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Abstract

This paper demonstrates the one-sided communication
used in languages like UPC can provide a significant per-
formance advantage for bandwidth-limited applications.
This is shown through communication microbenchmarks
and a case-study of UPC and MPI implementations of the
NAS FT benchmark. Our optimizations rely on aggressively
overlapping communication with computation, alleviating
bottlenecks that typically occur when communication is iso-
lated in a single phase. The new algorithms send more
and smaller messages, yet the one-sided versions achieve
> 1.9× speedup over the base Fortran/MPI. Our one-sided
versions show an average 15% improvement over the two-
sided versions, due to the lower software overhead of one-
sided communication, whose semantics are fundamentally
lighter-weight than message passing. Our UPC results use
Berkeley UPC with GASNet and demonstrate the scalability
of that system, with performance approaching 0.5 TFlop/s
on the FT benchmark with 512 processors.

1. Introduction

The one-sided communication model is typically viewed
as advantageous for unstructured computations and irregu-
lar communication patterns for both performance and pro-
grammability [11]. One-sided communication is the pri-
mary mode of communication in Partitioned Global Ad-
dress Space (PGAS) languages and has been integrated into
the 2.0 revision of the Message-Passing Interface (MPI).
Although these instantiations of the one-sided model differ
semantically and operationally in the mechanisms used to
enforce synchronization, both aim to improve performance
by decoupling synchronization from data movement. The
benefits of the one-sided model are most pronounced for

small message data transfers where the synchronization and
software overhead is not amortized by transfer time, how-
ever we argue that one-sided communication can also be
beneficial in improving the performance of applications that
are bandwidth-bound. In particular, we show that replacing
large bulk transfers with more frequent smaller messages
allows a bandwidth-bound application written using UPC’s
one-sided model to outperform versions written with MPI
two-sided message-passing.

Conventional wisdom holds that communication costs
should be minimized by sending a small number of large
messages, especially for cluster networks where the per-
message cost can be high. This practice is motivated by the
observation that large messages have traditionally been re-
quired to achieve peak communication bandwidth. Many
applications therefore adopt a bulk-synchronous commu-
nication paradigm, dividing program execution into mutu-
ally exclusive global phases of computation and commu-
nication. Two recent trends are challenging that wisdom:
network vendors are increasingly offloading communica-
tion protocol processing onto network hardware; and the
emergence of one-sided communication offers unique op-
portunities to further reduce overhead by decoupling syn-
chronization from data transfer. In many applications the
computational data dependencies could actually permit a
large fraction of the communication to be initiated earlier or
completed later. If one can find sufficient independent com-
putation to overlap the communication latency such that
negligible time is spent waiting for communication com-
pletion, then the primary cost of communication becomes
the software overhead required to initiate and synchronize
non-blocking communication. Once the latency component
of communication has been entirely overlapped in this man-
ner, the transfer bandwidth achieved by an individual mes-
sage becomes less important, making it feasible to trade off
smaller message size for improved overlap.
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This paper explores the hypothesis that communication
can be effectively overlapped in bandwidth-sensitive appli-
cations using one-sided communication. We use a series
of communication microbenchmarks and the NAS Fourier
Transform (FT) benchmark as a case study to compare one-
sided and two-sided communication models in order to val-
idate this hypothesis. Our approach is to spread the commu-
nication of the all-to-all transpose step required by the 3D
FFT throughout the computation of the local slabs, sending
data as soon as it becomes available. This optimization al-
leviates bottlenecks in the communication and aggressively
overlaps it behind the computation. Although the total vol-
ume of data communicated is constant, the number of mes-
sages per thread increases from O(T ) in the all-to-all ver-
sion to O(n) where T is the total number of threads and n

is the size of the maximum dimension. The promising re-
sults motivate an even more aggressive overlap strategy that
sends O(n

2

T
) messages while still keeping the total volume

of data constant. As the results will show, the two-sided ver-
sions that used the O(n) algorithm achieve nontrivial gains
(over 1.75×) compared to the traditional all-to-all version.
However the versions which utilize one-sided communica-
tion achieve an additional speedup using the algorithm that
sends O(n

2

T
) messages. These algorithms are consistently

the best performers with speedups of up to 1.9× over the
traditional all-to-all versions. We also implement the O(n

2

T
)

version in MPI, but show it cannot achieve the same perfor-
mance benefits as UPC due to the higher communication
overhead in MPI. We argue that this added overhead is at
least partly fundamental to the two-sided model.

We use Berkeley UPC [7] and MPI v1.1 [29] as repre-
sentatives of the one and two-sided communication models,
respectively. Although the MPI 2.0 standard [30] adds a
one-sided communication interface, this interface has sev-
eral semantic limitations that hinder its use in practice [10],
and therefore we do not consider it further in this paper. In-
stead, we use use the Berkeley UPC implementation with
GASNet [8] as our representative for one-sided communi-
cation. UPC [36], along with Co-Array Fortran [32] and Ti-
tanium [25], are modern examples of the Partitioned Global
Address Space (PGAS) language approach to parallel com-
puting. They expose language semantics that induce a one-
sided communication model: processors logically issue di-
rect loads and stores to the memory of remote processors us-
ing reads and writes to logically shared variables. Our one-
sided implementations of the benchmark are written from
scratch in UPC, and leverage some minor library extensions
to UPC for non-blocking bulk memory operations provided
by the Berkeley UPC compiler. Our two-sided versions are
written in Fortran and C with MPI v1.1, starting with the
standard NAS release of the FT benchmark.

The remainder of this paper is organized as follows: sec-
tion 2 gives a brief introduction to PGAS languages and

UPC. Sections 3 and 4 present the GASNet communications
layer and show its bandwidth and latency performance com-
pared to MPI. Section 5 details how we leverage one-sided
communication to obtain significant performance improve-
ments over MPI in the NAS FT.

2. PGAS Languages and UPC

Partitioned Global Address Space languages combine
a Single Program Multiple Data (SPMD) programming
model with a global address space, which is logically par-
titioned to give each thread a portion of shared memory to
which it has affinity. The study in this paper is based on Uni-
fied Parallel C (UPC), although the observations on com-
munication techniques are more broadly applicable to the
entire family of PGAS languages and other parallel systems
providing one-sided communication.

There are many commercial and open-source compilers
available for UPC [35]. In this paper we used the portable,
high-performance Berkeley UPC compiler [7]. On a shared
memory machine, accesses to the UPC shared address space
translate into conventional load/store instructions. On dis-
tributed memory machines (which are of interest in this pa-
per) such accesses translate into calls to the Berkeley GAS-
Net layer [23]. Some of the application-level optimizations
presented in this paper make use of Berkeley-specific ex-
tensions to the UPC language [9]. The results in this paper
demonstrate their benefits and motivate their likely inclu-
sion in the next language revision.

3. GASNet Communication System

GASNet provides a portable, language-independent
communication interface designed as a compilation target
for PGAS languages. GASNet delivers communication per-
formance very close to the raw hardware peak across many
interconnects, effectively leveraging platform and network-
specific features such as RDMA support and block trans-
fer engines. The GASNet API provides point-to-point
data transfers that are fully one-sided and decoupled from
inter-thread synchronization, with no relative ordering con-
straints between outstanding operations (in contrast to other
one-sided communication interfaces such as ARMCI [31]).
GASNet’s point-to-point communication API includes sim-
ple blocking gets/puts, and several flavors of non-blocking
data transfers with a flexible and expressive set of synchro-
nization primitives crafted to support sophisticated commu-
nication optimizations. The GASNet implementation is de-
signed in layers for portability: a small set of core func-
tions constitute the basis for portability, and there is a ref-
erence implementation of the complete API written entirely
in terms of this core. In addition, the implementation for a



given network (the conduit) can be tuned by implementing
any appropriate subset of the general functionality directly
upon the hardware-specific primitives, bypassing the core-
based reference implementation. Our research has shown
that the layered design approach is effective at providing
robust portability as well as high-performance, with UPC
performance comparable to vendor-provided compilers on
architectures ranging from loosely-coupled clusters with a
near-commodity network [13] to tightly-coupled MPP sys-
tems with a hardware-supported global memory system [6].

The GASNet interface has been natively implemented
on Myrinet (GM), Quadrics QsNetI/QsNetII (Elan3/4), In-
finiBand (Mellanox VAPI), IBM SP Colony/Federation
(LAPI), Dolphin (SISCI), Cray X1 (shmem) and SGI Al-
tix (shmem). Aside from these high-performance instantia-
tions of the GASNet interface, there are also fully portable
GASNet conduits over MPI 1.1 (for any MPI-enabled HPC
system not natively supported), GASNet on UDP (for any
TCP/IP network, eg. Ethernet), and GASNet for shared-
memory SMP’s lacking interconnect hardware. Our GAS-
Net implementation is written in standard C and is very
portable across architectures and operating systems – thus
far it has been successfully used on over fifteen different
CPU architectures, twelve different operating systems, and
twelve different C compilers, and porting existing GAS-
Net conduits to new UNIX-like systems is nearly effortless.
See [23] for further implementation details.

4. Performance Advantages of One-Sided
Communication in Microbenchmarks

Partitioned Global Address Space languages are some-
times considered suitable only for shared memory hardware
such as Symmetric Multiprocessors (SMPs), Distributed
Shared Memory machines (e.g., the SGI Altix), or ma-
chines with global address space support integrated into the
processor (e.g., the Cray X1). However in this paper we
demonstrate that the one-sided communication model un-
derlying these languages is also a more effective match to
modern cluster network hardware than two-sided message
passing interfaces such as MPI.

The disadvantages of the MPI two-sided message-
passing model are summarized in the following points:

• Message sends and receives must be matched to com-
plete a transfer. The implementation is responsible
for matching the MPI communicator, message tag and
sender id between the sender and receiver, and the
overhead of this matching can impose a significant
penalty for small to medium sized messages.

• MPI guarantees point-to-point message ordering, de-
spite the fact that many current and future networks
lack such ordering guarantees in hardware. Stud-
ies [27, 28, 38] have shown there is a non-trivial cost

associated with enforcing ordering semantics upon
fundamentally unordered network hardware.

• The semantic requirement for active participation from
application-level code on both sides of the communi-
cation implies that observed latency in an MPI appli-
cation may be significantly longer than predicted by
a best case scenario - i.e., an application that is inat-
tentive to the network may perform poorly even on a
system with low best-case MPI latency.

High-quality MPI implementations on cluster hardware
generally use a combination of algorithms to provide the re-
quired message-matching semantics and also provide good
performance over a large range of message sizes. The ea-
ger algorithm (which is generally used for small messages)
optimistically sends the data and messaging metadata to an
anonymous buffer on the target process, which later per-
forms message matching and copies the data to the user
buffer. This approach minimizes the wire-time latency, but
imposes CPU and memory bus overheads for the extrane-
ous data copy operation and hence is unsuitable for suffi-
ciently large messages where the copy costs would domi-
nate. The rendezvous algorithm (generally used for larger
messages) initially sends only the metadata to the remote
process, which performs the matching and later initiates a
zero-copy transfer of the data. This approach minimizes
data copying overheads, but imposes the latency of at least
one additional roundtrip on the wire, and hence is unsuit-
able for small messages.

A key advantage to the one-sided communication model
is that this tradeoff is not required because the initiator
always provides complete information describing the data
transfer to be performed. There are no overheads imposed
by matching, ordering, or synchronization semantics and
the implementation is free to perform the data transfer using
the most efficient mechanism available. On modern cluster
networks, this usually translates into Remote Direct Mem-
ory Access (RDMA) operations supported by the hardware.
This allows efficient remote access without intervention by
the remote host CPU.

4.1. Latency Advantages of One-Sided

One of the key advantages of a one-sided communication
model is that all relevant information about a communica-
tion operation is provided by the initiator – information is
never required from the remote user code to complete com-
munication. GASNet’s one-sided data transfer operations
are entirely decoupled from inter-process synchronization,
allowing data transmission to begin immediately upon op-
eration initiation (subject only to network congestion) and
proceed autonomously from any action at the target process.
For example, in a put operation the initiator can always
transmit the precise destination address along with the data,
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Figure 1. Latency of GASNet vs. MPI on
Quadrics Elan4

providing a close semantic match to the requirements of
high-bandwidth, zero-copy RDMA hardware. Conversely,
a similar operation in MPI message-passing requires re-
trieving the destination address from a matching receive op-
eration posted by the target user process (possibly at some
point in the future) before the transfer can be completed.
This matching operation often dictates the performance of
MPI implementations, and thus vendors invest significant
effort in optimizing its cost.

Although the FT kernel is a bandwidth-limited problem,
the effective use of overlap in our approach depends cru-
cially on the per-message CPU overheads associated with
initiating and completing non-blocking operations. These
overheads can be difficult to measure directly, however
comparisons of small-message latency performance provide
insight into the effects of software overhead, as it tends to
comprise a large fraction of small-message latency. In net-
work processor-based solutions such as Quadrics QsNetI/II,
the network interface is capable of autonomously complet-
ing MPI message matching. Such approaches generally out-
perform host-based solutions that require attention from the
remote host CPU (e.g., Myrinet and InfiniBand). We expect
such MPI protocol offload to become increasingly preva-
lent, and therefore examine the Quadrics network in this
section, since it represents a best-case for MPI latency.

Figure 1 compares the round-trip latency performance
over varying data transfer size of GASNet’s elan-conduit
with Quadrics MPI on an Itanium2/Elan4 system. The
GASNet tests measure the round-trip latency to issue a
GASNet put or get operation and block for round-trip com-
pletion. The MPI tests measure the round-trip latency for
a ping-pong test where the initiator sends a message of the
given size, and the remote side issues a 0-byte acknowl-
edgement message. Performance is measured using both
the blocking (MPI Send/MPI Recv) and non-blocking
(MPI Isend/MPI Irecv) message passing primitives.

The Quadrics network hardware offloads MPI message
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matching onto the NIC processor via the Elan Tports in-
terface, freeing the host processor from most duties as-
sociated with the MPI message queue. However, as evi-
denced by the figure, there is still a pronounced latency dif-
ference between this interface and the performance achiev-
able through the lighter-weight, raw RDMA elan interfaces
(elan put/elan get) targeted by the GASNet put/get
implementation on Quadrics. One-sided communication is
a better semantic match to RDMA-enabled hardware, and
thus induces lower software overhead and delivers better la-
tency performance for small and medium-sided messages.

4.2. Bandwidth Advantages of One-Sided

Figure 2 compares the flood bandwidth performance
over varying transfer size of GASNet’s InfiniBand/VAPI
conduit with OSU MVAPICH [28], an extensively tuned
implementation which is widely considered to be the best
available MPI on InfiniBand. GASNet consistently and sig-
nificantly outperforms MVAPICH on InfiniBand because
the GASNet one-sided put/get semantics are fundamentally
a better match for the capabilities of the underlying RDMA
hardware than MPI’s two-sided message passing seman-
tics. GASNet’s put/gets translate to simple, fully one-sided
RDMA operations in the common case, and therefore reap
the hardware peak performance, whereas MVAPICH pays
in performance for enforcing MPI’s ordering and message
matching semantics. The flood bandwidth performance
drop-off beyond the 256KB data transfer size is an artifact
caused by a performance bug in the Mellanox hardware,
which GASNet has been tuned to avoid. GASNet uses a
novel distributed algorithm called Firehose [4] to efficiently
manage memory registration on pinning-based RDMA net-
works, such as Myrinet and InfiniBand. Firehose effectively
delegates the control of registration resources to the RDMA
initiators, successfully exposing one-sided, zero-copy com-
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Figure 3. Flood Bandwidth of GASNet vs. MPI for 4KB and 512KB Messages

munication as a common case, while minimizing the num-
ber of host-level synchronizations required to support re-
mote memory operations and amortizing the cost of syn-
chronization and pinning over multiple remote memory op-
erations.

The semantically-induced bandwidth performance gap
between MPI’s message passing and GASNet’s one-sided
communication is observable across a number of mod-
ern RDMA-enabled cluster interconnects. Figure 3 com-
pares the flood bandwidth achievable with GASNet’s one-
sided put/get primitives against MPI Isend/MPI Irecv
message-passing for 4KB and 512KB data transfer sizes
across a number of production cluster supercomputers (as
detailed in [5]). The bar height is normalized to the the-
oretical peak bandwidth of the system (a minimum of the
interconnect link speed and the I/O bus speed), and ab-
solute bandwidth performance is also shown. The figure
demonstrates that for “large” messages, both the one-sided
and message-passing mechanisms typically saturate to sim-
ilar peak bandwidth values (the only exception being due to
the InfiniBand hardware performance bug described above).
However, one-sided communication consistently provides a
significant performance advantage at “mid-ranged” sizes of
about 1KB - 100KB, where the raw payload transmission
times are often too short to fully amortize or overlap the
MPI per-message overheads. Similar patterns have been
observed on other systems for “mid-ranged” message sizes.
Recent studies [24] of MPI usage across a range of real-
world scientific applications have found that “mid-ranged”
message sizes dominate many production applications and
become even more prevalent at larger scales, motivating the
importance of these message sizes. These message sizes can
also be crucial in achieving efficient communication over-
lap, as described in the subsequent sections.

5. Optimizing Bandwidth-Limited Apps

In this section we consider a problem that is often hailed
as the canonical example of a problem limited by bisection
bandwidth, the three-dimensional Fourier Transform (FT).
Superficially, none of the latency advantages of a one-sided

model would appear to be relevant because the key to per-
formance is the efficiency of a cross-processor transpose.
As typically coded, the messages are all large and have a
fixed size that is known in advance since it is a simple func-
tion of the problem size. The FT kernel is used in many
scientific applications and is a critical operation in its own
right, but it also reflects a more general class of algorithms
that are a challenge to scalability and performance. Ma-
chines with inadequate bisection bandwidth typically suffer
relative to those with full crossbars on applications requir-
ing a large volume many-to-many communication [33].

5.1. NAS FT Benchmark

The NAS FT benchmark [2] solves a partial differen-
tial equation using a series of forward and inverse Fourier
Transforms over three dimensions using the Fast Fourier
Transform (FFT). Since the 3-D prism is laid out linearly in
memory, the sets of 1-D FFTs must be transposed to calcu-
late the complete 3-D FFT. A transpose is required for two
out of the three dimensions to perform the 3-D FFT. The
data can be decomposed across parallel threads along one
or more of the dimensions. The reference implementation
of the NAS FT benchmark uses a 1-D layout, where two of
the dimensions are computed and transposed locally while
third dimension incurs a global exchange among all proces-
sors, after which the FFT along the remaining dimension
can be computed. It is implemented in Fortran with MPI,
and the only significant communication step in this ver-
sion is performed using the MPI All-to-all collective, a bulk
communication operation where each thread exchanges its
portion of the domain with every other thread. The existing
exchange (All-to-all) version separates communication and
computation into distinct phases: after computing the FFT
over all its planes, every thread locally transposes the com-
puted data into an ordering suitable for the exchange oper-
ation. After the global exchange, the data is re-transposed
to complete the remaining FFTs. The communication can
be placed between a local 2D-FFT and a local 1D-FFT or
vice-versa.



5.2. Expressing NAS FT with One-sided
Communication in UPC

A one-sided implementation of NAS FT modeled di-
rectly after the original Fortran/MPI code could perform
the exchange using either point-to-point bulk put opera-
tions or alternatively use the collective operations in UPC
[36]. Since large exchange operations are bandwidth-bound
and are not noticably optimized beyond the performance
of point-to-point communication, we expect UPC perfor-
mance to at least match the performance of the original
version given the point-to-point performance results pre-
sented in section 4. The data movement and communi-
cation patterns are similar in both the one-sided and two-
sided variants of this implementation; since each commu-
nication call provides complete information to the commu-
nication library in the one-sided approach. Unlike the two-
sided model where the target must provide the destination
address, one-sided communication maps well to networks
that can autonomously delivery data – the entire communi-
cation can proceed without involving the target processor.
However, the size of the messages and overall communica-
tion in the exchange is sufficiently large to hide the implied
synchronization costs imposed by the two-sided model.

Issuing a single collective communication to globally ex-
change all FFT planes makes use of large messages with
the goal of maximizing the available bandwidth and sim-
plifies the programmer’s task in identifying local depen-
dencies: two of the three FFTs are complete prior to the
exchange and the last FFT can begin once the exchange
completes. The performance downside arises from the in-
creasing monetary cost and complexity of providing full
network bisection bandwidth as the amount of nodes in-
volved in the exchange increases. Networks that do not
provide full bisection bandwidth at high node counts can
benefit from any operation that can amortize the cost of a
global exchange operation. Those that do can still reduce
the cost of a global exchange if the communication network
supports asynchronous communication, because portions of
the exchange can be hidden behind computation. Since our
target networks support such operations, our approach is to
decompose the FFT computation and communication into
smaller pieces that permit overlap. In doing so, we have
implemented the FT benchmark by decomposing the 2-D
planes of the 1-D layout into smaller contiguous pieces.
These implementations are summarized by the following
two approaches:

• Overlap Slabs. Overlapping slabs is a method of de-
composing the 3D-FFT to reduce the amount of time
spent in communication-bound operations by overlap-
ping the communication of previously computed slabs
with the computation of remaining slabs. A slab is
defined to be the portion of each FFT plane that has

FT Implementation Messages / thread Overlap Efficiency
Exchange THREADS 0
Overlap Slabs n 1 −

1

n

Overlap Pencils n
2

THREADS
1 −

THREADS

n
2

Table 1. Summary of FT Algorithms as a func-
tion of the FFT cube dimensions (n3)

affinity to a single thread and will be sent to a single
remote thread, such that communication incurs only a
single put operation. In the original implementation,
slabs destined for each remote thread are packed into
contiguous buffers prior to the global exchange.

• Overlap Pencils The second method further reduces
the granularity of the overlap by sending more,
smaller-sized messages. The key observation is that
each slab, which is destined to a single remote pro-
cessor, is composed of n

THREADS
rows, or pencils.

Instead of computing the FFT on all the rows des-
tined to a remote thread before moving on to the
rows for another thread, the pencils-based approach
cycles through the slabs, and thus the remote thread, to
choose the row to compute and send. This simultane-
ously increases the message injection rate, decreases
the message size, and more aggressively intersperses
the communication events with the computation.

Table 1 summarizes the implementations and provides a
measure of overlap efficiency, the fraction of the computa-
tion that can potentially be overlapped with communication.
The single exchange approach used by the original imple-
mentation is represented by Exchange. Both overlap algo-
rithms have communication startup costs where the first and
last units of communication (either a slab or pencil) cannot
be overlapped with additional computation. Also shown is
the total number of network messages sent by each thread
for the global exchange. As can be expected, the finer the
data decomposition, the greater the message count (up to a
factor of the square of the input cube’s dimensions for the
Pencils algorithm). Also, since the volume of the data ex-
changed is constant across all the implementations, sending
more messages also implies smaller messages.

6. Results

Performance results in this section are shown for three
popular RDMA-based interconnect technologies: Infini-
Band, Quadrics/Elan and Myrinet. The FT benchmark is
very computationally intensive, and since each system uses
different processors the overall MFlops rate is not intended
to be directly compared across systems. The variety of in-
terconnect hardwares are graphed to demonstrate that the
communication optimizations employed by FT UPC gener-
alize to a large class of high performance system configura-
tions. The descriptions of the platforms can be found in [5].
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To measure the effectiveness of our approach, we wrote
UPC and MPI/C versions of Exchange, Overlapped Slabs
and Overlapped Pencils in order to compare them to the
original Fortran/MPI implementation. To prevent serial
FFT performance variances across different languages, all
benchmarks use a 1-D decomposition of the domain and
compute the 1-D FFTs using FFTW [22] (which consis-
tently outperforms the Stockholm FFT used in the origi-
nal NAS Fortran implementation by a small margin on all
the platforms we used). The MPI-C and UPC versions of
the benchmark are similar except for the language and/or
library features they employ for non-blocking communica-
tion. UPC uses GASNet’s non-blocking operations whereas
MPI-C uses MPI Isend combined with advance prepost-
ing of receive buffers such that no overheads resulting from
unexpected messages were incurred by the underlying MPI
communication layer. All but the original Fortran with MPI
version of the benchmark employ a configurable padding
parameter that allows one of the power-of-two dimensions
in the FT class to be padded for more effective use of the
memory hierarchy. We have found the padding to be most
effective when computing FFT over the non-unit-stride di-
mensions. In addition, we implemented the benchmark us-
ing FFTW’s built-in distributed 3D FFT which uses MPI
and found that the Fortran with MPI version (and hence all
our MPI and UPC versions) outperform this FFTW with
MPI version. We thus only show results for the default MPI
with Fortran implementation and our new implementations.

The MPI wallclock timer is used to profile the MPI ver-
sions, and hardware cycle counters of sub-microsecond ac-
curacy were used to time the UPC versions. The data re-
ported is the maximum performance across five trials - the
standard deviation across the various trials was very low.

6.1. UPC Non-blocking Slabs and Pencils

The results in Figure 4 show the performance speedup
of the UPC implementation of Exchange, Slabs and Pen-
cils over the original Fortran implementation. Clearly,
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Figure 5. UPC Slabs (S) and UPC Pencils (P):
Communication overhead and resulting com-
putation performance

the approach of overlapping communication and compu-
tation over smaller units of the FFT is beneficial on all
the tested interconnects and actually improves over newer
generations of the same interconnect (Elan/Quadrics). Av-
erage speedups are on the order of 80%, with the most
recent interconnects (InfiniBand and Elan4) showing 90%
speedups. These speedups demonstrate that overlap can
produce higher overall efficiency on systems that allow net-
working and computational resources to be used concur-
rently and independently.

In comparing UPC Pencils to Slabs, all platforms show
Pencils to be slightly faster. While the improvement is never
beyond 10%, Pencils notably differ from Slabs by sending
many more messages. This is contrary to the typical ap-
proach of sending fewer larger messages and validates that
GASNet can effectively maintain or improve communica-
tion performance as it decreases the message size and in-
creases the messaging rate.

In order to measure Pencil’s impact on the increase in
messaging rate, we identified two areas where Slabs and
Pencils produced noticable differences across all platforms.
The final 1-D FFT that occurs after all rows are communi-
cated requires each received row to be reordered for a non-
unit stride FFT. With Slabs, consecutive elements in the
non-unit stride appear on different slabs, whereas Pencils
allow the rows to be sent into an ordering that anticipates
the remaining non-unit stride FFT and effectively reduces
the stride to the length of a pencil. On systems such as
the Alpha with a small TLB and/or high TLB miss penalty,
the smaller stride improved computational performance by
reducing pressure on the memory system and minimizing
the number of TLB misses. Pencils therefore reduces the
amount of time spent computing the final FFT, at a cost of
a higher total message count. These combined costs are
shown in Figure 5 for each platform, which illustrates that
the time Pencils recovers in reordering is greater than the
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increased overhead of sending more messages. The over-
heads imposed by the increase in message rate and the de-
crease in message size are well amortized by the network
through the use of GASNet. These overheads include initi-
ation and completion costs as well as the inter-operation gap
which represents the minimum amount of time between two
consecutive message injections. Given the pronounced in-
crease in message count and decrease in message size with
Pencils, these overheads are kept relatively low. For exam-
ple, for FT’s Class D problem size at 256 processes, each
process sends 1024 messages of 128KBytes with Slabs and
8192 messages of 16KBytes with Pencils.

6.2. UPC and MPI Overlap Comparison

In order to evaluate the effectiveness of our overlapping
techniques with regards to one and two-sided communica-
tion, we also compare the Pencils and Slabs algorithms in
MPI. The MPI implementations prepost receive buffers in
a communication phase before non-blocking communica-
tion is initiated. This maximizes the potential for com-
munication overlap and avoids unexpected MPI messages
(which can degrade the performance of the MPI implemen-
tation). Under UPC, all communication is one-sided – the
initiator provides both the source and destination addresses,
and the non-blocking operations return an explicit handle
which is later synchronized. Results comparing the UPC
and MPI implementations of these non-blocking techniques
are shown in Figure 6 in terms of total time each version
of the benchmark spends in communication (all versions
are always within 10% of each other for the times spent
in computation). Perfect overlap would be represented as 0
seconds, and any time above 0 seconds represents the com-
bined, non-overlapped cost of initiating and completing the
non-blocking operations.

The Myrinet and Elan4 systems are the only configu-
rations where the MPI implementations remain relatively
competitive with those measured on UPC’s FT implemen-

tations. The MPI configurations on other platforms either
spent unacceptable time dealing with non-blocking com-
munication messages or simply crashed. Although the MPI
implementation of Overlapped Slabs and Pencils is com-
pliant with the MPI 1.1 specification, the aggressive use
of non-blocking point-to-point communication is not repre-
sentative of the way MPI applications are typically written.
While preposting buffers is always a good general strategy
to prevent unexpected message costs, preposting and initiat-
ing several hundred communication operations on networks
capable of highly asynchronous operation relies on correct
and efficient MPI receive queue handling. The MPI results
raise some obvious scalability concerns with regards to the
number of point-to-point messages and the total amount of
nodes exchanging messages. For example, in FT’s Class
D problem size at 256 processes using Pencils, each node
sends and receives 2K messages for each plane it owns in
the 3D cube decomposition and this leads to a sharp in-
crease in the length of the MPI receive queues relative to
the Slabs or Exchange algorithms. Performance problems
are particularly apparent in the Opteron/InfiniBand system,
where the MVAPICH implementation has scalability and
correctness problems: the Pencils approach causes the ap-
plication to crash and the Slabs approach causes the library
to spent all of its time completing asynchronous sends and
receives in MPI’s Waitall primitive. On this same Infini-
Band platform, the one-sided UPC version achieves the best
communication overhead times for both Slabs and Pencils,
indicating that the hardware is certainly capable of produc-
ing significant speedups using either technique.

UPC’s overlapped approaches fare best on the more
recent interconnect technologies we have benchmarked,
where the commmunication times demonstrate a high mes-
saging rate and low overhead for small-sized messages. Fig-
ure 7 presents a summary of the best result we could ob-
tain on each platform for the original Fortran implemen-
tation, the best overall MPI and best overall UPC imple-
mentations. All platforms use the largest FT problem size
(Class D) with the exception of Myrinet where the problem
size was too large to fit at 64 processors and on InfiniBand
where the MPI implementation’s unreliable handling of the
largest class required the smaller Class C to be used. In
all cases, the Best MPI constitutes of the better of either the
Exchange-based MPI/C, Slabs MPI/C or Pencils MPI/C and
happens to be Slabs MPI/C each time. This is not surprising
since all the networks are capable of some form of asyn-
chronous operation, and any overlap is better than no over-
lap. The Best UPC happens to always be the Pencils version
when compared to the Exchange and Slabs approaches. In
many cases, the overlapped versions of the code nearly dou-
ble the performance of the original implementation. The
original NAS FT code differs from the other versions since
it is written in Fortran, however the other UPC and MPI/C
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variants share 90% of the code base. The UPC Slabs and
Pencils approaches differ in only about 10 lines of code, in-
dicating the relative ease of programming for performance
using finer-grained overlap in the one-sided model.

GASNet’s low overhead for initiating many non-
blocking communication operations allows a performance
advantage through computation/communication overlap,
trading latency associated with large bandwidth-bound op-
erations such as the global exchange for minimal small mes-
sage initiation and completion costs. The synchronization
and messaging overheads imposed by the two-sided model
are shown to come at a noticeable cost, and with some
MPI implementations, seriously limit the effectiveness of
our overlap optimizations. The one-sided model success-
fully reduces these overheads and delivers good small mes-
sage pipelining rates which largely determine the overlap
efficiency of the benchmark on RDMA-capable networks.

7. Related Work

As we have shown, large performance improvements
are possible by distributing the communication operations
throughout an application rather than segmenting it into
computation and communication phases. Analyzing and
optimizing the all-to-all communication pattern needed for
a large parallel Fourier transform has been the subject of
many papers. The analyses have ranged from modeling
the performance on small commodity clusters [1, 12, 19]
through using highly specialized networks [14, 18, 34].

There has been much work on tuning the communica-
tions libraries. Automatic tuning efforts [21, 37] create
portable high performance implementations through an ex-
haustive search of the implementation space. Network ven-
dors have also spent considerable efforts tuning their com-
munication libraries so that users can leverage hardware-
supported collectives [3]. Unlike these methods that fo-
cus primarily on the communication phases, we analyze the
communication and computation patterns together showing
that the communication can be spread through out the com-

putation to relieve communication bottlenecks.
Iancu et. al [26] consider the benefits of breaking large

messages into smaller ones to automate overlap. Their seg-
mentation is automated by the compiler and thus is subject
to the limitations of static analysis. Danalis et. al [16] de-
scribe techniques similar to our own to explicitly spread
the communication across the computation – however their
main focus is on applications written for a two-sided model,
which is similar to our MPI/C Slabs and Pencils imple-
mentations. Danalis et. al also leverage the advantages
RDMA and communication-computation overlap to show
that a lower level communication library can yield better
performance. We argue that applications written using one-
sided semantics can realize further improvements because
of the inherent advantages of the one-sided model, as shown
by the gains of UPC Pencils over MPI Slabs. In addition,
our work demonstrates the effectiveness of these techniques
on a variety of cluster interconnects and shows that this ap-
proach scales to large processor counts and large problem
sizes, further extending and validating their findings.

Finally, previous work on implementing the NAS par-
allel benchmarks in UPC [20] and Co-Array Fortran [15]
was based on translating the MPI or OpenMP versions.
In this work, the UPC implementations were written from
scratch using a one-sided paradigm and thus are able to
more effectively leverage the communication features of
UPC/GASNet and demonstrate the capabilities of the sys-
tem. We’ve applied some of the ideas from this work to
our implementation of NAS FT in Titanium [17] (which
also uses GASNet for communication) and achieved sim-
ilar speedups over the MPI versions.

8. Conclusions

We have presented a detailed investigation into the rel-
ative performance of one-sided and two-sided communi-
cation, using UPC on GASNet for one-sided communica-
tion and MPI v1.1 for two-sided message-passing. Our mi-
crobenchmarks demonstrate that GASNet significantly out-
performs MPI in latency performance and small to mid-size
message bandwidth. As expected, both models reach the
same asymptotic bandwidth at large message sizes on most
platforms, but GASNet reaches the peak for smaller mes-
sage sizes than MPI.

Our results suggest that one-sided communication offers
an opportunity to revisit some commonly shared beliefs in-
duced by two-sided message passing. One typical assump-
tion is that performance is optimized by sending fewer and
larger messages to asymptotically approach peak bandwidth
on cluster networks. The one-sided model provides alter-
native mechanisms whereby small messages can provide
lower startup and completion costs, and the programmer
can retain explicit control over synchronization by separat-



ing it from data movement. Applying these techniques to
the well-known NAS FT benchmark, we have shown im-
provements in two dimensions. First, the low startup and
completion costs that determine the potential for efficient
communication and computation overlap have produced
almost 2x speedups over the existing reference NAS FT
Fortran implementation. Second, by aggressively pipelin-
ing smaller-sized messages and not imposing any unneces-
sary synchronization or ordering constraints over these mes-
sages, the one-sided approach as implemented in Berkeley
UPC/GASNet has produced more efficient and consistent
results than the two-sided approach and various MPI imple-
mentations. These results are consistent across four differ-
ent cluster networks (Myrinet, Infinband, and two genera-
tions of Quadrics) and highlight the viability of UPC as a
high performance programming model for clusters.

These results provide evidence that the bulk-
synchronous, message-passing style of communication
popularized by MPI may not be the most effective use of
cluster networking hardware. As the number of processors
grows in future machines, and networks become a more
significant component of system cost, optimizations such
as communication and computation overlap, use of small
messages to increase the depth of message pipelines, and
reductions in communication overhead through one-sided
communication models are likely to increase in importance.
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