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Highlights:

• Online biodiversity data hold great yet untapped 

potential for biogeographic studies linking to diverse 
areas of environmental research.

• Human health, agriculture, and the conservation and 
management of natural systems depend on efficient 
use of biodiversity data.

• Ongoing progress should be expanded to promote 

transformative changes in the quality and utility of 
biodiversity data.

• Data usage in publications and reports can serve as 
a currency of the utility of biodiversity data and the 
institutions that provide it.

• Necessary changes related to online portals require 
consensus-building by various stakeholders, catalysis 

by funding agencies, innovative pilot solutions, and 
widespread implementation.

Abstract

Vast amounts of Primary Biodiversity Data exist online 

(~109 records, each documenting an individual species 
at a point in space and time). These data hold immense 
but unrealized promise for science and society, including 

use in biogeographic research addressing issues such 

as zoonotic diseases, invasive species, threatened 

species and habitats, and climate change. Ongoing 

and envisioned changes in biodiversity informatics 

involving data providers, aggregators, and users should 

catalyze improvements to allow efficient use of such 
data for diverse analyses. We discuss relevant issues 

from the perspective of modeling species distributions, 
currently the most common use of Primary Biodiversity 

Data. Key cross-cutting principles for progress include 
harnessing feedback from users and increasing incentives 
for improving data quality. Critical challenges include: 
(1) establishing individual and collective stable unique 
identifiers across all of biodiversity science, (2) highlighting 
issues regarding data quality and representativeness, 
and (3) improving feedback mechanisms. Such changes 

should lead to ever-better data and increased utility and 
impact, including greater data integration with various 
research areas within and beyond biogeography (e.g., 

population demography, biotic interactions, physiology, 
and genetics). Building on existing pilot functionalities, 
biodiversity informatics could see transformative changes 
over the coming decade via a combination of community 
consensus building, coordinated efforts to justify and 
secure funding, and technical innovations.
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Introduction

A staggering amount of digital information regarding 
biodiversity now exists on the Internet, with many 
ongoing changes aimed at meeting the needs of science 
and society. Primary Biodiversity Data represent the 
principal information available for most species on 
Earth, consisting of individual records with place, time, 
and taxonomic identification (Soberón and Peterson 
2004). The biodiversity informatics community includes 
three overlapping groups interested in such data: 
(1) data providers, such as natural history museums, 
herbaria, and networks of citizen scientists; (2) data 
aggregators, initiatives that serve data combined 
from multiple providers; and (3) data users, including 
scientists, decision-makers, and the general public 
(Figure 1; Graham et al. 2004). Integrated by standards 
such as the DarwinCore (Wieczorek et al. 2012), 
enormous stores of Primary Biodiversity Data now 
exist online, with the Global Biodiversity Information 
Facility (GBIF1) constituting the largest and most 
comprehensive aggregator (>1.4 x 109 digital records 
from >1500 providers corresponding to >2.3 x 106 species; 
Robertson et al. 2014).

Ideally, Primary Biodiversity Data lead to synthetic 
knowledge and real-world applications, especially via 
association with information regarding diverse organismal 

1  https://www.gbif.org/, last accessed on 11 March 2020

attributes (e.g., measurements, images, recordings, 
and DNA sequences; and physiological, behavioral, 
ecological, or ethnobiological data; Ratnasingham 

and Hebert 2007, Cook et al. 2016, Troudet et al. 
2018; Box 1). Through diverse biogeographic and 
environmental research, Primary Biodiversity Data 

hold tremendous potential for applications to pressing 
environmental issues—such as understanding zoonotic 
diseases and invasive species, characterizing threatened 

species and habitats, planning conservation priorities, 
and anticipating effects of ongoing climate change 
(Figure 2; Peterson et al. 2010, Guisan et al. 2013, 

Hallgren et al. 2016, Johnson et al. 2019). Indeed, 

many major biodiversity assessments rely heavily on 
Primary Biodiversity Data and linked information or the 
results of studies that use them (Pereira et al. 2010, 

Sarukhán et al. 2015, IPBES 2019). For all of these uses, 

relevant high-quality data must be readily available 
for efficient assembly, especially for time-sensitive 
issues such as an emerging zoonotic disease or 

recently detected invasive species (Anderson 2012, 

Johnson et al. 2019).

Figure 1. Simplified overview of the interactions and flow of 
data among providers, aggregators, and users in biodiversity 

informatics. Numbers indicate the typical order of actions: 
1. Aggregator receives data uploads (and periodic updates) 

from providers; 2. User makes a data query to aggregator’s 
online portal; 3. Aggregator responds to query by making 
data available on portal (for viewing and/or download). Note 
that by querying a single aggregator, a user can receive data 
from multiple providers. Additionally, multiple intermediate 
aggregators typically exist, feeding into the largest ones 

most commonly consulted by users (e.g., GBIF).

Figure 2. Use of individual and collective Stable Unique 
Identifiers (e.g., DOIs) in biodiversity informatics. (a) Individual 
Stable Unique Identifier (I-SUI) allows linking diverse data 
domains for a given organism. In this example, an I-SUI links 

the voucher specimen and associated Primary Biodiversity 

Data (e.g., date and locality) of an individual mammal to 

information regarding various aspects of molecular- to 
population-level biology. (b) Collective Stable Unique Identifier 
(C-SUI) denotes a set (i.e., a list) of individual identifiers. 
For example, a C-SUI could indicate the n individual records 

used in a given analysis.
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Box 1. Data realms and research areas within and beyond biogeography that will be promoted by changes 

to biodiversity informatics focusing on Primary Biodiversity Data.
Important data realms beyond the current DarwinCore fields include those regarding absences (Lobo et al. 2010, 

Howard et al. 2014, Guillera-Arroita et al. 2015), population demography (Fordham et al. 2013, Merow et al. 

2014, Ehrlén and Morris 2015), movement (Brook et al. 2009, Smouse et al. 2010, Franklin et al. 2014), biotic 
interactions (Kissling et al. 2012, Wisz et al. 2013, Morales-Castilla et al. 2015, D’Amen et al. 2018), physiology 

(Clusella-Trullas et al. 2011, Barve et al. 2014, Kearney et al. 2014), and genetics (Harris et al. 2013, Valladares et al. 

2014, Fitzpatrick and Keller 2015, Exposito-Alonso et al. 2018). Such information can be integrated with Primary 
Biodiversity Data records: (1) using the flexible “dynamicProperties” field of DarwinCore, (2) directly with an 
expansion of the DarwinCore, or (3) via links from Primary Biodiversity Data aggregators to external databases. 

For the latter, stable unique identifiers allow linkages to individual records, but sometimes links only will be 
possible for taxonomic names and geographic locations.

Data realm Examples Research topics

Absences Field survey effort underlying sets 
of Primary Biodiversity Data records 

(allowing discrimination of well vs. poorly 
sampled spatial units; Soberón et al. 2007, 
Lobo et al. 2018)

• Building distribution models using sites of 
relatively reliable absence

• Identifying regions with greater 
uncertainties in model prediction

• Prioritizing future survey efforts
Population 
demography

Population size (abundance and 
density) and growth rates over space 

and time (Salguero-Gómez et al. 2015, 
Salguero-Gómez et al. 2016, Santini et al. 
2018)

• Associations between environmental 
suitability and population biology

• Population-level research questions of a 
temporally dynamic nature (e.g., species 

range shifts)
Movement Position of individuals through time, 

individual movement tracks, and capture–

recapture information (Nathan and 
Muller-Landau 2000, Ovaskainen et al. 2008)

• Consideration of the ability of individuals 
to move across landscapes

• Migratory phenomena and ongoing range 

shifts (e.g., invasive species)
Biotic 
interactions

Interactions between individuals of 
different species (e.g., insect X collected 
on plant Y); or co-occurrence matrices 

linked with databases regarding species 

traits, biotic interactions, and phylogenetic 
relationships (Jones et al. 2009, 
Kattge et al. 2011, Poelen et al. 2014, 
Wilman et al. 2014)

• Effects of biotic interactions on 
species distributions and community 
composition

• Applied topics that depend on the effects 
of biotic interactions (e.g., zoonotic 
diseases)

Physiology Physiological measurements (in situ or 

ex situ; Sunday et al. 2011, Bennett et al. 
2018)

• Physiological variation among individuals 
and across populations

• Comparisons between (and integration of) 
correlative and mechanistic models

Genetics Gene sequences, expression profiles 
(Ratnasingham & Hebert 2007, Pelini et al. 
2009, O’Neil et al. 2014)

• Geographic and environmental 

distributions of alleles
• Tests for natural selection across 

populations

However, several limitations currently constrain 
the utility of Primary Biodiversity Data, and we explain 
and advocate for ongoing and envisioned changes that 
could improve data quality dramatically and allow 
widespread realistic uses for basic and applied science. 
We provide examples through the lens of adequacy 
for modeling species distributions—for which they are 
most commonly employed—but the same issues and 
solutions hold for myriad other uses (Graham et al. 

2004). Although we take advantage of an ad hoc 
online consultation of the community conducted by 
the GBIF Secretariat (GBIF 2016; Table 1), we cover 
issues germane to all aggregators. We provide several 
specific illustrations based on current functionalities 
of GBIF (Robertson et al. 2014) but also point out 
innovations by some other aggregators. Below, we 
summarize principal current limitations in the field, 
outline ongoing and envisioned solutions, and sketch a 
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roadmap for implementation. We begin by highlighting 
two critical cross-cutting principles for improving 
biodiversity informatics: harnessing feedback from 
users and promoting improvements in data quality.

Cross-cutting principles for progress

Current and future users can provide the best 
information regarding Primary Biodiversity Data 
and its quality, and ongoing changes that link users, 
providers, and aggregators can help harness their 
feedback (Suhrbier et al. 2017). Most aggregators 
integrate periodic updates from providers, adding new 
records and correcting previous errors. Additionally, 
users often invest substantial time and resources 
correcting taxonomic identifications and determining 
georeferences. Nevertheless, in both the GBIF 
community consultation and our discussions with 
colleagues, users indicated that: (1) most aggregated 
databases lack functionalities allowing users to flag 
problematic records or suggest improved information 
within the online interface; and (2) providers do not 
consistently update records based on user feedback 
(GBIF 2016, Suhrbier et al. 2017). Fortunately, the 
situation regarding the former is changing rapidly via 
pilot implementations, but changes are needed to 
increase the incentives and resources for the latter.

The biodiversity informatics community can take 
various actions to promote improvements in data quality. 
Often with fixed or declining budgets, data providers 
(especially natural history museums and herbaria) 
juggle many priorities, including maintaining physical 
specimens and their associated data. To help increase 
the resources available for improving data quality, the 
field needs explicit information flows that document 
both data quality and use (van Hintum et al. 2011). 
Importantly, indices of data quality can be tracked 
over time to assess progress and outstanding needs. 
Moreover, data usage represents a critical potential 
currency, with higher-quality information being used 
more frequently. The usage of individual Primary 
Biodiversity Data can be quantified via linkage with 
documentation of their use—for example downloading 
events and, most importantly, publications or reports 
based on them (Costello et al. 2013). Standardized 
quantifications of data quality and use should both 
help justify improvements to data quality and increase 
incentives for both providers and funding sources to 
improve data quality.

Current limitations

Consideration of key data-related issues for models 
of species ecological niches and geographic distributions 
(hereafter distribution models) exemplifies current 
limitations of Primary Biodiversity Data for many kinds 
of biodiversity analyses (Araújo et al. 2019). Distribution 
models integrate such data with environmental 
information to estimate the conditions and places 
suitable for a species (Franklin 2010, Peterson et al. 
2011, Guisan et al. 2017). Nevertheless, data from 
aggregated databases cannot be used in distribution 
modeling without substantial data-cleaning and 

filtering (to fix errors and remove records of insufficient 
quality), as well as consideration of inherent biases 
(Beck et al. 2014, Gueta and Carmel 2016). Indeed, 
the DarwinCore standard was developed to include 
fields that characterize data limitations and promote 
appropriate usage (Wieczorek et al. 2012, Otegui et al. 
2013). However, current portals do not provide the 
functionalities necessary for researchers to assemble 
data suitable for such analyses efficiently, especially 
because various uses require different data quality needs 
(GBIF 2016, Veiga et al. 2017). As we outline briefly 
below, limitations that hinder the use of such data at 
present correspond to those that are: 1) inherent to 
the data, 2) affect access to the data, or 3) relate to 
how the data are used.

Limitations associated with Primary Biodiversity 
Data themselves include the lack of information, as well 
as inaccuracies and biases. As frequently mentioned, 
a few key information fields remain empty for a high 
proportion of digital records. Although copious records 
lack digitization or species-level identification, the 
greatest immediate obstacle concerns the lack of 
georeferences (Hill et al. 2009, Beaman and Cellinese 
2012, Peterson et al. 2015). Furthermore, records 
include inaccuracies and biases, which are well known 
but not yet rectified (Meyer et al. 2015, Amano et al. 
2016, Troia and McManamay 2016). Taxonomic 
misidentifications and inaccurate georeferences are 
highly problematic, compounded by the fact that 
fields regarding their uncertainty are almost always 
empty (Wieczorek et al. 2004, Guralnick et al. 2007). 
In addition, geographic and temporal biases in biological 
sampling effort pervade Primary Biodiversity Data 
(with some areas more heavily sampled than others, 
and effort varying greatly among years and to a lesser 
degree across annual seasons); such biases negatively 
affect distribution models unless taken into account 
(Hortal et al. 2008, Phillips et al. 2009).

Regarding data access, key information is seldom 
provided in transparent and easily accessible ways, 
leading to unrealistically high impressions of data quality 
as well as incorrect inferences regarding species ranges 
and their shifts over time (Araújo et al. 2009). Some 
data shielding rightly aims to protect sensitive species 
from exploitation, and temporary data “embargoes” 
sometimes protect research interests of those who 
collected the data (Brooke 2000, Graves 2000). However, 
existing information regarding the uncertainty of 
taxonomic identifications and georeferences—as well 
as characterizations of spatial and temporal biases—are 
not made immediately obvious to the user in current 
portals. This situation leads many non-specialists to 
misconceptions: that identifications and georeferences 
have little or no error; and that the lack of occurrence 
records for a species in a region or time period indicates 
its absence (Ruete 2015).

Limitations regarding data use correspond to both 
use per se as well as documentation. Commonly, 
researchers use data without adequate cleaning and 
filtering, often not realizing the high levels of error, 
bias, and uncertainty or the degree to which such 
problems adversely affect modeling analyses. Whereas 
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substantial research has addressed issues related 
to error and bias in distribution modeling, the field 
needs substantial advancements regarding how to 
integrate and characterize information on uncertainty 
(Rocchini et al. 2011, Lash et al. 2012). With respect 
to documentation, distribution modeling is part of an 
ongoing transition in scientific research regarding data 
access and reproducibility. Increasingly, journals and 
funding sources require that data used in publications 
be made openly available (Molloy 2011, Reichmen et al. 
2011; e.g., Nature Scientific Data, Biodiversity Data 
Journal). Whereas digital deposition is customary for 
some kinds of data (e.g., GenBank for gene sequences; 
DRYAD for more diverse data types; Greenberg et al. 
2009), no equivalent expectation or standard mechanism 
yet exists for Primary Biodiversity Data (Table 1; 
Chavan and Ingwersen 2009, Costello et al. 2013, 
Guralnick et al. 2015). Similarly, recent years have seen 
dramatic increases in online supplemental information 
and external repositories to document methods and 
provide code (Campbell et al. 2019). Unfortunately, 
distribution modeling studies still infrequently explain 
adequately the steps taken to obtain, clean, and filter 
Primary Biodiversity Data and to conduct analyses 
(or provide underlying code/workflows), but recent 
advances in automated documentation and metadata 
standardization greatly facilitate such goals (Kass et al. 
2018, Feng et al. 2019, Merow et al. 2019).

Ongoing and envisioned solutions

Enable universal communication
Several initiatives by providers and aggregators are 

currently progressing towards the establishment and 
implementation of stable unique identifiers that allow 
clear links among data, both for individual records 
and collective sets of records (Figure 2; Page 2008). 
Stable unique identifiers (e.g., Digital Object Identifiers) 
provide unambiguous, long-lasting reference to a 

particular entity—for Primary Biodiversity Data typically 
a voucher specimen or observation event. At the 
individual level, such identifiers help data providers 
receive and act on feedback from users or aggregators 
(Table 1) and also allow individual-level linkages both 
between records (e.g., parasite and host) and between 
data realms (e.g., Primary Biodiversity Data and gene 
sequences; Peterson et al. 2010, Cook et al. 2016; Box 1). 
Fortunately, many aspects of such identifiers have been 
implemented for some individual aggregators, such 
as a universally unique identifier (UUID) automatically 
generated upon upload. Nevertheless, data providers 
and aggregators need to ensure that a given Primary 
Biodiversity Data record does not exist more than once 
under different identifiers (as currently happens in 
GBIF), for example via checks against other identifier 
fields in the DarwinCore. Furthermore, a broad 
consensus must be reached regarding mechanism to 
achieve a standardized identifier system that can be 
used across aggregators and throughout biodiversity 
science (Guralnick et al. 2015, Suhrbier et al. 2017, 
BCN 2018). We advocate for a single registry service to 
guarantee that a given identifier indeed is universally 
unique for all biodiversity uses (Costello et al. 2013).

The field also needs collective stable unique 
identifiers that each specify a list of individual-level 
identifiers. For example, a collective identifier can 
be used to denote all of the records in a particular 
download from an aggregator, or to all records used 
in an analysis (Figure 2; Table 1). Many aggregators 
(including GBIF) support the first functionality, but 
they and other aggregators currently lack the second 
(e.g., to receive and integrate information regarding a 
bundle of records). Collective stable unique identifiers 
for the records used in a particular analysis (e.g., after 
data cleaning/filtering; Costello et al. 2013) or for a 
coherent dataset (e.g., sampled in a specific field survey 
effort) will provide a short way of denoting long lists of 
records; such identifiers will prove critical by facilitating 

Table 1. Summary of responses from GBIF community consultation of users regarding data adequacy for modeling species 
distributions (n = 137; GBIF 2016). Respondents provided overwhelmingly consistent answers to issues of data access via 
the online portal and feedback from users, as well as strong majority opinions regarding repositories of occurrence data 
used in peer-reviewed publications.

Enhancement of online

biodiversity informatics portals
Favorable 

response

Quantification/mapping of sampling effort/data completeness would be useful. 89%

Users should be allowed to annotate data. 99%

Annotations should be transmitted automatically to data providers. 97%
Allowed annotations should include the quality of the taxonomic identification. 100%

Allowed annotations should include the quality of the georeference. 100%

Users should be allowed to provide a quality or “fit for use” tag for individual records. 93%

Providers should spend the time and money required to correct/update data (taxonomically/
geographically).

99%

The field would be well served by a single online repository/archive for point occurrence data 
published in peer-reviewed journals.

77%

GBIF should be one such repository/archive for point occurrence data published in 
peer-reviewed journals.

90%
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documentation, reproducibility, and calculation of 
statistics regarding the use of Primary Biodiversity Data 
(Guralnick et al. 2015, Nelson et al. 2018). Importantly, 
a system for individual and collective identifiers that 
are unique across all of biodiversity science could 
catalyze agreement regarding a community standard 
for expected digital deposition of Primary Biodiversity 
Data used in publications and reports (analogous to 
submission to Genbank for DNA sequences).

Highlight data uncertainties and biases
Wise and efficient use of Primary Biodiversity Data 

also depends on aggregators highlighting issues regarding 
data quality and representativeness. Users need easy 
and obvious access to fields documenting the reliability 
of identifications and georeferences (Figure 3). Both 
are defined in DarwinCore (Wieczorek et al. 2012). 
Although most records currently lack any information for 
these fields, information regarding the latter has been 
populated densely in a few initiatives (e.g., VertNet2 and 
progenitors; Costello and Wieczorek 2014). Similarly, 
some citizen-science initiatives aim at providing flags 
based on plausibility upon upload (e.g., INFOFLORA3) or 
have vetting processes built into their posting systems 
(e.g., eBird4). Developing tools that allow easy query 
and visualization of fields related to uncertainty will 
help users assess the appropriateness of records for 
the study at hand (Figure 3; Chapman et al. 2020).

2  http://vertnet.org/, last accessed on 28 May 20203  https://www.infoflora.ch/en/, last accessed on 28 May 2020
4  https://ebird.org/home, last accessed on 28 May 2020

5  http://symbiota.org/docs, last accessed on 28 May 2020

To help users address issues related to sampling 
biases, aggregators also can facilitate construction 
and visualization of proxies for sampling effort across 
space and time (Figure 3; Table 1; Guralnick et al. 2007, 
Hortal et al. 2008, Otegui et al. 2013, Sousa-Baena et al. 
2014). Records for a broad suite of taxa detected 
with similar techniques (“target groups” for field 
sampling) can provide a quantitative estimate of the 
efforts that yielded the records for the particular 
species of interest. Data for such target groups (e.g., 
small, non-volant mammals) document the places 
and times where relevant efforts occurred and can 
be used to quantify indices that serve as proxies of 
sampling and its spatial and temporal gaps (Anderson 
2003). Some useful implementations exist for visual 
display of records from a given search. For example, 
the “Spatial Module” of Symbiota5 (Gries et al. 2014) 
provides a heat density visualization of records as 
well as a “Date Slider” that allows the user to control 
the display of records by date range. Aggregators 
should expand such functionalities to make querying, 
mapping, summarizing, and downloading such records 
an integral part of their online interfaces, allowing 
the user to customize the relevant target group by 
taking into account knowledge of relevant biological 
sampling protocols (Figure 3). Such quantifications of 
sampling enable corrections for biases (Phillips et al. 
2009, Fithian et al. 2015), and indices of sampling 

Figure 3. Examples of ways in which aggregators can make uncertainties and biases visually available to users of Primary 
Biodiversity Data. Such information can be employed to filter data and to quantify and correct for biases in sampling 
effort, respectively. (a) Georeferenced localities of a given species are simply plotted in geographic space (black dots; 
current practice). (b) Those same localities appear using symbologies that provide additional information; a hazy cloud 
indicates the radius of error for localities holding information regarding uncertainty of the georeference, and localities 
lacking such data appear only as hollow black circles. (c) Information appears that reflects the results of sampling effort, 
by showing in gray the georeferenced localities for all species belonging to a more inclusive target group (i.e., all species 
detected with the same techniques as the species of interest; conventions the same as in b). Note that the right-hand 
side of the study region lacks records for any species of the target group, suggestive of very low sampling effort there.
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completeness eventually could be populated for the 
same purpose. Highlighting gaps in sampling also can 
facilitate priority-setting for digitization, georeferencing, 
and further sampling efforts.

Improve feedback mechanisms
Finally, aggregators can catalyze improvements in 

data much more effectively by implementing quality 
flags and annotations, as well as better quantifications of 
uncertainty. Automated data-cleaning efforts can discover, 
document, and flag some problems (e.g., geographic 
inconsistencies, spatial or environmental outliers, or 
disagreements with expert maps; García-Roselló et al. 
2014, Robertson et al. 2016). For example, GBIF includes 
a series of known issues and flags discovered by checking 
procedures during integration (or populated by data 
providers). However, as mentioned earlier, the best 
information regarding data quality depends on the 
expertise of users (Peterson et al. 2004)—both individual 
researchers (e.g., experts on a given taxon) and groups 
of users (e.g., national biodiversity agencies; Table 1; 
Guralnick et al. 2007, Ratnasingham and Hebert 2007). 
Specifically, aggregators can enlist users to detect 
and flag problems, suggest improvements, quantify 
quality, and provide annotations that document the 
information and methods employed.

To facilitate such data improvements, aggregators 
have begun introducing functionalities that connect 
users and providers (Suhrbier et al. 2017). The original 
architects of biodiversity informatics envisioned that 
users would notify providers of any issues with the 
data; providers would then evaluate that input and 
make changes to data records as they saw fit; and 
finally the modified records would be passed back to 
aggregators (and hence become available to users; 
Figure 4; Soberón et al. 1996). In addition to that original 
feedback ‘loop’ of user → provider → aggregator → user, 
we characterize recent modifications as a ‘pendular’ 
feedback pathway of user → aggregator → provider → 
aggregator → user (Figure 4). Just as users interact with 
aggregators to receive data from multiple providers, 
they can send information directly to the aggregator 
(regarding records corresponding to many providers). 
Simple implementations of such user feedback 
mechanisms already exist via open text boxes for 
commenting (including in GBIF) and should become 
much more structured (i.e., tied to particular fields). 
After inspection to remove spam, user feedback can 
lead to flagging and posting of suggested information 
and annotations in the database of the aggregator 
(visible to all users) and transmission of that information 
to the respective providers for consideration. As a 
complement to the original feedback loop, this pendular 
pathway maintains the primacy of decision-making by 
providers, enlists aggregators in facilitating information 
flow and availability, and allows users increased access 
to information regarding data quality and possible 
improvements.

Implementation and outlook

If implemented widely, these ongoing and envisioned 
changes could prove transformational, catalyzing 
increased utility of biodiversity data for myriad scientific 

uses and applications (Box 1). Importantly, they should 
promote positive feedback patterns, leading to ever 
better data and concomitant increases in utility and 
impact. Implementing these changes can happen via 
a combination of community consensus-building, 
coordinated efforts to justify and secure funding, and 
technical innovations. Because biodiversity informatics 
depends on diverse data providers, aggregators, and 
users, the solutions must be feasible for all of these 
groups. Some advances likely will be achieved by 
large aggregators and others by smaller ones, yielding 
pilot implementations subsequently taken up across 
the field (Canhos et al. 2015). We envision a set of 
initiatives: (1) to consolidate information regarding 
existing implementations (to determine what pilot 
examples exist for each challenge); and (2) to tackle 
necessary outstanding advances. In designing particular 
solutions, we suggest consultation with users regarding 
desired functionalities at the outset, and then again 
later to test and comment on prototypes. Below, we 
sketch a roadmap for implementation, organizing items 
by how quickly they might feasibly be implemented 
(6–24 months, vs. 2–4 years).

Short-term deliverables
Likely one of the first achievable advances, web 

interface development for well-funded aggregator 
portals can highlight the uncertainties and biases of 
existing data. This includes making the uncertainty of 
identification and georeferencing for each record obvious 
to users—including the lack of any such information in 
a data record. It also entails functionalities to specify 
relevant target groups (to characterize the results of past 
sampling), as well as extending functions for mapping 
and downloading such information. As an example, 
some innovative implementations for visualizing spatial 
and temporal biases exist, ripe for expansion (e.g., in 
Symbiota’s “Spatial Module” described above).

Simultaneously, aggregators can summarize simple 
statistics of data quality—benchmarks to guide, 
justify, and assess future improvements. For example, 
GBIF calculates several summary metrics for given 
providers and higher-level taxonomic groups. In future 
developments, portals can implement temporal 
benchmarks for various taxa, geographic or political 
entities, and data providers. In addition to doing so 
for higher-level combinations of these categories, we 
suggest flexibility so that users can tailor reports to 
their needs. The existence of information regarding 
species-level taxonomic identification, georeferencing, 
and their uncertainties constitute the most important 
fields to be assessed. We anticipate that such information 
will prove highly useful in advocating for increased 
investment in data completeness and quality.

Additionally, implementation of stable unique 
identifiers that can be used universally across all of 
biodiversity science constitutes a short-term deliverable 
that will enable many other advancements (Box 1). 
This requires final consensus among multiple data 
providers, aggregators, and external databases (likely 
including a registry to guarantee uniqueness), followed 
by widespread execution (Guralnick et al. 2015). Once 
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achieved for individual-level identifiers, the same 
protocols can be modified to implement collective 
ones. Such advances should facilitate development of 
a community standard for expected digital deposition 
of Primary Biodiversity Data used in publications and 
reports (Table 1). In addition to allowing efficient 
documentation and quantification of data use, these 
functionalities will also prove essential for medium-term 

deliverables regarding feedback mechanisms and links 
to diverse external databases.

Medium-term deliverables
Although launching comprehensive mechanisms 

for user feedback may take a few years, efforts 
to determine desired functionalities and identify 
technical needs and solutions should begin now. First, 

Figure 4. Graphical representation of original and recently modified pathways for feedback regarding Primary Biodiversity Data, 
showing information transfer among users, providers, and aggregators. Such feedback consists of suggested improvements 
or additions to data fields, for example a change in species identification or a newly determined georeference. The diagrams 
contrast two complementary mechanisms: (a) the original feedback loop (currently dominant); and (b) the emerging feedback 

pendulum (proposed for expansion). In a: (1) the user sends feedback to the provider (e.g., a given natural history museum); 
(2) if the provider makes a corresponding change to its database, the updated information is sent to the aggregator; and (3) 
that information becomes available for query by all users. In practice, because many providers do not consistently make such 
changes (denoted by an X), users do have access to updated information (dashed line). In b: (1) the user sends feedback to 
the aggregator; (2) the aggregator simultaneously both annotates the record (visible to all users) and sends the suggested 

information to the provider; (3) if the provider makes a corresponding change to its database, the updated information is sent 
to the aggregator; and (4) the aggregator makes the updated information available for query by all users. Note that even if 
a provider takes no action regarding the suggested information, the annotations placed by the aggregator are nevertheless 
available to users. Additionally, because the quantifications of data quality and use described in the text allow for benchmarks 
that can be tracked over time, we anticipate that the feedback pendulum will help providers become more successful in 
justifying and securing funding to make data improvements based on feedback from users.
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interested data providers, aggregators, and user groups 
can reach consensus regarding the data fields to be 
included, mechanisms for users to provide feedback to 
aggregators, and technical vision for how information 
will be transmitted to aggregators and then to and 
from providers. We anticipate that feedback from 
users will include at least: flags for likely taxonomic 
misidentifications, suggested corrected identifications, 
level of taxonomic expertise of the person identifying 
the species (for uncertainty of the identification field), 
flags for questionable georeferences, suggested new 
or improved georeferences, and estimated uncertainty 
of georeferences—as well as annotations regarding 
the data and resources used and an overall level 
of confidence regarding the quality of the record 
(Figure 4; van Hintum et al. 2011). Technical issues to 
be resolved by aggregators will include how to provide 
the flags and alternate information, automate the 
sending of such feedback to providers, and remove 
flags and alternate information if a provider makes the 
change. Likely, the solutions for many of these issues 
will leverage functionalities already implemented in 
GBIF for some simple standardized flags regarding 
data quality. Critically, the feedback system also will 
need to track the history of feedback for each record.

Such feedback machinery could include properties of 
existing open community platforms that have reputation 
rewards systems (for example, stackoverflow6 for the 
coding community) or more generally online forums 
such as reddit7). For biodiversity informatics, individual 
‘actors’ associated with data providers (e.g., museum 
curator/collection manager, field collector/observer) 
could have a login ID and receive a notification when a 
user provides feedback. Similarly, each user wishing to 
provide feedback could have a login ID; it also would 
be possible to implement a system in which such users 
develop ‘reputations’ based on community responses 
to their posts. Many complicated issues come with 
online forums, including the need to filter spam, and 
data providers and aggregators undoubtedly will 
consider user reliability carefully (see user registry 
protocols in Symbiota5).

Outlook
Given concerted engagement by the biodiversity 

informatics community, we think that many funding 
agencies, philanthropies, and other organizations 
supporting biodiversity research and conservation 
will embrace investments that lead to improved data 
quality and quantification. Specifically, we foresee 
successful proposals by groups of stakeholders to 
develop innovative plans regarding vision and mechanics 
(where necessary), as well as follow-up ones for 
implementation. In the immediate term, many entities 
regularly fund working groups and workshops (relevant 
for developing detailed plans for needed solutions), 
either via open calls for proposals or as supplements 
to current grants. For implementing solutions, various 
existing funding calls support biodiversity databasing 

6  https://stackoverflow.com/, last accessed on 28 May 2020
7  https://www.reddit.com/, last accessed on 28 May 2020

and cyberinfrastructure; critically, we predict that 
funding agencies will also participate in this rethinking 
of biodiversity informatics by modifying and expanding 
their calls to reflect and promote the changing landscape 
of the field.

Once enabled by stable unique identifiers and 
valuable information regarding data quality and 
use, aggregators will be able to catalyze critical data 
improvements to a degree long envisioned but not 
yet possible (van Hintum et al. 2011). Aggregated 
databases will be highly useful for identifying bundles 
of Primary Biodiversity Data records particularly 
worthy of improvement, as well as for identifying gaps 
in data availability to be filled via targeted initiatives 
(Meyer et al. 2015, Lobo et al. 2018). Often taxonomic 
and/or geographic in nature, such characterizations can 
focus and justify efforts to improve the availability and 
quality of Primary Biodiversity Data (Stein and Wieczorek 
2004, Sousa-Baena et al. 2014). Indeed, institutions 
and consortia of users with common interests and 
expertise will be particularly well poised to secure funds 
for collective data improvement initiatives (Anderson 
2012, Tobón et al. 2017). For example, institutions and 
researchers interested in a particular applied topic 
(e.g., arthropod-borne zoonotic diseases in a given 
region) should be able to make strong justifications for 
the benefits of a cooperative project (Peterson 2015). 
We envision similar situations regarding conservation 
biology and many other practical applications of 
Primary Biodiversity Data. In closing, we hope that 
data providers, aggregators, users, and funding 
organizations will collaborate to build upon recent 
advances, leading to high-quality biodiversity data 
widely available for addressing issues of importance 
to science and society.
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