also conclude that  H(n) = 
O([n/d] l o g d  + A) and T(n) = O([n/A]g) by a direct application of 
Lemma 3. Theorem 1 then follows by setting A = x/~ log2 n. 

Moreover, a simple induction argument based upon this proof can be 
used to show that  this construction results in a drawing with subtree 
separation. 

3 A L o w e r  B o u n d  o n  U p w a r d  O r t h o g o n a l  S t r a i g h t - L i n e  
D r a w i n g s  

In this section we show that  there is a family of n-node trees, for each 
n > 2, such that  any planar upward straight-line orthogonal grid drawing 
of such a tree with width W requires S2(nlogn) area, for any logn < 
W < n/log n. We begin With a simple, but important,  lemma. 

L e m m a 4 .  If T is an n-node complete binary tree, then any planar 
straight-line orthogonal grid drawing of T must have width and height 
at least 

Proof: The proof is based upon an induction argument similar to that  
used by Crescenzi et al. [2] to prove a similar bound for upward (non- 
orthogonal) grid drawings of T. Let T be an n-node complete binary 
tree and let D be a straight-line orthogonal drawing of T. We prove 
that height(T) > (logn)/2;  the bound for the width follows by a similar 
argument. Any internal node v in T can have at most two of its adjacent 
nodes in its same row. If it has one neighbor w in a different row, then 
the height of the subdrawing for v must be at least one greater than the 
subdrawing for w, and the subtree of T rooted at w must have size at 
least half of that  of the subtree of T rooted v. On the other hand, if v has 
two neighbors on the same row as v in D, and one of these nodes, call it 
w, is not a leaf, and w must have an adjacent node u in T on a different 
row, and the size of the and the subtree of T rooted at ~ must have size 
at least half of that  of the subtree of T rooted w. The proof is implied 
by applying this argument repeatedly (through an induction argument) 
starting at the root of T. [] 

This lemma is for non-upward orthogonal drawings, but  the applica- 
tion we give here is for upward orthogonal drawings. 
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T h e o r e m 5 .  There is an n-node binary tree T that requires 12(n logn) 
area in any planar straight-line orthogonal upward grid drawing D with 
width at most n a, for any fixed constant a > O. 

Proof: The proof is based upon a non-trivial adaptation of a "chain 
pinning" argument of Garg et al. [5]. Let a > 0 be a fixed constant, and 
let T be a tree defined by a chain of n/2 nodes C = (vl, v2 , . . . ,  vn/2) such 

that  every node vi with i being a multiple of n a/2 has a complete binary 
tree of size n ~/2 rooted at an adjacent node (not on C). Assume that  vl 
is defined as the root of T and parti t ion C into n1-~/4 subchains with 
2n a vertices each. We claim that  each subchain S so defined has height 
that  is ~2(logn). This claim implies the lemma, since D is upward, so all 
that  remains is to establish this claim. 

Let S be a subchain of C as defined above. If the vertical distance 
between the two endpoints of S is at least log n, then we are done. So, 
suppose the vertical distance between these two nodes is less than log n. 
In traversing from endpoint to endpoint of S we alternately march to the 
left and to the right, possibly with vertical drops mixed into these "left- 
flowing" and "right-flowing" subchains of S. Since there are less than log n 
such chains, there must be two subchains S r and S rr of S that  completely 
cross the same vertical strip of width 2ha~ logn. Assuming, without loss 
of generality, that  S r is above g ~, there are at least h a / 2 / l o g n  > l o g n  
subtrees of size 2n a each hanging from S ~. Let v be a node in S ~ adjacent 
to one of these subtrees. Suppose the root of this subtree is on the same 
vertical level of D as v. Then S r must drop down at least one vertical 
unit continuing (to the right or left) at this lower level. Since there are 
at least logn subtrees like this adjacent to S ~, this implies that  either 
the subchain S must have height at least log r~ or one of these subtrees is 
positioned directly below the node v on C to which it is adjacent. But  if 
the root of this subtree is directly below v in D, then, by Lemma 4, the 
subchain S/r must cross the vertical line through v at distance (a/2) log n 
below v. This establishes the claim, and the theorem. [] 

Having established tight asymptotic bounds on the area of nice-aspect- 
ratio upward straight-line orthogonal drawings of binary trees, we next 
consider non-upward drawings of such trees. 

4 N o n - U p w a r d  D r a w i n g s  

Let us now consider non-upward straight-line orthogonal grid drawings of 
a binary tree T in small area with arbitrary aspect ratio, again applying 
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the recursive winding paradigm. Our approach is similar to that  of Sec- 
tion 2, in that  we select the chain of vertices (vl, v2, . . . ,  Vk) according to 
the same rule as in that  section. Likewise, if k _ 2, then we recursively 
lay out T as in that  construction (see Figure 3(a) and (b)). If k > 2, 
however, then we use the construction shown in Figure 4. The subtrees 
T1,...  ,Tk-1 are drawn according to Lemma2(i) ,  with the drawing of 
Tk-1 rotated 180 degrees. As in the previous construction, the subtrees 
T r and T 1r are drawn recursively and then reflected so that  their roots are 
placed at upper right-hand corners. Also, as in the previous construction, 
the size of T r is at most that  of T r~, since T is right-heavy. 

Tk.1 

v 

T, 

T,, 

v~-i 

Fig. 4. Recursive strategy for non-upward drawings. 

This all implies that  the drawing can be made with the following 
bounds on the height, width, and construction time: 

H(n) < H(n') + H(n") + 2 log 2 A + 3 

W(~) ___ m ~ { W ( ~ ' )  + 1, W(~"), *~1 + " "  + ~k-1} 

T(n) < T(n') + T(n") + O(nl + . . .  + nk-1 + 1). 

We can re-write the recurrences as 

H(n) <_ H(n') + H(n") + O(logA) 
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W(n) < max{W(n') + 1, W(n"), A} 

T(n) < T(n') + T(n") + O(A). 

Using the fact that n' _< n", this implies that W(n) = O(A § log n) and 
H(n) = O([n/A] logA). We can also conclude that T(n) = O([n/AIA). 
So, for example, we can take A = log n, and achieve a drawing with width 
O(logn) and height O((n/logn)loglogn), i.e, the area of this drawing 
is O(n log log n). Of course, the aspect ratio of this drawing is fairly poor. 

Still, we can now substitute this method as the base case of our 
method, rather than using Lemma 2. This allows us to achieve a bet- 
ter aspect ratio while keeping the area to be O(n log log n). In particular, 
this results in the following new recurrence relations characterizing the 
height and width of the resulting drawing: 

H(n) < H(r~') + H(n") + O(log A) 

W(n) _< max{W(n ' )+  1, W(n"), o( (g / logg) loglogA)} .  

This, in turn, implies that W(n) = O((A/log A) log log A+logn)  while we 
still have H(n) = O( In~A] log A). Thus, we can achieve arbitrary aspect 
ratio (less than n~ log n) while maintaining the area at O(n log log n). 

This implies tile following theorem: 

T h e o r e m 6 .  Given any binary tree T with n nodes, there is a planar 
straight-line orthogonal grid drawing ofT with area O(nloglogn). Such 
a drawing can be constructed in O(n) time so as to achieve subtree sep- 
aration and any aspect ration in the range [(logn)/n,n/logn]. 

Proof: As described above, the drawing of T does not necessarily achieve 
subtree separation. We can easily modify the method, however, to achieve 
this desired property. The only modification is that in the case k > 2 we 
must be sure that the leftmost point of the drawing of Tk-1 is to the right 
of the rightmost point of the drawing of Tk-u. Since this modification 
does not necessitate any changes to the recurrence relations, it achieves 
the same height and width bounds. [] 

By Lemma 4 this range of aspect ratios is the largest possible, to within 
constant factors. 

5 C o n c l u s i o n  

We have investigated several issues related to space-efficient planar 
straight-line orthogonal grid drawings of arbitrary binary trees. In the 
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case of upward drawings we have established tight upper and lower bounds 
of O(n log n) on the area needed, with good aspect ratios, and in the non- 
upward case we have given a method that achieves area O(nloglogn) 
with good aspect ratios. Some interesting problems that remain open 
include the following: 

- Can one achieve arbitrary aspect ratios for planar upward straight-line 
orthogonal grid drawings while maintaining O(n log n) area? 

- Are there binary trees that require ~(n log log n) area for any (non- 
upward) planar straight-line orthogonal grid drawing? 
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