
ORIGINAL RESEARCH
published: 31 August 2020

doi: 10.3389/fnins.2020.00878

Frontiers in Neuroscience | www.frontiersin.org 1 August 2020 | Volume 14 | Article 878

Edited by:

Jonathan Mapelli,

University of Modena and Reggio

Emilia, Italy

Reviewed by:

James Courtney Knight,

University of Sussex, United Kingdom

Francesco Maria Puglisi,

University of Modena and Reggio

Emilia, Italy

*Correspondence:

Yu Yang

yuyang2@kth.se

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 13 June 2020

Accepted: 28 July 2020

Published: 31 August 2020

Citation:

Yang Y, Stathis D, Jordão R, Hemani A

and Lansner A (2020) Optimizing

BCPNN Learning Rule for Memory

Access. Front. Neurosci. 14:878.

doi: 10.3389/fnins.2020.00878

Optimizing BCPNN Learning Rule for
Memory Access
Yu Yang 1*, Dimitrios Stathis 1, Rodolfo Jordão 1, Ahmed Hemani 1 and Anders Lansner 2,3

1Division of Electronics and Embedded Systems, School of Electrical Engineering and Computer Science, KTH Royal

Institute of Technology, Stockholm, Sweden, 2Division of Computational Science and Technology, School of Electrical

Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden, 3Department of Mathematics,

Stockholm University, Stockholm, Sweden

Simulation of large scale biologically plausible spiking neural networks, e.g., Bayesian

Confidence Propagation Neural Network (BCPNN), usually requires high-performance

supercomputers with dedicated accelerators, such as GPUs, FPGAs, or even

Application-Specific Integrated Circuits (ASICs). Almost all of these computers are based

on the von Neumann architecture that separates storage and computation. In all these

solutions, memory access is the dominant cost even for highly customized computation

and memory architecture, such as ASICs. In this paper, we propose an optimization

technique that can make the BCPNN simulation memory access friendly by avoiding

a dual-access pattern. The BCPNN synaptic traces and weights are organized as

matrices accessed both row-wise and column-wise. Accessing data stored in DRAM

with a dual-access pattern is extremely expensive. A post-synaptic history buffer and an

approximation function thus are introduced to eliminate the troublesome column update.

The error analysis combining theoretical analysis and experiments suggests that the

probability of introducing intolerable errors by such optimization can be bounded to a

very small number, which makes it almost negligible. Derivation and validation of such a

bound is the core contribution of this paper. Experiments on a GPU platform shows

that compared to the previously reported baseline simulation strategy, the proposed

optimization technique reduces the storage requirement by 33%, the global memory

access demand by more than 27% and DRAM access rate by more than 5%; the latency

of updating synaptic traces decreases by roughly 50%. Compared with the other similar

optimization technique reported in the literature, our method clearly shows considerably

better results. Although the BCPNN is used as the targeted neural network model, the

proposed optimization method can be applied to other artificial neural network models

based on a Hebbian learning rule.

Keywords: Bayesian Confidence Propagation Neural Network (BCPNN), neuromorphic computing, Hebbian

learning, spiking neural networks, memory optimization, DRAM, cache, digital neuromorphic hardware

1. INTRODUCTION

Bayesian Confidence Propagation Neural Networks (BCPNNs), proposed by Lansner and Ekeberg
(1989) and Lansner and Holst (1996), are biologically plausible brain cortex models that have
been proven useful for understanding brain functions. Tully et al. (2016) implemented a
BCPNN on SpiNNaker and analyzed the neural structure and dynamics inside a hypercolumn

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00878
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00878&domain=pdf&date_stamp=2020-08-31
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yuyang2@kth.se
https://doi.org/10.3389/fnins.2020.00878
https://www.frontiersin.org/articles/10.3389/fnins.2020.00878/full

Yang et al. Optimizing BCPNN for Memory Access

and demonstrated temporal sequence learning. Meli and Lansner
(2013) studied the neural interconnection scheme from a
BCPNN model. Fiebig et al. (2020) demonstrated how BCPNN
could emulate the cortical working memory function. Recently,
unsupervised hidden representation learning using BCPNN was
benchmarked on MNIST. The BCPNN achieved 97.5% accuracy
on the unseen test set (Ravichandran et al., 2020).

Currently, the simulation of large scale BCPNNs heavily
relies on high-performance computing centers equipped with
supercomputers and accelerators, such as GPUs and ASICs
(Farahini et al., 2014; Stathis et al., 2020), or dedicated spiking
neural network simulation platform, such as SpiNNaker (Knight
et al., 2016). We identify three categories of optimization
methods: (1) reducing the amount of computation, (2) reducing
the amount of memory access demand, and (3) increasing
the memory access efficiency. Current studies of the BCPNN
optimization are mainly focused on reducing the computation
and memory access demand (Vogginger et al., 2015). The
memory access efficiency aspect is seldom exploited.

With technology scaling, memory access becomes the
dominant cost for most applications (Mutlu, 2013). Memory
optimization in terms of both reducing memory access demand
and increasing the efficiency of the memory access has been done
for many years both for non-Hebbian artificial neural networks
and Hebbian spiking neural networks. For conventional non-
spiking deep neural networks, research works like Li et al.
(2016) and Yang et al. (2017) optimized both memory access
demand and efficiency in deep convolutional neural networks.
For Hebbian spiking neural networks, most research works
target the spike-timing-dependent plasticity (STDP) learning
rule (Markram et al., 2012). For example, Bichler et al. (2012)
simplified the STDP learning rule and reduced the demand
for computation and memory access. Yousefzadeh et al. (2017)
further improved the method proposed by Bichler et al. by
replacing the full connection to a weight-sharing connection.
Thus, it further reduced the computation and memory access
demand. Davies et al. (2012) changed part of the STDP learning
rule and approximated the membrane potential in LTP. It
reduced the computation and memory access demand and
improved memory access efficiency. Jin et al. (2010) and Davies
et al. (2018) delayed the update of weights and reduced the
memory access demand. Pedroni et al. (2019) analyzed different
synaptic matrix memory mapping strategies and proposed a
variation of STDP learning rule to perform the causal and
acausal update process. It reduced memory storage demand for
the sparsely connected network by pointer-based compressed
sparse rows and improved the efficiency for reversed access of
such pointer-based data structure. Knight and Furber (2016)
proposed a spike buffer and a mechanism called “flushing event”
to deal with the inefficient column update in STDP and increase
the memory efficiency. Morrison et al. (2007) used a dynamic
spike buffer to remove column update process in STDP and
increased memory efficiency. Sheik et al. (2016) also pointed out
the memory problem caused by bi-directional spike-triggered
learning rule and proposed a learning rule in which update is
only triggered by presynaptic spikes to improve the memory
access efficiency. However, almost all of these studies that target

spiking neural networks focus on the STDP learning rule. Thus,
it cannot be directly applied to BCPNN since its learning rule
is different and more complex than STDP. By abandoning a
conventional von Neumann architecture, custom neural network
simulation platforms could potentially avoid the root of the
memory access problems. Serrano-Gotarredona et al. (2013) and
Prezioso et al. (2018) usedmemristors to merge computation and
storage, thus eliminating the need for memory access. Though
such new architectures are efficient and attractive, they are not
off-the-shelf and easily accessible, and none of them supports the
BCPNN learning rule.

In this paper, we tackle the memory access problem
introduced by the BCPNN optimization method presented in
Vogginger et al. (2015). By replacing a time-driven simulation
method with an event-driven one, plenty of computational
requirements have been eliminated. The event-driven simulation
method is called “lazy evaluation method” because it delays the
evaluation computation as much as possible. The lazy evaluation
simulation method requires access to the synaptic matrix stored
in main memory, both row-wise and column-wise. A presynaptic
spike triggers an update of a single row in the synaptic matrix,
while a post-synaptic spike triggers an update of a single column.
Today’s memory architecture, such as DRAM, cannot handle
two orthogonal directional access patterns of the same block
of continuous data without sacrificing efficiency. Such access
patterns will also affect the efficiency of the cache system.
Therefore, we propose to remove the column update procedure
and to merge the column and row update. In this way, we
avoid entirely the dual memory access pattern that degrades the
efficiency of the BCPNN simulation. Furthermore, by carefully
designing our strategy, we can also reduce the demand in storage
requirement and memory access, while increasing the overall
performance. We remind readers that even though the BCPNN
is the optimization target, our method is not restricted to this
learning rule. Any Hebbian based neural network learning rule
could potentially be optimized with a slightly modified version of
our strategy.

The rest of the paper is organized as follows: section 2
explains the original BCPNN learning rule, points out the
memory access problem, proposes the alternative method that
resolves the problem, and performs an error analysis for the
proposed method. Section 3 demonstrates the benefits of the
proposed method in terms of both memory storage requirements
and performance. Finally, section 4 summarizes the paper and
addresses the potential of the proposed method.

2. METHODOLOGY

In this section, we introduce the lazy evaluation BCPNN
simulation strategy and highlight thememory access problem. To
overcome this problem, we propose an optimization technique
that tackles the memory access problem. We also present a
detailed analytical and experimental error analysis that shows
the probability of introducing intolerable errors is negligible.
Since we will not drastically modify the BCPNN learning rule
in this paper, we will just present its essence. Readers can

Frontiers in Neuroscience | www.frontiersin.org 2 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

find the complete and detailed description in Vogginger et al.
(2015).

2.1. The BCPNN Learning Rule
BCPNN is a type of artificial neural network whose learning
rule is derived from Bayes’ theorem. It strengthens or weakens
the connectivity/weight between pre- and post-synaptic neurons
based on their co-activation. A correlated pre- and post-synaptic
activity gives a positive weight, whereas an anti-correlation gives
a negative weight. The connectivity/weight is calculated by Bayes’
theorem based on the measured firing probability of pre- and
post-synaptic neurons.

To mimic the biological columnar cortical structure
(Buxhoeveden and Casanova, 2002), BCPNN considers
minicolumn units (MCUs) as its basic units representing
the aggregation of about a hundred neurons. Many MCUs
form a hypercolumn unit (HCU) representing the biological
hypercolumn structure (Hubel and Wiesel, 1974). MCUs in
each HCU compete with each other in a soft winner-take-all
(soft WTA) fashion, representing the net effects of excitatory
and inhibitory connections among neural cells, as shown in
Coultrip et al. (1992) and Lundqvist et al. (2006). We use the
notation H × M to represent a BCPNN configuration that
consists of H HCUs, and each HCU includes M MCUs. Usually,
we have the constraint H ≥ M. H can be increased arbitrarily
without an upper limit. M, on the other hand, has a limit of
M = 100. Therefore, the network is growing purely due to the
growth of the amount of HCUs for big networks. For example,
a typical human cortex comparable BCPNN configuration is
∼2 · 106 × 100 (Johansson and Lansner, 2007).

Each MCU could connect to an HCU via a sparse patchy
connection (Meli and Lansner, 2013). Synapses are formed due
to these connections. Fully connected big networks are very costly
in terms of storage and computation. A parameter C constraints
the amount of possible incoming connection slots of each HCU.
The parameters C and M define the shape of its synaptic matrix.
In each human cortex comparable HCU, a 104 × 100 synaptic
matrix is used to store the intermediate synaptic traces as well
as the synaptic weights, as shown in Figure 1A. This HCU
configuration uses C = 104 incoming connections andM = 100
MCUs. On the presynaptic side (left side) of the synaptic matrix,
an i-vector of size C = 104 is used to store presynaptic traces zi,
ei, and pi. On the post-synaptic side (bottom side), a j-vector of
size M = 100 is used to store post-synaptic traces zj, ej, and pj.
The synaptic matrix is also called the ij-matrix because it stores
the synaptic traces eij, pij, and wij.

Following Bayes’ theorem, the BCPNN learning rule requires
the probability estimation of both pre- and post-synaptic events
(spikes). Such probability estimation is obtained via a chain of
low-pass filters applied on the pre- and post-synaptic spikes
(si and sj). For example, the presynaptic filter chain is si →

zi → ei → pi. Similar filter chains are also used to generate
pj (sj → zj → ej → pj) and pij (zi ∗ zj → eij → pij). The
last three traces in the chain (pi, pj, and pij) represent the firing
probability for presynaptic spikes, post-synaptic spikes as well as
pre- and post-synaptic spike co-activation. The synaptic weight
is then computed by combining these three traces. These filters

are implemented by ordinary differential equations (ODEs).
Equation (1) is an example of such ODEs where X is the input,
Y is the output, and τ is the time constant. These ODEs can be
easily computed by Euler’s method (Griffiths and Higham, 2010)
in time-driven simulation.

τ
dY

dt
= X − Y (1)

As a numeric method, Euler’s method requires updating all the
traces whenever the simulation time is forwarded one simulation
step 1t, as shown in Figure 1B. The synaptic plasticity is caused
by the interaction between pre- and post-synaptic spikes. These
spikes drive the change of synaptic weights. The update of
synaptic traces is not necessary when the spikes are absent. As
long as we account for the decay of all the traces when a pre-
or post-synaptic spike comes, then the network’s mathematical
behavior will be the same as for time-driven simulation. As shown
in Figure 1C, a lazy evaluation method only updates part of i-
vector and ij-matrix when there is a triggering spike. The current
value of traces will be calculated analytically based on the time
difference between the current simulation step and the time when
the previous spike came. In this paper, we use the “Analytical I
method” in Vogginger et al. (2015) as the baseline and refer it as
the “lazy evaluation method.” Equation (2) shows the complete
set of equations of the lazy evaluation method. These equations
are used for calculating of pi and pij. The calculation of pj remains
as time-driven. The detail of the lazy evaluation method is not in
the scope of this paper, readers can find the proof of equivalence
in Vogginger et al. (2015).

zi(t) = zi(t
last) · e

− 1t
τzi + si(t)

ei(t) = ei(t
last) · e−

1t
τe + ai

(

e
− 1t

τzi − e−
1t
τe

)

zi(t
last)

pi(t) = pi(t
last) · e

−1t
τ∗p + aibi

(

e
− 1t

τzi − e
−1t

τ∗p

)

zi(t
last)

+

(

ei(t
last)− aizi(t

last)
)

c

(

e−
1t
τe − e

−1t
τ∗p

)

eij(t) = eij(t
last) · e−

1t
τe + aij

(

e
− 1t

τzij − e−
1t
τe

)

zi(t
last)zj(t

last)

pij(t) = pij(t
last) · e

−1t
τ∗p + aijbij

(

e
− 1t

τzij − e
−1t

τ∗p

)

zi(t
last)zj(t

last)

+

(

eij(t
last)− aijzi(t

last)zj(t
last)

)

c

(

e−
1t
τe − e

−1t
τ∗p

)

(2)

where,

ai =
τzi

τzi − τe
bi =

τzi

τzi − τ ∗p
c =

τe

τe − τ ∗p

τzij =

(

1

τzi
+

1

τzj

)−1

aij =
τzij

τzij − τe
bij =

τzij

τzij − τ ∗p

Frontiers in Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 1 | (A) Synaptic connections in an HCU. (B) Time-driven simulation method. The update of every trace is triggered by simulation time. (C) Lazy evaluation

method. The update of j-vector (yellow) is triggered by time. The row update (red) is triggered by presynaptic spikes. The column update (blue) is triggered by

post-synaptic spikes.

Each MCU works as a leaky integrator that integrates the input
spike effects (si·wij) in terms ofmembrane potential. TheseMCUs
in the same HCU then compete with each other based on their
membrane potential in soft-WTA fashion. The soft-WTA process
normalizes their membrane potential and generates a relative
firing rate oj. If the soft-WTA process has selected a winning
MCU, the oj of the winning MCU will be approaching 1. The
rest losing MCUs will be suppressed to an oj approaching 0. That
means the winning MCU will have a higher probability of firing
than the rest. If there is no clear winner, all the MCUs will have
nearly uniform oj after the soft-WTA process. In this case, the
MCUs will have a relatively low but equal firing probability. The
oj is then scaled to match the firing rate range in order to give the
final firing rate rj, Equation (3). The firing rate range is between 0
and the maximum firing rate (rmax), where the maximum firing
rate is usually set to 0.1.

rj = rmax · oj (3)

Finally, to generate a spike from the firing rate rj, a Poisson
spike generator (Dayan and Abbott, 2001) shown in Equation (4)
is employed. A uniformly distributed random number x is
generated every time and compared to rj. If rj is bigger than x,
the MCU fires.

sj =

{

1, if rj > x, x ∼ U(0, 1)

0, otherwise
(4)

2.2. Memory Access Problems of Lazy
Evaluation Method
By adopting the lazy evaluation method, the massive memory
access and computation demand from the time-driven
simulation can now be avoided. However, the lazy evaluation
method is not perfect. Its most significant issue is the dual-
memory access pattern. Both pre- and post-synaptic spikes
trigger the update events of synaptic traces. Depending on the
type of spikes, either a row or a column of the synaptic matrix
is fetched. The row or column is sent to the computation unit
to be updated and stored back. The lazy evaluation implies that
memory storage should efficiently support both row-wise and
column-wise access mode to achieve high throughput. However,
such a requirement is not feasible for modern DRAM and cache
hierarchy of supercomputers.

Modern DRAM and cache respond to every READ and
WRITE operation with a whole row of their data to increase
efficiency. Isolated single cell access pattern is not friendly for
DRAM and cache. To access a single data cell, they need to fetch

Frontiers in Neuroscience | www.frontiersin.org 4 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

or store a whole row of data. Since other parts of the row are
useless, to operate on them is a waste of time and energy.

The lazy evaluation method with both row-wise and column-
wise access patterns can be a great challenge for the DRAM
and cache system. In Stathis et al. (2020), the author tries to
customize the DRAM architecture to make it more adaptable to
the BCPNN access pattern. However, due to the nature of DRAM
technology, even by heavy customization, it still sacrifices the
DRAM performance to support lazy evaluation. In this work, we
propose a modified lazy evaluation method that eliminates the
column-wise memory access pattern. This optimization makes
the BCPNN learning rule DRAM and cache access friendly. We
refer to the modified algorithm as Column Update Elimination,
or CUE for short.

The CUE method not only solves the dual memory access
problem but also eliminates the demand for memory access
by the column update process. Even with the lazy evaluation
method, which has already dramatically reduced the memory
access, the memory access demand is still huge for a large
BCPNN. To put it into context, a human cortex comparable
BCPNN has a 2 · 106 × 100 configuration. Such a network needs
to access, on average, 10,000 rows and 100 columns of synaptic
storage in every second per HCU. In total, it will require 200
TB of data traffic for the whole network per second. The amount
of data required by 100 rows and 1 column is the same, around
240 KB/HCU, because the shape of the synaptic matrix is 10,000
× 100 for the human cortex comparable BCPNN. By applying
CUE, half of the memory access demand due to column update
is eliminated.

2.3. Column Update Elimination (CUE)
In this section, we modify the original BCPNN lazy evaluation
method by eliminating the more expensive column update. In
each subsection, we will introduce one important modification
and explain in detail its mechanism. The main idea of this
modification is to avoid column-wise access to DRAM and cache
by removing the column update. The row update triggered by
the presynaptic spike updates the synaptic weight, which directly
influences the spike generation. On the other hand, the column
update only affects the state of the synaptic traces and can be
delayed. The column update can be removed, and its calculations
can be integrated with the row update.

2.3.1. Ideal CUE
As shown in Figure 2A, in the lazy evaluation method, each cell
in the ij-matrix will be updated either by row update (red) or
column update (blue). A spike triggers each update event. The
update procedure includes three tasks: Load data from memory,
perform the computation, and store data back to memory. Row
update is triggered by presynaptic spikes si (red), while column
update is triggered by post-synaptic spikes sj (blue). The example
in Figure 2A, shows the update event of a single cell in the ij-
matrix. From left to right, its traces are updated by a row update,
followed by 3 column updates, and another row update. Each
update only covers the range from its trigger point back until the
last spike event.

If an infinite buffer that records all the post-synaptic spikes is
available, the column update can then be eliminated, as shown in

Figure 2B. Each cell in the ij-matrix will only be updated by a row
update (red). The row update will cover the range from its trigger
point back until the last presynaptic spike event. However, the
row update process in Figure 2B is different from Figure 2A. The
new row update process emulates the computation of the original
column updates thanks to the buffer that keeps the record of all
post-synaptic spikes. Compared to the original lazy evaluation
method, the CUE row update reduces the amount of memory
access leaving only the row-wise memory access patterns.

The CUE method with an infinite sized buffer will not
introduce any additional error, as all the computation required
by the lazy evaluation method is still performed. It only changes
the point in time when each computation happens. The CUE
does not reduce the amount of computation. It only reduces the
amount of memory access. The integration of column update
effects is summarized by Algorithms 1 and 2.

Algorithm 1: Lazy Evaluation Method

while a presynaptic spike arrives do
foreach Cell ∈ Row do

load_memory(Cell);
update_traces(Cell);
store_memory(Cell);

end

end

while a post-synaptic spike is generated do
foreach Cell ∈ Column do

load_memory(Cell);
update_traces(Cell);
store_memory(Cell);

end

end

Algorithm 2: Ideal CUE Method

while a presynaptic spike arrives do
foreach Cell ∈ Row do

load_memory(Cell);
// Integrating column update by the following
FOR-LOOP;
foreach post-synaptic spike ∈ Buffer[Cell.Column] do

update_traces(Cell);
end

update_traces(Cell);
store_memory(Cell);

end

end

2.3.2. CUE With Finite Sized Buffer
To have an infinite buffer that records every post-synaptic spike
is impractical. In a more realistic case, the infinite buffer can be
substituted by one with limited size, as shown in Figure 2C. The

Frontiers in Neuroscience | www.frontiersin.org 5 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 2 | Comparison of lazy evaluation method and CUE simulation strategy. (A) Lazy evaluation method. The update is performed either by presynaptic spike

triggered row update (red) or post-synaptic spike triggered column update (blue) process. (B) CUE method with infinite buffer. The update is performed only by the

presynaptic spike triggered row update. The row update is modified to incorporate the effects of the original column update. The change of synaptic trace also

considers the post-synaptic spikes. (C) CUE method with finite buffer. Finite buffer might discard spikes and cause a systematic error. The change of synaptic trace

has been altered due to the discarded spikes. (D) CUE method with finite buffer and approximation function. The approximation function will cover the range that can’t

be covered by the spike buffer. It will introduce a balanced error which is preferable.

edge of the buffer is called the look-back horizon (LBH). A spike
history buffer with size L can only respond to the request for sj(t)
when t is later in time than the LBH. The information from spike
events that are earlier in time than LBH is lost.

As shown in the example in Figure 2C, two post-synaptic
spikes that are beyond the LBH are discarded by the spike
history buffer, due to its limited size. Therefore, the row update
computation, that emulates the effects of the intermediate
column updates is different from the original lazy evaluation
computation. Such behavior will introduce systemic errors since
spikes are solely dropped. The post-synaptic spike train observed
by the row update in Figure 2Cwill always have fewer spikes than
the spike train in Figure 2A. This systematic error is undesirable
because it will accumulate strictly positively or negatively. We
need a mechanism that could introduce balanced errors so that
they can potentially cancel each other.

2.3.3. Approximation Function
To avoid a systematic error, we propose an approximation
function to predict the spikes beyond the LBH, as shown in

Figure 2D. Since the spike history is lost, due to the limited buffer
size, the prediction is the only option when the information of sj
beyond LBH is needed. An approximation function is defined as
H :N

0 × D → B; (t,m) 7→ s. where t ∈ N
0 is the simulation

step that needs prediction, m ∈ D is whatever extra information
required by the approximation function, and s ∈ B is the boolean
variable indicating whether a spike should be generated or not.

Errors will be introduced if the approximation function is
not an oracle that always gives a correct prediction. In the
next section, we will discuss various approximation functions
in detail and analyze their error bounds. A good approximation
function should be computationally light and be able to reduce
the error, compared to the scenario when all the spikes beyond
LBH are dropped. Any errors introduced by the approximation
function should be introduced in a balanced way to avoid
error accumulation.

2.3.4. Alternative Approach in Literature
Knight et al. (2016) has reported a similar method to remove
the BCPNN column update by introducing a finite buffer. The

Frontiers in Neuroscience | www.frontiersin.org 6 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

work does not mention how the expired spikes are handled. If
the expired spikes are just dropped, the BCPNN will suffer from
systematic error.

Another paper by the same author (Knight and Furber, 2016)
has reported a “flushing event” mechanism to avoid the loss of
spikes when using a finite-sized buffer for STDP. The flushing
event method used in STDP is not very friendly for BCPNN.
A presynaptic neuron triggers a flushing event when it hasn’t
been active for a fixed time (usually spike buffer size L) and
triggers an update of a row in the synaptic matrix. In BCPNN,
when the internal representation is stable, the active rows (very
small proportion of the synaptic matrix) are also stable. For
example, in a 100 × 100 network with 10,000 rows in total, the
number of active rows is statistically always the same 100 rows
due to the bursty property of spike trains. Therefore, presynaptic
neuron triggered flushing events will force almost a complete full
matrix update every L ms. In this paper, we have optimized the
flushing event method to be triggered by post-synaptic spikes. It
forces a column update whenever a post-synaptic spike is shifted
out from the spike buffer to guarantee that no spike is lost.
The post-synaptic triggered version statistically only updates a
synaptic column instead of the whole synaptic matrix every Lms.
Different from our approach which uses approximation function
to predict the spikes, the flushing event method is exact and will
not introduce error. But the price would be keeping the inefficient
column update process.

In section 3, we implement the flushing event method on
BCPNN and compare both the flushing event method and
our CUE method against the baseline lazy evaluation method.
Readers will see that by removing the column update process,
CUE method outperforms the flushing event method in terms of
both storage and performance.

2.4. Error Analysis
In this section, we analyze the error introduced by the CUE
method. The error discussed in this paper refers to the relative
error of synaptic weight wij caused by wrong post-synaptic spike
predictions. We choosewij because it is the final synaptic variable
that influences the spike generation. The error is treated only
at the evaluation points since the row update only happens at
these timing points. The error is defined by Equation (5). For
simplicity, we denote the evaluation of err(t) at the evaluation
points simply by err in later text. In this section, we bound the
probability of intolerable error. Two small threshold numbers, ǫ
and δ, are defined for such error bound. Equation (6) describes
the err, as a function of ǫ and δ.

err(t) =

∣

∣

∣

∣

∣

wij(t)−w
pred
ij (t)

wij(t)

∣

∣

∣

∣

∣

, if si(t) = 1

0, otherwise

(5)

P(err > ǫ|L,H) = P(t − t′ > L) · P(err > ǫ|H) ≤ δ (6)

Equation (6) represents the probability of having an error that
exceeds the threshold ǫ, under the scenario that a spike buffer

of size L is used together with an approximation functionH. This
probability is bounded by δ. If we prove that δ is sufficiently small,
we can assert that the BCPNN behavior will not diverge from the
original simulation strategy. We do not intend to mathematically
bound the error to a definite number that works for every corner
case because such an approach is very pessimistic and does not
reflect typical operational scenarios.

The probability P(err > ǫ|L,H) can be expanded as two terms.
The two terms describe the conditions: (1) The last presynaptic
spike fires beyond the look-back horizon (LBH), and (2) the
approximation function prediction gives an intolerable error. In
Equation (6), t is the current evaluation time when a presynaptic
spike is observed, and t′ is the time when the last presynaptic
spike occurs for the same synaptic cell.

In the following sections, we first discuss the spike firing
rate distribution to form the foundation for the probability-
bound calculation. Then we calculate the probability of a
presynaptic spike firing beyond the LBH, P(t − t′ > L). After
that, we present two approximate functions—the static and
adaptive approximation function. We establish the probability of
introducing errors via the two approximation functions, P(err >

ǫ|H). Finally, we summarize all the strategies and compute the
overall error probability bound.

2.4.1. Spike Firing Rate Distribution
The average spiking frequency in higher-order
(memory/cognitive) cortical areas is very low, likely around
0.1 Hz (Lennie, 2003). When experimenters record active
neurons, they typically have spiking frequency up to 100
Hz with an average of around 20 Hz. An MCU in BCPNN
does not directly represent every single neuron. Instead,
it mimics the behavior of a minicolumn of some hundred
neurons, of which, only a handful (5–10) big layer 5 pyramidal
cells communicate outside the HCU. So we estimate that
the maximum instantaneous firing frequency of an MCU is
5 × 20 = 100 Hz. Therefore, the maximum firing rate at each
simulation step rmax is set to 0.1 when the simulation step 1t is
set to 1 ms.

AnH×M BCPNN has an activity level α ∈ [0, 1]. It indicates
the number of active HCUs in this BCPNN is αH. An active
HCU is an HCU with a clear winning MCU and some losing
MCUs after the soft Winner-Take-All (soft WTA) process while
an inactive HCU has only MCUs that are neither winners nor
losers, see section 2.1. Winning MCUs will have a high firing rate
(close to rmax), losingMCUs have a low firing rate (close to 0), and
MCUs in the inactive HCU will have uniform firing rate (close to
rmax
M). Usually, a BCPNN should not have themajority of its HCUs
inactive as those HCUs would not be able to learn.

The first row of Figures 3A–C, show examples of measured
firing rate probability distribution function ρ(r) of a 10 × 10
BCPNN. From the figure, we can see that the distribution of firing
rates is very dense in some extremely narrow areas. If we zoom in,
as shown in sub-figure (C), we can observe a narrow bell-curve
shaped distribution. The cause of each peak is marked by text
beside all the sub-figures in the first row (A), (B), and (C). For
example, sub-figure (A) has only one peak caused by the MCUs
in the inactive HCUs, since when α = 0, all HCUs are inactive.

Frontiers in Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 3 | The measured probability distribution function of firing rate ρ(r) (first row, A–C) and the model of probability distribution of firing rate P(r) (second row, a–c).

The first row is continuous function while the second row is discretized function. The horizontal axis of all sub figures ranges from 0 to 0.1 because rmax = 0.1 and

both ρ(r) and P(r) are 0 when r > rmax .

In sub-figure (C), two peaks are caused by losing and winning
MCUs inside the active HCUs, since when α = 1, all HCUs are
active, hence there is a winning MCU and some losing MCUs.
At last, when α = 0.5, it is the combination of the previous two
scenarios. The height of each pulse is determined by the amount
of MCUs that cause it. If we compare the peak height caused
by losing and winning MCUs, we can see that the losing peak is
much higher than the winning one, because there are nine times
more losing MCUs than the winning MCUs in active HCUs due
to the soft-WTA process.

P(r) =

αM−1
M , if r = rl,

α 1
M , if r = rw,

1− α, if r = rs,

0, otherwise

(7)

We can use impulse functions δ(·) to model the probability
distribution function (PDF) of firing rate ρ(r). By using a
δ function, the probability distribution of the firing rate is
discretized. Therefore, we can directly use P(r) shown in
Equation (7) to describe the discretized events. P(r) is shown in
the second row of Figures 3a–c. The position of these peaks in
the model is determined by the average firing rate rl of losing
MCUs in active HCU, the average firing rate rw of winning
MCUs in active HCU, and the average firing rate rs of MCUs in
inactive HCU. The constants rl, rw, and rs are measured directly
from BCPNN simulations. Since the firing rate is determined
by the soft-WTA process inside a single HCU, the only factor
that influences these constants is the number of MCUs in each
HCU (M), normally ranging from 10 to 100. Different BCPNN
applications might have a different value for these constants.
An investigation of both feed-forward and recurrent BCPNN
suggests that rl and rw are very concentrated and close to 0
and rmax, respectively. The value of rs is analytically determined
by assuming all MCUs in inactive HCU have a uniform firing

rate. To represent the general firing rate distribution, we use
a set of constants that we obtained from the simulation of the
BCPNN as an associative memory via a BCPNN GPU simulator
(Herenvarno, 2019). These constants are listed in Table 1.

We can now calculate the expectancy of r based on
Equation (7) and the constants in Table 1. The Equation (8)
shows the method to calculate such expectancy. It shows that the
expectancy is always very close to rs regardless of α andM.

〈r〉 =
∑

r∈{rl ,rw ,rs}

r · P(r)

= α(rw
1

M
+ rl

M − 1

M
)+ (1− α)rs

≈ α(rmax ·
1

M
+ 0 ·

M − 1

M
)+ (1− α)

rmax

M

=
rmax

M
= rs

(8)

From the recordings of cortical memory systems, it is clear that
spikes typically come in the form of bursts (Lundqvist et al.,
2016). The BCPNN implementation is optimized for this kind
of behavior as its internal representation does not change too
frequently with respect to the simulation step. Therefore, when
analyzing spike sequences, we assume that the firing probability
does not change for the whole spike sequence in the observing
period (typically <200 ms). When at some simulation step, we
observe a firing rate r, it is almost certain that at one step earlier,
the firing rate was also r.

2.4.2. Spike History Buffer
We are now in a position to formulate how the probability
P(t − t′ > L) can be computed in terms of the firing rate r and
its probability distribution P(r). We know that (1) in a period, the
probability of the presynaptic neuron firing at a particular firing
rate r is P(r). (2) The probability of a presynaptic spike appearing
at instance t is then equal to the firing rate r of that period. When

Frontiers in Neuroscience | www.frontiersin.org 8 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

TABLE 1 | Firing rate constants.

M 10 20 30 40 50

rl 0.0000990 0.0000981 0.0000972 0.0000963 0.0000954

rw 0.0991090 0.0981361 0.0971812 0.0962443 0.0953254

rs 0.0100000 0.0050000 0.0033333 0.0025000 0.0020000

M 60 70 80 90 100

rl 0.0000945 0.0000936 0.0000927 0.0000918 0.0000909

rw 0.0944245 0.0935416 0.0926767 0.0918298 0.0910009

rs 0.0016667 0.0014286 0.0012500 0.0011111 0.0010000

FIGURE 4 | The decomposition of the probability P(t− t′ > L).

there is indeed a presynaptic spike, a row update will trigger the
proposed CUE scheme. (3) Given point (2) we can deduce that
the probability that no spikes appeared for the previous L ms is
(1− r)L. If t′ is the instance when the row was last updated, then
the probability of having (t − t′) > L is exactly the combination
of the three conditions described above. Figure 4 illustrates the
condition and time relation.

Figure 5 shows the plot of such a probability based on the
equation in Figure 4. The horizontal axis represents the buffer
size L. The vertical axis is in logarithmic scale and represents the
probability of requiring to look beyond the LBH. When α = 0,
all MCUs will have a uniformly distributed firing rate rs. Thus,
all the curves in the first sub-figure are straight lines. When
α = 1, there are two types of MCUs that fire under rl or rw,
which gives the curve two distinct parts. The first part of the
curve is dominated by the effects of winning MCUs, where the
probability drops very fast. The second part is almost flat, which
is dominated by losing MCUs. The sub-figure in the center with
α = 0.5 is the combination of the above scenarios. The BCPNN
configuration parameter M also affects the shape of the curve.

When M is bigger, the rs will become closer to 0, making the
probability smaller. The overall average firing rate of active HCUs
is also roughly equaled to rs. That is why all three sub-figures,
though with different α, have curves starting at the same points,
which are determined by rs.

The most common BCPNN applications have most of their
HCUs being active. Thus, the majority of their MCUs are either
winning or losing after the soft-WTA process. According to the
third sub-figure in Figure 5, we choose the L = 100 as the
size of the spike buffer since it already passes the turning point.
Further increasing the buffer size will not dramatically decrease
the error probability.

2.4.3. Approximation Function
We have briefly discussed the approximation function and have
explained why imperfect approximation function will introduce
errors. Although it is impossible to avoid introducing errors
with any imperfect approximation function, a well-designed
approximation function can introduce small errors in a balanced
manner. Therefore, we need to choose a proper tolerance ǫ so
that the error bound can reflect the approximation function’s
predictive ability. In this work, we choose ǫ = 1% as the
threshold. It is a practical way to consider the error to be
much less than the actual value in insensitive systems, such as
neural networks. It thus could guarantee that the behavior of
the BCPNN remains unaffected. We use ǫ to calculate the error
bound of approximation functions.

It is very complex to analytically find out the error propagation
from the firing rate r to synaptic weights wij, as discussed in
section 2.1. The calculation of wij includes many low-pass filters,
random number generation, and complex arithmetic operations,
such as logarithm. Instead, we opt to find out P(err > ǫ|H)
by experimental simulation for each type of approximation
functions that have been developed. Each experiment has been
repeated for more than 105 times to guarantee the generality of
the collected statistics.

2.4.3.1. Static approximation function
In this subsection, we propose a type of approximation function
that we call static. The static approximation function Hs is
defined in Equation (9), where x ∼ U(0, 1) is a uniformly
distributed random number generated at each prediction. This
function is static because it always uses a constant firing rate to
make a prediction. We use the s subscript to indicate that the
function is static.

Hs :N
0 → B, so thatHs : t 7→ (x < rs) (9)

To maximize the probability for long term correct prediction, the
predicted firing rate has to match the true firing rate. However,
a spike can be generated according to any of rl, rw, and rs.
Therefore, the true firing rate is not constant. We choose rs to
be the static predicted firing rate is because the expectancy of r is
〈r〉 = rs. It will statistically introduce both positive and negative
errors since it does not exactly match the true firing rate.

Figure 6 shows the simulation result when using a static
approximation function. We can see that the prediction differs

Frontiers in Neuroscience | www.frontiersin.org 9 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 5 | Probability of looking beyond LBH.

when α changes. However, the change is not significant, because
the firing rate expectancy roughly equals to rs, no matter what the
value of α is. On the other hand, when the BCPNN configuration
changes, the probability changes a lot. This change happens
because, for large M, the expected firing rate is close to 0. Since
the expected firing rate approaches 0, it makes it easier for the
approximation function to have a correct prediction.

2.4.3.2. Adaptive approximation function
The static approximation function Hs is very simple and unable
to properly grasp the three different firing rates in the BCPNN.
By modifying it, we can easily implement another type of
approximation function that factors in the dynamic information
available at evaluation time. We call this type of approximation
function as adaptive approximation function. It is defined in
Equation (10), where r∗ is the nearest recorded firing rate history
and x ∼ U(0, 1) is a uniformly distributed random number
generated at each prediction. The a subscript in H indicates that
it is an adaptive function. The Ha is very similar to Hs. The
difference between the two functions is that the predicted firing
rate here adapts to the true firing rate r∗.

Ha :N
0 × R → B, so that,Ha : t 7→ (x < r∗) (10)

We record the HCU activation status and winning/losing status
of each MCU, assuming that spikes come in bursts. The record
of such a status can be reasonably infrequent. Additionally, the
required information is boolean and thus occupies very little
storage space. If we record the winning/losing status of each
MCU every 300 simulation steps, only 32 records are needed to
cover nearly 10,000 simulation steps. The cost to record such a
range for each MCU is equivalent to just a single integer word.
Since we assume the HCU and MCU status will not change
frequently, we can use the recorded status to determine the real
status for any simulation step.

Figure 7 shows the simulation result when using an adaptive
approximation function. We can see that the prediction differs
more when α changes, compared to the previous static
approximation function curve. The explanation is that the
adaptive function adapts to the true firing rate. We note here

again that for large α, the firing rate has a higher probability
of being close to 0. Hence it is easier to predict. When the
BCPNN configuration changes, the probability changes a lot.
The change follows the same trend of static approximation
function simulation.

2.4.4. Summary
We plot the overall error probability in Figure 8. The curve is the
multiplication of previous curves in Figures 5–7. It demonstrates
two different strategies: (1) buffer + static approximation
function and (2) buffer + adaptive approximation function. One
can easily tell from the plot that the second strategy dominates
the first one. By combining the spike buffer and adaptive
approximation functions, we can bound the error as low as
to the order of 10−4 for any activation level. The worst-case
scenario of α = 0 should not happen in any BCPNN simulation.
Whereas, for normal BCPNN simulations, α = 1 is usually
guaranteed. The M is commonly set to 100 when simulating a
relatively big network. In such cases, the error bound will be
improved dramatically to the order of 10−8. Therefore, in normal
circumstances, all errors introduced can be consideredminor and
negligible for the operation of the BCPNN.

The static approximation function leads to a very good
error bound as well. Though slightly worse than the adaptive
approximation function, it does not require any extra resources.
Consequently, it is very efficient to apply the combination
of a spike buffer and a static approximation function for
most applications. Therefore, we adopt this strategy for the
experiments in the results section.

3. EXPERIMENT RESULTS

In this section, we set up a series of experiments on
a GPU platform to examine all the metrics affected by
the CUE method. The GPU we use is an Nvidia Quadro
K1200 GPU, which can be profiled by the Nvidia GPU
profiling tool—nvprof. The profiled metrics include storage
and performance aspects. We mainly analyze the storage
requirements, memory access demand, and memory access
efficiency. The approximation function of CUE used in these

Frontiers in Neuroscience | www.frontiersin.org 10 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 6 | Error probability of static approximation function.

FIGURE 7 | Error probability of adaptive approximation function.

FIGURE 8 | Overall error of different strategy.

experiments is the static approximation function due to its
simplicity, see section 2.4.4. The experiments are designed
to compare the original lazy evaluation method (baseline),
the flushing event method, and the CUE method. Both the
flushing event method and the CUE method have the same
buffer size.

3.1. Storage Analysis
In the original lazy evaluation method, we need several variables
to be stored in the memory to represent the state of each synapse.
This variables are used to track the change of all the traces and
time, and they are pij, eij, zi2, zj2, wij, and tij. Once the column
update procedure is removed, all synaptic traces will be updated

Frontiers in Neuroscience | www.frontiersin.org 11 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 9 | Memory storage requirement comparison (red) and requirement

reduction by the flushing event method and the CUE method (blue).

only when a presynaptic spike si occurs. Thus, the timestamp tij
will be identical to the timestamp ti in presynaptic traces and
can be safely removed. The zi2 is the equivalent zi trace, and it
is stored in the synaptic matrix. In the lazy evaluation method, zi
and zi2 could be updated at different times, so we have to make a
copy (zi2) inside the synaptic matrix. After applying CUE, zi2 will
only be updated when an si occurs, its value should be identical
to zi for all synapses corresponding to the same presynaptic trace.
We can now safely remove the zi2 trace.

The flushing event method still keeps the column update.
The storage of the flushing event method thus is identical to
the lazy evaluation method except that it requires some extra
buffer storage for post-synaptic spikes. Overall, the flushing event
method doesn’t change the storage requirement.

Note that both tij and zi2 traces are synaptic variables that
dominate the storage cost for BCPNN simulation because the
amount of data representing synaptic traces is proportional to the
product of the number of pre- and post-synaptic units. Figure 9
summarize the storage comparison of the original lazy evaluation
method and CUE method. The figure shows that we save around
33% of memory by applying CUE. The 33% of reduction is
due to the elimination of tij and zi2, which are two out of six
synaptic traces.

3.2. Performance Analysis
In this section, we analyze the performance of each method
in terms of the memory access demand, the memory access
efficiency, and the latency of the row/column update CUDA
kernels. The first two factors focus on the memory aspects but
neither of them can characterize the performance alone. The
overall performance is instead characterized by the latency of
the row/column update CUDA kernels. In our experiments, we
implement and test a series of small BCPNNs with configuration
M ×M, where M ∈ {10, 30, 50, 70, 100}. Each of these networks
is trained to remember 10 patterns, where each pattern is trained
for 500 ms.

FIGURE 10 | Memory access demand comparison (red) and memory demand

reduction by the flushing event method and the CUE method (blue).

3.2.1. Memory Access Demand
Compared with the original lazy evaluation method, the memory
access demand requested by the column update is eliminated.We
remind the reader that, in the original lazy evaluationmethod, the
column update roughly demands the same amount of memory
access as a row update. However, when applying CUE, the
memory access demand of a row update increases slightly due
to the access for spike buffer. Therefore, the improvement in
memory demand should be <50%.

We record two global memory access related metrics:
global memory load transactions (Nld) and global memory store
transactions (Nst). They represent the global memory access
demand requested by the CUDA kernels. The Equation (11)
calculates the memory demand of those row/column
update kernels.

D = kL1 ∗ (Nld + Nst) (11)

The scaling factor kL1 is set to 128 because the size of the Quadro
K1200 GPU’s L1 cache line is 128 Bytes. The D represents the
amount of data in Bytes that is needed to be loaded from, or
stored to, the global memory. Figure 10 shows the comparison
among the original lazy evaluation method, the flushing event
method, and the CUE method. From the figure, we can see
that half of the memory access demand of a small network
is eliminated by CUE method due to the elimination of the
column update process. In a bigger network, the memory
demand is improved by one third. The flushing event method
however reduces the memory access demand in a much smaller
proportion. It can reduce the invocation of column update, and
save memory access for active rows. However, the access of the
spike buffer is a non-negligible overhead. Overall, the flushing
event method saves memory access demand. However, for big
networks, the saving is largely canceled by the overhead of
accessing the spike buffer.

Frontiers in Neuroscience | www.frontiersin.org 12 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

FIGURE 11 | DRAM access rate comparison (red) and DRAM access rate

reduction by the flushing event method and the CUE method (blue).

3.2.2. Memory Access Efficiency
In this experiment, we profile the following four metrics:
DRAM read transactions (Nrd), DRAM write transactions (Nwr),
global memory load transactions (Nld), and global memory store
transactions (Nst). The Nrd and Nwr are the recorded READ and
WRITE operation count from/to the DRAM. They represent the
actual DRAM access. The Equation (12) defines a parameter
called DRAM access rate γ .

γ =
kL2(Nrd + Nwr)

kL1(Nld + Nst)
× 100% (12)

Here, the kL2 and kL1 are the L2 and L1 cache line
size, respectively.

From Equation (12), we can see that a large γ value means
a large number of real DRAM access and a high cache-miss
rate. Figure 11 shows the DRAM access rate of several BCPNN
configurations. We can see that the DRAM access rate is reduced
by the CUE method, although the reduction is less dramatic for
bigger networks. This is because the column-wise memory access
demand has already been eliminated; the improvement has been
shown in Figure 10. The improvement that is shown in Figure 11
only presents the average memory access efficiency using the
CUE method, compared to the lazy evaluation method.

We can also observe that the flushing event method improves
memory access efficiency compared to the lazy evaluation
method. It is because even though the memory access demand
for the spike buffer is equivalent to the memory access demand
of a single cell column update, the memory access for the buffer
is coalesced, thus much more efficient than the column update.
When the flushing event happens, it also updates according to the
spike buffer and resets the spike buffer to reduce the invocation of
the column update kernel. However, the flushing event method
is not as good as the CUE method because it still keeps the
extremely inefficient column update.

FIGURE 12 | Latency comparison of synaptic matrix update procedures (red)

and latency reduction by flushing event method and CUE method (blue).

If we look at the trend of the DRAM access rate, we can see
that it behaves abnormally when M = 10. That is because the
network is so small, the L2 cache can hold almost the entire
network. Therefore, the lazy evaluation method is efficient. For
M ≥ 30, the column update becomes slightly more efficient with
the increase of network size. It’s mainly due to the variation of the
proportion of empty rows in the synaptic matrix that affects the
efficiency of the column update. We don’t explain the complete
causality of this phenomena since it’s not very related to our
memory access efficiency comparison and it requires a lot of
implementation details related to the GPU platform.

3.2.3. Latency
With the improvement in terms ofmemory demand andmemory
access efficiency, the overall latency of function call is reduced.
We test the average latency of a row and column update
procedures. Figure 12 shows that compared to the original lazy
evaluation method, which requires both row and column update,
our CUE strategy reduces the latency of the synaptic matrix
update. The average latency is reduced by about 50%. The
reduction in latency is mainly due to memory optimization and
the elimination of issuing the column update kernel, which has
some overhead.

The flushing event method also improves the overall
performance compared to the lazy evaluation method. However,
due to the column update process, the improvement is less than
the CUE method which eliminates the entire column update.

For both blue lines in Figure 12, whenM = 50, the reduction
drops a little. It is because that the column update efficiency
changes with the change of network size. But the change rate is
not very uniform due to the nature of the GPU platform. It will
be more efficient if the network configuration makes the memory
access pattern to fit the GPU warp size. M = 50 is one of such
configuration points.

Frontiers in Neuroscience | www.frontiersin.org 13 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

4. DISCUSSION

In this paper, we have discussed the BCPNN memory access
problem introduced by the lazy evaluation method. An
algorithmic optimization has been proposed to tackle this issue.
The proposed Column Update Elimination (CUE) method
eliminates the column update and merges it with the row update,
with the help of spike history buffer and approximation function.
Using the CUE method, we gain not only memory access
efficiency but also other improvements, such as the reduction of
memory storage, memory access demand, etc. We also show that
our algorithmic modification only introduces negligible errors
and does not compromise the functionality of the BCPNN.

In this section, we further examine the potential of the
proposed method. We focus on the new possibilities after the
column update has been eliminated, and other learning rules that
CUE method can fit in. Finally, based on what we have achieved,
we describe an outlook that could improve BCPNN simulation
even further.

4.1. Exploiting the Temporal Locality of
Spike Train
Memory access efficiency can be further improved by
architectural optimization. We have analyzed the pattern of
spike train in section 2.4.1. Spikes are generated in burst mode
regulated by stimulus pattern. Usually, the change of these
stimulus patterns is infrequent. Thus, when the neural network
is in the middle of a stable stimulus pattern, the firing patterns of
spikes are also stable.

We have analyzed the percentage of winning MCUs in both
active and silent HCUs. Even in completely activeH×M BCPNN
(α = 1), the fraction of winning MCUs which fire frequently is
just 1

M . Therefore, only a fraction of 1
M connections will be active

at each simulation step, assuming uniform interconnections.
Therefore, when the firing patterns are stable, the part of synaptic
traces that need to be frequently updated is also stable, and
the global memory access patterns of synaptic traces are stable
as well.

In this paper, we have eliminated the non-coalesced column-
wise memory access pattern. With stable global memory access
patterns, we can cache the frequently updated fraction of synaptic
traces by designing a large enough cache between the memory
and computation unit. The single global memory access pattern
guarantees that the cache system will not be interrupted by other
memory access patterns.

Unfortunately, the estimated size of such a cache usually
is much bigger than any off-the-shelf commercial computer
architecture. The insufficient size of the cache will lead to
frequent swapping data between the cache and DRAM, thus
significantly compromises the memory access efficiency. The
customization of the cache system becomes necessary and can
only be done in custom hardware architecture, such as ASICs.

4.2. CUE Method for STDP
The STDP learning rule changes the synaptic weights based on
the correlation of pre- and post-synaptic spikes. The amount

of change depends on the time difference between the pre- and
post-synaptic spikes. A pre- and post-synaptic spike pair for a
synaptic connection 〈si, sj〉 occurs at time 〈ti, tj〉. If ti < tj, they
are correlated. Otherwise, they are anti-related. One commonly
used method to calculate such causal strength is described in
Equation (13).

1wij =

+A+ · e−
tj−ti

τ , if ti < tj

−A− · e−
ti−tj

τ , if ti > tj
(13)

We can see that the update of weights in the STDP learning rule
is triggered by pre- and post-synaptic spikes, just like the BCPNN
learning rule. It is natural to organize the synaptic weights of
STDP learning as a matrix stored in the memory. Because of its
triggering mechanism and data structure, the STDP learning rule
will suffer from the same dual memory access pattern issue as a
lazy evaluation method.

By proposing the same solution to STDP learning, we can use
a post-synaptic buffer and an approximation function to delay
the update of the post-synaptic triggered column update. The
buffer size L, and the type of approximation function H will
be different for STDP learning. Further analysis and simulation
should be done to investigate the error bound. For example, the
probability density function (PDF) of the firing rate in STDP
might be different. It might be enough for STDP by just using
the spike history buffer. However, the principle of optimizing
memory access efficiency remains the same for both STDP and
BCPNN learning rules.

4.3. Outlook
In the future, we could also explore the option of hardware
architecture to improve the BCPNN simulation further. For
example, we could dimension a big enough cache that can hold
the complete stationary synaptic traces to avoid DRAM memory
access. We could also use non-von Neuman architecture,
such as memristor, which could potentially avoid the memory
access problem. Other algorithmic modifications combined with
approximate computing, such as delayed stochastic row update,
could also improve the overall BCPNN simulation.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

The initial idea proposed in the paper came from AL and AH. YY
further developed the method by introducing the approximation
function, proposed the methodology for error analysis, and
performed the experiments to verify the proposed method. DS
and RJ helped with the refinement of method especially the error
analysis part. All authors contributed to the article and approved
the submitted version.

Frontiers in Neuroscience | www.frontiersin.org 14 August 2020 | Volume 14 | Article 878

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yang et al. Optimizing BCPNN for Memory Access

REFERENCES

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J. P., and Gamrat, C.
(2012). Extraction of temporally correlated features from dynamic vision
sensors with spike-timing-dependent plasticity. Neural Netw. 32, 339–348.
doi: 10.1016/j.neunet.2012.02.022

Buxhoeveden, D. P., and Casanova, M. F. (2002). The minicolumn hypothesis in
neuroscience. Brain 125, 935–951. doi: 10.1093/brain/awf110

Coultrip, R., Granger, R., and Lynch, G. (1992). A cortical model of
winner-take-all competition via lateral inhibition. Neural Netw. 5, 47–54.
doi: 10.1016/S0893-6080(05)80006-1

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359
Davies, S., Galluppi, F., Rast, A. D., and Furber, S. B. (2012). A forecast-based

STDP rule suitable for neuromorphic implementation. Neural Netw. 32, 3–14.
doi: 10.1016/j.neunet.2012.02.018

Dayan, P., and Abbott, L. F. (2001). Neural Encoding I: Firing Rates and Spike

Statistics, Chapter 1. Cambridge, MA: MIT Press.
Farahini, N., Hemani, A., Lansner, A., Clermidy, F., and Svensson, C.

(2014). “A scalable custom simulation machine for the Bayesian confidence
propagation neural network model of the brain,” in 2014 19th Asia and

South Pacific Design Automation Conference (ASP-DAC) (Singapore), 578–585.
doi: 10.1109/ASPDAC.2014.6742953

Fiebig, F., Herman, P., and Lansner, A. (2020). An indexing theory for working
memory based on fast hebbian plasticity. eNeuro 7:ENEURO.0374-19.2020.
doi: 10.1523/ENEURO.0374-19.2020

Griffiths, D. F., and Higham, D. J. (2010). Euler’s Method, Chapter 2. London:
Springer.

Herenvarno (2019).GSBN: GPUVersion of Spiking-Based BCPNN. Available online
at: https://github.com/herenvarno/gsbn

Hubel, D. H., and Wiesel, T. N. (1974). Uniformity of monkey striate cortex:
a parallel relationship between field size, scatter, and magnification factor. J.
Compar. Neurol. 158, 295–305. doi: 10.1002/cne.901580305

Jin, X., Rast, A., Galluppi, F., Davies, S., and Furber, S. (2010). “Implementing
spike-timing-dependent plasticity on SpiNNaker neuromorphic hardware,”
in Proceedings of the International Joint Conference on Neural Networks,
(Barcelona), 1–8. doi: 10.1109/IJCNN.2010.5596372

Johansson, C., and Lansner, A. (2007). Towards cortex sized artificial neural
systems. Neural Netw. 20, 48–61. doi: 10.1016/j.neunet.2006.05.029

Knight, J. C., and Furber, S. B. (2016). Synapse-centric mapping of cortical
models to the spinnaker neuromorphic architecture. Front. Neurosci. 10:420.
doi: 10.3389/fnins.2016.00420

Knight, J. C., Tully, P. J., Kaplan, B. A., Lansner, A., and Furber, S. B. (2016). Large-
scale simulations of plastic neural networks on neuromorphic hardware. Front.
Neuroanat. 10:37. doi: 10.3389/fnana.2016.00037

Lansner, A., and Ekeberg, Ö. (1989). A one-layer feedback artificial neural
network with a bayesian learning rule. Int. J. Neural Syst. 1, 77–87.
doi: 10.1142/S0129065789000499

Lansner, A., and Holst, A. (1996). A higher order Bayesian neural network with
spiking units. Int. J. Neural Syst. 7, 115–128. doi: 10.1142/S0129065796000816

Lennie, P. (2003). The cost of cortical computation. Curr. Biol. 13, 493–497.
doi: 10.1016/S0960-9822(03)00135-0

Li, C., Yang, Y., Feng, M., Chakradhar, S., and Zhou, H. (2016).
“Optimizing memory efficiency for deep convolutional neural
networks on GPUs,” in International Conference for High Performance

Computing, Networking, Storage and Analysis, SC (Salt Lake
City, UT: IEEE Computer Society), 633–644. doi: 10.1109/SC.2
016.53

Lundqvist, M., Rehn,M., Djurfeldt, M., and Lansner, A. (2006). Attractor dynamics
in a modular network model of neocortex. Network: Computation in Neural

Systems 17, 253–276. doi: 10.1080/09548980600774619
Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., and Miller,

E. K. (2016). Gamma and beta bursts underlie working memory. Neuron 90,
152–164. doi: 10.1016/j.neuron.2016.02.028

Markram, H., Gerstner, W., and Sjöström, P. J. (2012). Spike-timing-
dependent plasticity: a comprehensive overview. Front. Synap. Neurosci. 4:2.
doi: 10.3389/978-2-88919-043-0

Meli, C., and Lansner, A. (2013). A modular attractor associative memory with
patchy connectivity and weight pruning. Netw. Comput. Neural Syst. 24,
129–150. doi: 10.3109/0954898X.2013.859323

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent
plasticity in balanced random networks. Neural Comput. 19, 1437–1467.
doi: 10.1162/neco.2007.19.6.1437

Mutlu, O. (2013). “Memory scaling: a systems architecture perspective,” in 2013

5th IEEE International Memory Workshop, IMW 2013 (Monterey, CA), 21–25.
doi: 10.1109/IMW.2013.6582088

Pedroni, B. U., Joshi, S., Deiss, S. R., Sheik, S., Detorakis, G., Paul, S., et al. (2019).
Memory-efficient synaptic connectivity for spike-timing- dependent plasticity.
Front. Neurosci. 13:357. doi: 10.3389/fnins.2019.00357

Prezioso, M., Mahmoodi, M. R., Bayat, F. M., Nili, H., Kim, H., Vincent,
A., et al. (2018). Spike-timing-dependent plasticity learning of coincidence
detection with passively integrated memristive circuits. Nat. Commun. 9, 1–8.
doi: 10.1038/s41467-018-07757-y

Ravichandran, N. B., Lansner, A., and Herman, P. (2020). Brain-like approaches
to unsupervised learning of hidden representations–a comparative study.
arXiv[Preprint].arXiv:2005.03476.

Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G.,
and Linares-Barranco, B. (2013). STDP and STDP variations with
memristors for spiking neuromorphic learning systems. Front. Neurosci.
7:2. doi: 10.3389/fnins.2013.00002

Sheik, S., Paul, S., Augustine, C., and Cauwenberghs, G. (2016). “Membrane-
dependent neuromorphic learning rule for unsupervised spike pattern
detection,” in Proceedings–2016 IEEE Biomedical Circuits and Systems

Conference, BioCAS 2016 (Shanghai: Institute of Electrical and Electronics
Engineers Inc.), 164–167. doi: 10.1109/BioCAS.2016.7833757

Stathis, D., Sudarshan, C., Yang, Y., Jung, M., Jafri, S. A. M. H., Weis, C.,
et al. (2020). eBrainII: a 3 kW realtime custom 3D DRAM integrated ASIC
implementation of a biologically plausible model of a human scale cortex. J.
Signal Process. Syst. 2020, 1–21. doi: 10.1007/s11265-020-01562-x

Tully, P. J., Lindén, H., Hennig, M. H., and Lansner, A. (2016). Spike-
based bayesian-hebbian learning of temporal sequences. PLoS Comput. Biol.
12:e1004954. doi: 10.1371/journal.pcbi.1004954

Vogginger, B., Schüffny, R., Lansner, A., Cederström, L., Partzsch, J., and Höppner,
S. (2015). Reducing the computational footprint for real-time BCPNN learning.
Front. Neurosci. 9:2. doi: 10.3389/fnins.2015.00002

Yang, Y., Jafri, S. M. A. H., Hemani, A., and Stathis, D. (2017). “MTP-caffe:
memory, timing, and power aware tool for mapping CNNs to GPUs,” in
Proceedings of the 8th Workshop and 6th Workshop on Parallel Programming

and Run-Time Management Techniques for Many-Core Architectures and

Design Tools and Architectures for Multicore Embedded Computing Platforms,

PARMA-DITAM ’17 (New York, NY: Association for Computing Machinery),
31–36. doi: 10.1145/3029580.3029585

Yousefzadeh, A., Masquelier, T., Serrano-Gotarredona, T., and Linares-Barranco,
B. (2017). “Hardware implementation of convolutional STDP for on-line visual
feature learning,” in Proceedings–IEEE International Symposium on Circuits and

Systems (Baltimore, MD: Institute of Electrical and Electronics Engineers Inc.),
1–4. doi: 10.1109/ISCAS.2017.8050870

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Yang, Stathis, Jordão, Hemani and Lansner. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 15 August 2020 | Volume 14 | Article 878

https://doi.org/10.1016/j.neunet.2012.02.022
https://doi.org/10.1093/brain/awf110
https://doi.org/10.1016/S0893-6080(05)80006-1
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1016/j.neunet.2012.02.018
https://doi.org/10.1109/ASPDAC.2014.6742953
https://doi.org/10.1523/ENEURO.0374-19.2020
https://github.com/herenvarno/gsbn
https://doi.org/10.1002/cne.901580305
https://doi.org/10.1109/IJCNN.2010.5596372
https://doi.org/10.1016/j.neunet.2006.05.029
https://doi.org/10.3389/fnins.2016.00420
https://doi.org/10.3389/fnana.2016.00037
https://doi.org/10.1142/S0129065789000499
https://doi.org/10.1142/S0129065796000816
https://doi.org/10.1016/S0960-9822(03)00135-0
https://doi.org/10.1109/SC.2016.53
https://doi.org/10.1080/09548980600774619
https://doi.org/10.1016/j.neuron.2016.02.028
https://doi.org/10.3389/978-2-88919-043-0
https://doi.org/10.3109/0954898X.2013.859323
https://doi.org/10.1162/neco.2007.19.6.1437
https://doi.org/10.1109/IMW.2013.6582088
https://doi.org/10.3389/fnins.2019.00357
https://doi.org/10.1038/s41467-018-07757-y
https://doi.org/10.3389/fnins.2013.00002
https://doi.org/10.1109/BioCAS.2016.7833757
https://doi.org/10.1007/s11265-020-01562-x
https://doi.org/10.1371/journal.pcbi.1004954
https://doi.org/10.3389/fnins.2015.00002
https://doi.org/10.1145/3029580.3029585
https://doi.org/10.1109/ISCAS.2017.8050870
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Optimizing BCPNN Learning Rule for Memory Access
	1. Introduction
	2. Methodology
	2.1. The BCPNN Learning Rule
	2.2. Memory Access Problems of Lazy Evaluation Method
	2.3. Column Update Elimination (CUE)
	2.3.1. Ideal CUE
	2.3.2. CUE With Finite Sized Buffer
	2.3.3. Approximation Function
	2.3.4. Alternative Approach in Literature

	2.4. Error Analysis
	2.4.1. Spike Firing Rate Distribution
	2.4.2. Spike History Buffer
	2.4.3. Approximation Function
	2.4.3.1. Static approximation function
	2.4.3.2. Adaptive approximation function

	2.4.4. Summary

	3. Experiment Results
	3.1. Storage Analysis
	3.2. Performance Analysis
	3.2.1. Memory Access Demand
	3.2.2. Memory Access Efficiency
	3.2.3. Latency

	4. Discussion
	4.1. Exploiting the Temporal Locality of Spike Train
	4.2. CUE Method for STDP
	4.3. Outlook

	Data Availability Statement
	Author Contributions
	References

