
Optimizing Call Center Staffing using Simulation and Analytic
Center Cutting Plane Methods

Júĺıus Atlason, jatlason@umich.edu∗

Marina A. Epelman, mepelman@umich.edu∗

Shane G. Henderson, sgh9@cornell.edu†

July 20, 2005

Abstract

We consider the problem of minimizing staffing costs in an inbound call center, while main-

taining an acceptable level of service in multiple time periods. The problem is complicated by

the fact that staffing level in one time period can affect the service levels in subsequent periods.

Moreover, staff schedules typically take the form of shifts covering several periods. Interactions

between staffing levels in different time periods, as well as the impact of shift requirements on

the staffing levels and cost should be considered in the planning. Traditional staffing methods

based on stationary queueing formulas do not take this into account. We present a simulation-

based analytic center cutting plane method to solve a sample average approximation of the

problem. We establish convergence of the method when the service level functions are discrete

pseudoconcave. An extensive numerical study of a moderately large call center shows that the

method is robust and, in most of the test cases, outperforms traditional staffing heuristics that

are based on analytical queueing methods.

1 Introduction

A call center (also referred to as a contact center) is an important component of the operations

of many organizations. A significant portion of the cost of operating a call center is staffing cost

(Gans et al., 2003). In this paper we describe a method for finding staff (agent) level requirements,

while simultaneously selecting staff shifts that cover these requirements, that minimize cost while

ensuring satisfactory customer service. An analytic center cutting plane method guides the selection
∗Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117, USA
†School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853, USA

1

of staffing levels, and simulation is used to report service level performance for each set of staffing

levels.

This problem has received a great deal of attention in the literature, and so one can reasonably

ask why there is a need for a computational tool of this sort. To answer that question we first need

to describe the overall staffing process. There are variations on the following theme (e.g., Castillo

et al., 2003), but the essential structure is sequential in nature and is as follows (Mason et al.,

1998).

1. (Forecasting) Obtain forecasts of customer load over the planning horizon, which is typically

one or two weeks long. The horizon is usually broken into short periods that are typically

between 15 minutes and 1 hour long.

2. (Work requirements) Determine the minimum number of agents needed during each period

to ensure satisfactory customer service. Service is typically measured in terms of customer

waiting times and/or abandonment rates in the queue.

3. (Shift construction) Select staff shifts that cover the requirements. This problem is usually

solved through a set-covering integer program; see Mason et al. (1998) for more details.

4. (Rostering) Allocate employees to the shifts.

The focus in this paper is on Steps 2 and 3. Steps 1 and 4 are not considered further.

Step 2 is usually accomplished through the use of analytical results for simple queueing models.

Green et al. (2001) coined the term SIPP (stationary, independent, period by period) to describe

the general approach. In the SIPP approach, each period of the day is considered independently

of other periods, the arrival process is considered to be stationary in that period, and one ap-

proximates performance in the period by a steady-state performance measure that is usually easily

obtained from analytical results for particular queueing models. Heuristics are used to select input

parameters for each period that yield a close match between the predictions and reality. For a wide

variety of queueing models, this procedure results in some form of the “square-root rule,” which

is a rule of thumb that provides surprisingly successful staffing level suggestions. See, e.g., Borst

et al. (2004); Kolesar and Green (1998); Jennings et al. (1996) for more on the square-root rule.

The SIPP approach is appealing from the standpoint of computational tractability and due to

the insights it provides. However, there are cases where the SIPP approach does not do as well as

one might hope (Green et al., 2001, 2003). For example, this can occur when the service times are

2

relatively long; see Whitt (1991) for more on this point. Moreover, call centers can be somewhat

complex in structure, and this complexity can make it difficult to identify a queueing model of the

center that is both mathematically tractable and a reasonable match to the true system. In such

cases, simulation is a viable alternative. Indeed, simulation is now increasingly used in Step 2; see

Section VIII of Mandelbaum (2003) for many examples.

Further motivation for the use of simulation involves the linkage between staffing decisions in

adjacent periods. Boosting staffing levels in one period can often help in reducing workload in

subsequent periods, so there can be linkage in performance between different periods. Such linkage

can imply that there are multiple solutions to the work requirements problem that can offer valuable

flexibility in Step 3. Traditional queueing approaches are not satisfactory in such cases, and then

one turns to simulation or other numerical methods. Indeed, Green et al. (2001, 2003) solve a

system of ordinary differential equations through numerical integration to get the “exact” results

for their models in order to compare the performance of various heuristics.

Assuming that one uses simulation or some other numerical method to predict performance

in the call center, one then needs to devise a method to guide the selection of potential staffing

levels to be evaluated. There have been several suggestions in the literature, all of which explicitly

capture the linkage between periods in an attempt to realize cost savings. Like Green et al. (2001,

2003), Ingolfsson et al. (2002) use numerical integration to compute service level performance for a

proposed set of staffing levels, and a genetic algorithm to guide the search. Ingolfsson et al. (2003)

again use a numerical method to compute service level performance, and integer programming

to guide the search. Castillo et al. (2003) devise a method for randomly generating sets of staff

shifts, then use simulation to evaluate the service level performance of each set of generated staff

shifts, and finally, plot the cost versus service level of the potential solutions to identify an efficient

frontier. Atlason et al. (2004) use simulation to evaluate service level performance of a proposed set

of shifts, and use integer programming in conjunction with Kelley’s cutting plane method (Kelley,

Jr., 1960) to guide the search.

In Atlason et al. (2004), performance in each time period is measured as the fraction of calls

responded to on time, and analysis relies on the assumption that service in a period is concave and

componentwise-increasing as a function of the staffing level vector. To understand this assumption,

consider a single period problem. Increasing the staffing level should lead to improved performance,

i.e., an increasing fraction of calls responded to on time. Furthermore, one might expect “diminish-

3

ing returns” as the staffing level increases, so that performance would be concave in staffing level.

Empirical results suggest that this intuition is correct, at least for sufficiently high staffing levels.

But for low staffing levels, the empirical results suggest that performance is increasing and convex

in the staffing level. So performance appears to follow an “S-shaped” curve (Ingolfsson et al., 2003;

Atlason et al., 2004) in one dimension.

This non-concavity can cause the cutting plane method of Atlason et al. (2004) to cut off feasible

solutions, and the problem can be so severe as to lead to the algorithm suggesting impractical

staffing plans. Nevertheless, the ability of the Atlason et al. (2004) approach to efficiently sift

through the combinatorially huge number of potential staffing plans is appealing. One might ask

whether there is a similar optimization approach that can satisfactorily deal with S-shaped curves

and their multidimensional extensions. That is the subject of this paper. We replace the assumption

of concavity with a weaker one (namely, pseudoconcavity), and use a different cutting plane method

that, together with additional techniques, successfully handles multi-dimensional extensions of the

S-shaped curves alluded to above and seen in examples like that depicted in Figure 2; see Section 4.1

for more details.

Assuming that the service level functions are pseudoconcave, an analytic center cutting plane

algorithm can be used to efficiently search the combinatorially large space of potential staffing

plans. In essence the algorithm works as follows. One begins with a polyhedron that contains an

optimal solution to the staffing problem. At each stage, the algorithm selects a staffing plan that

lies close to the analytic center of the polyhedron and runs a simulation at that point to determine

service level performance. Depending on the results of the simulation an “optimality cut” or one

or more feasibility cuts are added, thereby shrinking the polyhedron. The algorithm terminates

when the polyhedron contains no integer points, or when the difference between upper and lower

bounds on the optimal objective is sufficiently small.

We view the contributions of this paper as follows.

1. Under realistic assumptions on the service level functions, we give an algorithm for solving

to optimality the combined Step 2 - Step 3 problem. The combined procedure explicitly

addresses linkage between periods and the impact of shift-based scheduling.

2. We give conditions under which the algorithm provably converges.

3. We compare the proposed algorithm to what can be reasonably viewed as the current best

practice to better understand the properties of the algorithm. This comparison has to take

4

place with a model of limited complexity so that the existing methods can be applied, but is

nevertheless quite illuminating.

The numerical results in Section 5 show that the analytic center cutting plane method outlined

here outperforms, or at least equals, the SIPP heuristics in every case in which shift structure of

staff scheduling is explicitly considered, which is the setting we are interested in. In that sense, it

is a robust procedure that can be applied in a near black-box fashion. Of course, these extremely

appealing properties have to be traded off against the computational cost of the procedure, which

is not insignificant. We are actively considering methods for reducing the computational effort of

the procedure; see Section 6.

The remainder of this paper is organized as follows. We formulate the call center staffing

problem in Section 2. In Section 3 we review cutting plane methods for continuous problems with

pseudoconcave constraints. Section 4 describes modifications for discrete problems, such as the

call center staffing problem, and proves that the algorithm converges. We compare the proposed

algorithm with the SIPP methods described in Green et al. (2001, 2003) in Section 5. Section 6

concludes the paper and discusses future research questions.

2 Problem formulation

In this section we formulate the call center staffing problem of minimizing staffing cost over a

planning horizon while maintaining an acceptable level of service in each of a number of time

periods, with particular emphasis on the use of simulation to estimate the service levels. We say

that service is acceptable in a period if the long-run percentage of calls that arrive in this period

and are answered within a certain time limit τ meets or exceeds a threshold π. This is the usual

“π percent of calls are answered within τ seconds” requirement that is something of an industry

standard, cf. the “80/20 rule” for which π is 80% and τ is 20 seconds.

Define the staffing level vector as y = (y1, . . . , yp)T , where p is the number of time periods in

the planning horizon, yi is the number of agents working in period i, i = 1, . . . , p, and (·)T denotes

the transpose operation. Let Ni be the random number of calls that are received in period i, and

let Si(y) be the random number of those calls that are satisfactorily handled, i = 1, . . . , p. We can

express the service level constraint E[Si(y)]/E[Ni] ≥ π as

gi(y) = ESi(y)− πENi ≥ 0, i = 1, . . . , p.

5

Here gi(y) gives the expected number of successful services over and above the required expected

number in period i. (Note that requiring that E[Si(y)/Ni] ≥ π is not a valid way to enforce the

constraint, since it gives more weight to service on days where the call volume is low. Also note that

we include a separate service level constraint for each period to ensure uniform quality of service

throughout the planning horizon, which is consistent with industry practices.)

For a staffing level vector y, there is an associated cost of covering the staffing levels with tours.

The term “tour” refers to a collection of periods that a single employee works over the planning

horizon. A tour must agree with all provisions of employee contracts, such as rules on meal breaks

and a limit on the number of hours an agent can work over the planning horizon. All feasible tours

are enumerated prior to problem formulation and stored in the tour matrix A such that Aij = 1

if tour j includes period i, and 0 otherwise. Also, the jth component of the cost vector c is the

cost of the jth tour. We let x be a vector with jth component xj giving the number of employees

working the jth tour. We assume that there are m feasible tours, so x ∈ Zm
+ . Using this notation,

the minimal cost of covering work requirement vector y is

f(y) = min cT x

s.t. Ax ≥ y

x ≥ 0 and integer.

(1)

We assume that every period is covered by at least one tour, i.e., for every i there is at least one j

such that Aij = 1. It then follows that (1) is feasible for any y.

The call center staffing problem can now be formulated as

min f(y)

s.t. gi(y) ≥ 0 for i = 1, . . . , p

y ≥ 0 and integer.

(2)

Recall that we cannot compute the (vector-valued) service level function g(y) exactly, and

instead use simulation. The call center staffing problem is then a simulation optimization problem.

As in Atlason et al. (2004) we adopt “sample-average approximation” (see Shapiro, 2003; Kleywegt

et al., 2001) for solving such problems. This approach, specialized to our setting, is as follows. One

first generates the simulation input data sets for n independent replications of the operations of the

call center over the planning horizon. Each data set includes call arrival times and service times,

6

and other input data needed to simulate operations of the call center at hand, if appropriate, e.g.,

call abandonment times and so forth. The simulation data sets are fixed, leading to a deterministic

optimization problem that chooses staffing levels so as to minimize staffing cost, while ensuring that

average service computed only over the generated realizations is satisfactory. We can then attempt

to identify or develop deterministic optimization methods to solve the resulting problem.

Suppose that service level functions gi(y), i = 1, . . . , p, are estimated by corresponding sample

averages ḡi(y; n), where n is the sample size used. The sample average approximation of the call

center staffing problem is then

min f(y)

s.t. ḡi(y; n) ≥ 0 for i = 1, . . . , p

y ≥ 0 and integer.

(3)

Proposition 1 below gives conditions under which solutions to (3) converge to those of the true

problem (2) as n → ∞. We first make the following natural assumption about the cost vector,

which can be satisfied in practice by multiplying by the appropriate power of 10 if necessary.

Assumption 1. The cost vector c is positive and integer valued.

Assumption 1 implies that f(y) is integer valued. Moreover, since c > 0, the z-level set of f ,

{y ≥ 0 and integer : ∃x ≥ 0 and integer, Ax ≥ y, cT x ≤ z},

is finite for any z ∈ R.

Let Y ∗ denote the set of optimal solutions to the true problem (2).

Proposition 1. Suppose that Assumption 1 holds. Suppose further that for each y, ḡi(y; n) → gi(y)

as n → ∞ with probability 1. Finally, suppose that there is an optimal solution y∗ ∈ Y ∗ that is

“strictly feasible,” i.e., gi(y∗) > 0 for all i = 1, . . . , p. If y∗n is an optimal solution to (3) for each

n, then y∗n ∈ Y ∗ for n sufficiently large, with probability 1.

This result is easily proved using techniques very similar to those used in Atlason et al. (2004)

and so we omit the proof. The requirement of a “strictly feasible” optimal solution is easily justified

in practice: it is almost surely impossible for the service level function gi to be exactly zero when

y takes on only discrete values.

7

Proposition 1 establishes the validity of the sample average approximation approach in our

setting. Much more can be said about the convergence of solutions of the sample average approx-

imation problem and their objective values, but that is not the emphasis of this paper. We refer

the interested reader to Atlason et al. (2004); Kleywegt et al. (2001).

3 The analytic center cutting plane method

In this section we state a version of the traditional analytic center cutting plane method (ACCPM)

to fix ideas and provide a departure point for a reader unfamiliar with cutting plane methods in

continuous optimization.

There are many cutting plane methods for solving convex optimization problems, including

what may be termed boundary methods, such as Kelley’s algorithm (Kelley, Jr., 1960) and its

extensions (e.g., Westerlund and Pörn, 2002), and interior point methods, recently reviewed by

Mitchell (2003). We will focus our attention on one of the latter, namely the ACCPM, which was

first implemented in du Merle (1995), as pointed out in Elhedhli and Goffin (2003). The ACCPM

has proven effective in terms of both theoretical complexity (Atkinson and Vaidya, 1995; Nesterov,

1995; Goffin et al., 1996; Mitchell, 2003) and practical performance on a variety of problems (Bahn

et al., 1995; Mitchell, 2000, and other references in Mitchell, 2003). Software packages implementing

the method are available (e.g., Peton and Vial, 2001).

Many versions of the ACCPM for convex feasibility and optimization problems have been ex-

plored in the literature. The description we chose below borrows from Nesterov (1995), duMerle

et al. (1998), and Mitchell (2003), among others.

Consider an optimization problem in the following general form:

min bT y

s.t. y ∈ Y,
(4)

where Y ⊂ Rn is a convex set, and b ∈ Rn. (A problem of minimizing a general convex function

over a convex set can be easily represented in this form.) To simplify the presentation, assume that

the set Y is bounded and has a non-empty interior.

To apply the ACCPM (or any other cutting plane algorithm), the feasible region Y needs to be

described by a separation oracle. Such an oracle will, given an input ŷ ∈ Rn, either correctly assert

8

that ŷ ∈ Y , or otherwise return a non-zero vector q ∈ Rn such that

qT (y − ŷ) ≥ 0 ∀y ∈ Y,

i.e., produce a feasibility cut. (Depending on how the set Y is described, the oracle might produce

a deep/shallow cut, which has the same form as the constraint above, but a positive/negative right

hand side.)

We now describe a typical iteration of the ACCPM. At the beginning of an iteration, we have

available a finite upper bound z on the optimal value of (4), and a polyhedron P = {y ∈ Rn :

Dy ≥ d} that is known to contain the set Y . Here D ∈ Rr×n and d ∈ Rr for some finite r. We first

compute the (weighted) analytic center of the set P ∩ {y ∈ Rn : bT y < z} (for ease of presentation

we assume that the set P ∩ {y ∈ Rn : bT y < z} is bounded), defined as the solution of the convex

optimization problem

min
y∈int(P∩{y∈Rn:bT y≤z})

{−w log(z − bT y)−
r∑

l=1

log(Dl·y − dl)}, (5)

where Dl· is the lth row of D and w > 0 is a weight constant that affects the convergence rate of the

algorithm (see, for example, duMerle et al., 1998). The set P ∩{y ∈ Rn : bT y < z} is often referred

to as the localization set, since it contains all feasible solutions with objective function values lower

than z.

Finding a solution to (5) with high degree of precision is a relatively simple task from a practical

standpoint and can be done, e.g., via Newton’s method. Let ŷ be the analytic center found. Next,

the oracle is called with ŷ as the input. If ŷ ∈ Y , then, by construction, bT ŷ < z, and the upper

bound is lowered by taking z := bT ŷ. Otherwise, if ŷ +∈ Y , the oracle will produce a vector

q providing a feasibility cut, which is then added to the description of the polyhedron P . The

procedure is then repeated. A slightly more detailed description of the algorithm is presented in

Figure 1.

Intuitively, the algorithm’s efficiency stems from the fact that at each iteration the cut being

added passes through the analytic center of the localization set, which is often located near a

geometric center. Thus, the volume of the localization set reduces rapidly with each iteration.

Suppose the feasible set Y is specified by Y = {y ∈ Rn : gi(y) ≥ 0, i = 1, . . . , p}, where the

functions gi(y), i = 1, . . . , p are pseudoconcave, as defined below:

9

Initialization Start with a polyhedron P 0 := {y ∈ Rn : D0y ≥ d0} such that Y ⊂ P 0, a solution
y∗ ∈ Y , and an upper bound z0 := bT y∗. Let w0 > 0, and set the iteration counter k := 0.

Step 1 If termination criterion is satisfied, then stop, and return y∗ as a solution. Otherwise,
solve problem (5) with w = wk, z = zk, and P = P k := {y ∈ Rn : Dk ≥ dk}; let yk be the
solution.

Step 2a If yk ∈ Y then let zk+1 := bT yk, y∗ := yk, Dk+1 := Dk and dk+1 := dk.

Step 2b If yk +∈ Y then generate one or more feasibility cuts at yk. Update Dk and dk to
include the new constraints, and let Dk+1 and dk+1 represent the new constraint set. Let
zk+1 := zk.

Step 3 Compute wk+1 and let k := k + 1. Go to Step 1.

Figure 1: The analytic center cutting plane method (ACCPM) for problem (4).

Definition 1. (Cf. Definition 3.5.10 in Bazaraa et al., 1993) Let h : S → R be differentiable on S,

where S is a nonempty open set in Rn. The function h is said to be pseudoconcave if for any ŷ, y ∈ S

with ∇h(ŷ)T (y− ŷ) ≤ 0 we have h(y) ≤ h(ŷ). Equivalently, if h(y) > h(ŷ), then ∇h(ŷ)T (y− ŷ) > 0.

Pseudoconcavity of a function is a weaker property than concavity; see also Figure 3.12 in

Bazaraa et al. (1993).

With Y in the above form, the feasibility cut at point ŷ +∈ Y which violates the ith constraint

can be specified as

∇gi(ŷ)T (y − ŷ) ≥ 0, (6)

since any solution y that satisfies gi(y) ≥ 0 also satisfies gi(y) > gi(ŷ).

4 A cutting plane method for discrete problems

In this section we describe how the ACCPM algorithm of Section 3 can be modified to solve the

sample average approximation (3) of the call center staffing problem (2).

The most significant modification to the ACCPM for continuous problems is needed to take

into account the fact that the feasible region of (3) is no longer a convex, or even connected, set,

due to the integrality restriction on the variables. Cutting plane algorithms for nonlinear mixed

integer programs have been explored in the past; see, for example, Westerlund and Pörn (2002).

10

However, in this and other similar papers it is assumed that the constraint functions are in fact

differentiable functions of continuous variables; the integrality restrictions on the variables are, in

a sense, exogenous. In such a setting the concept of a convex (continuous) nonlinear relaxation of

the integer program is straightforward, and feasibility cuts are generated simply using the gradients

of these continuous functions. In our setting, however, the service level functions and their sample

average approximations are not defined at non-integer values of y, and devising their continuous

extension, especially one that is easy to work with from the algorithmic point of view, is non-trivial

at best. Therefore, we take a different approach in adapting the ACCPM to the discrete case.

As far as we know, the use of ACCPM as a solution method for nonlinear integer programs has

not been reported, although the method has been successfully used to solve the linear relaxation

subproblems in branching algorithms for integer programs (see, for example, Mitchell (2000) and

Elhedhli and Goffin (2003), among many others).

In Section 4.1 we extend the notion of pseudoconcavity to functions of integer variables, and

show how feasibility cuts can be generated assuming that the functions ḡi(y; n), i = 1, . . . , p are, in

fact, discrete pseudoconcave. This leads to an ACCPM method for (mixed) integer programming

problems satisfying the pseudoconcavity assumption; the algorithm is applicable to the types of

problems considered in Westerlund and Pörn (2002), for example. We also discuss whether the

S-shaped form of the service level functions in the call center staffing problem is consistent with

this assumption, and propose alternative feasibility cuts at points where it is violated.

The following Section 4.2 discusses other modifications of the original algorithm for the problem

(3) and details of our implementation. Section 4.3 gives a proof of convergence.

4.1 Discrete pseudoconcave functions and feasibility cuts

We begin by defining the notions of a discrete convex set and a discrete pseudoconcave function.

We denote the convex hull of the set C by conv(C).

Definition 2. We say that the set C ⊆ Zn is a discrete convex set if C = conv(C) ∩ Zn, i.e., the

set C equals the set of integer points in conv(C).

Definition 3. Let C ⊆ Zn be a discrete convex set and h : C → R. Then h is discrete pseudoconcave

on C if for any ŷ ∈ C there exists a vector q(ŷ) ∈ Rn such that for any y ∈ C,

q(ŷ)T (y − ŷ) ≤ 0 ⇒ h(y) ≤ h(ŷ). (7)

11

Equivalently, if h(y) > h(ŷ), then q(ŷ)T (y− ŷ) > 0. We call such a vector q(ŷ) a pseudogradient of

h at ŷ.

Discrete pseudoconcavity can be viewed as a relaxation of the concave extensible function

property defined in Murota (2003, p. 93). Note also the similarity between the above definition and

Definition 1. For a differentiable pseudoconcave function, the gradient at point ŷ plays the role of

a pseudogradient g(ŷ) in condition (7).

If the functions ḡi(y; n) in (3) are discrete pseudoconcave, then a feasibility cut at an integer

point ŷ that violates the ith constraint can be obtained in the form q̄i(ŷ;n)T (y − ŷ) ≥ ε, where

q̄i(ŷ; n) is the pseudogradient of ḡi(·;n) at ŷ, and ε > 0 is sufficiently small.

Are the service level functions we consider indeed discrete pseudoconcave? As an illustrative

example, consider a simple call center with two 30-minute periods. The service times are exponential

with mean of 15 minutes. The arrival process is a nonhomogeneous Poisson process with rate varying

between 42 and 120 calls/hour with an average load of 18 in period 1 and 25 in period 2 (load is

the arrival rate divided by the service rate). Figure 2 shows the number of calls answered on time

(here τ = 90 seconds) in period 2 as a function of the staffing levels in periods 1 and 2. (Notice

that this is equivalent to ḡ with π = 0). The number of servers ranges from 1 to 30 in period 1

and from 1 to 40 in period 2. The function appears to follow a multi-dimensional extension of an

S-shaped curve discussed in Section 1 (see also Ingolfsson et al., 2003; Atlason et al., 2004).

To verify that the function is discrete pseudoconcave one can solve, for each point, the linear

(feasibility) program

min 0

s.t. qT (y − ŷ) ≥ 1 ∀ y ∈ {y : ḡi(y; n) > ḡi(ŷ; n)}

q ≥ 0.

(8)

Without the nonnegativity constraint, Problem (8) has a solution q if and only if a pseudogradient

exists, and then q is such a pseudogradient. We added this constraint, since the service level

function can reasonably be assumed to be nondecreasing in each component of y. The number of

constraints in Problem (8) can be very large and it cannot be constructed without simulating the

service level function for all practical values of y. In practice, however, one can solve the LP using

only the points visited by the algorithm to check whether they are consistent with the assumption

of pseudoconcavity.

12

0 5 10 15 20 25 30

0510152025303540
0

10

20

30

40

50

60

y1

g2(y;500)

y2

Figure 2: The sample average (sample size n = 500) of the number of calls answered on time in
period 2 as a function of the staffing levels in periods 1 and 2. The white dots on the bottom and
the black dot on the top represent points where a pseudogradient does not exist. The black lines
show the boundaries of the satisfactory service levels for π equal to 70%, 80% and 90%.

The results of Problem (8) for the function in Figure 2 indicate that the function is very

close to being discrete pseudoconcave. There are only a few points in the entire domain where

a pseudogradient does not exist. These points are depicted in Figure 2 by the white dots on the

bottom and a single black dot on top of the graph. Note that these points are in relatively flat

areas of the graph. In the next section we describe a simple way to advance the algorithm at such

points, which we successfully used in the implementation of our cutting plane method.

Moreover, in a flat area, for a finite sample size, each additional call answered on time can

have a significant effect on the order of the values of the service level function. Therefore, it

seems reasonable to assume that this situation would be alleviated for larger sample sizes, and in

particular, to assume that the expected service level function is discrete pseudoconcave. Thus, to

prove the convergence results in Section 4.3 we assume that the sample averages of the service level

functions are discrete pseudoconcave.

13

4.2 A simulation-based cutting plane method for the call center staffing prob-

lem with pseudoconcave service level functions

In this subsection we describe our modification of ACCPM for problem (3). At the beginning of a

typical iteration, we have available a feasible solution y∗ of (3), and an upper bound z = f(y∗) on

the optimal value of the problem. The point y∗ is the best feasible solution found by the algorithm

so far. We also have available a polyhedron P = {y ∈ Rp : y ≥ 0, Dy ≥ d} that is known to contain

the feasible region.

Suppose y∗, z and P are as above. If y∗ is not an optimal solution, then, since f(y) takes on

integer values, the localization set

{y ∈ P : f(y) ≤ z − 1, y integer}

is nonempty and contains all feasible solutions with objective values better than z. The localization

set is empty precisely if y∗ is an optimal solution. This observation provides grounds for the

termination criteria we specify in our algorithm.

Computing the next iterate. First we find the analytic center of a polyhedral relaxation of

the localization set. In particular, we solve the following optimization problem:

min −w log(z − a− cT x)−
∑p

i=1 log yi −
∑r

j=1 log(Dj·y − dj)

s.t. Ax ≥ y

x ≥ 0,

(9)

where the constant a ∈ (0, 1) ensures that only points with an objective value better than z are

considered. Due to Assumption 1 the effective feasible region of (9) is bounded; hence the problem

has an optimal solution so long as it has a feasible point in the effective domain of the objective.

If (9) has no solution, the algorithm terminates with y∗ as an optimal solution; otherwise, let

(yac, xac) be a solution of (9). Here, w > 0 is the weight constant; we discuss later how this

constant is determined in the algorithm.

Note that the analytic center found in the previous step is almost certainly not integer, and

rounding yac to the nearest integer can result in a point outside of the localization set. To capitalize

on the centrality of the analytic center in the localization set, we instead find the closest integer

14

point in the effective feasible region of (9), i.e., solve

min ‖y − yac‖

s.t. Ax ≥ y

cT x ≤ z − 1

Dy ≥ d

x, y ≥ 0 and integer.

(10)

If (10) is infeasible, the algorithm terminates with y∗ as an optimal solution; otherwise, let (ŷ, x̂)

be the solution of (10) and choose ŷ as the next iterate. Here, ‖y−yac‖ is a measure of the distance

between y and yac. If we choose the L1-norm as the measure, i.e., ‖y − yac‖ =
∑p

i=1 |yi − yac
i |,

then (10) is a linear integer program. We discuss the computational requirements of solving this

problem at each iteration when we talk about the overall computational effort in relation to the

computational experiments.

Estimating the service levels. Next we compute ḡi(ŷ; n) for all i via simulation.

Adding an optimality cut. If ḡi(ŷ;n) ≥ 0 for all i, then ŷ satisfies the service level requirements.

Since cT x̂ ≤ z − 1, ŷ is contained in the localization set, i.e., it is the best staffing level so far.

Note that cT x̂ is not necessarily the cost associated with staffing level ŷ, since cT x is not being

minimized in (10). To compute the cost associated with ŷ we instead solve (1) to get f(ŷ) and

update z := f(ŷ).

Adding a feasibility cut. If ḡi(ŷ; n) < 0 for some i, then we add a feasibility cut for each i

such that ḡi(ŷ; n) < 0. In particular, we estimate a pseudogradient, q̄i(ŷ; n), of ḡi(·; n) at ŷ (we

will discuss techniques for estimating the pseudogradients in Section 5.2). If q̄i(ŷ; n) += 0, we add a

feasibility cut of the form

q̄i(ŷ; n)T y ≥ q̄i(ŷ;n)T ŷ + ε (11)

for some small constant ε > 0 (we discuss the role of ε in the discussion of the convergence of the

method in Section 4.3). If q̄i(ŷ; n) = 0, the feasibility cut takes the form of a lower bound on the

number of servers (see discussion in Section 5.2). We update D and d to reflect the cuts added.

The above procedure is then repeated. An illustration of the localization set and the feasible

regions and solutions of problems (9) and (10) in each iteration is shown in Figure 3. The picture

15

20

21

22

23

24

25

26

27

28

29

30

0 2 4 6 8 10

y 1

y 2 y ac

 y k

Figure 3: Illustration of the feasible region and an iterate in the SACCPM.

shows points in the space of the y variables in the case p = 2. The shaded area represents the

localization set {y ∈ P : f(y) ≤ z − 1} (ignoring integer constraints). The squares represent the

points that are feasible for the sample average approximation problem (3). The thick solid line

segments result from an optimality cut f(y) ≤ z − 1 and the dotted lines represent the feasibility

constraints Dy ≥ d. Point yac is the solution of the analytic center problem, and yk is the closest

integer in the localization set. The line just to the right of yk represents a feasibility cut that would

be added in this iteration.

We summarize the simulation-based analytic center cutting plane method (SACCPM) for the

call center staffing problem in Figure 4. (To shorten the presentation, the description of the

algorithm in Figure 4 is only specified for the case when the constraint functions ḡi(·; n) are in fact

discrete pseudoconcave.)

The weight parameter w on the optimality cut can be increased to “push” the weighted analytic

center away from the optimality cuts. There are no theoretical results on how to choose the weights,

but some computational experiments have been done to test different values of the weights, and

in fact, weight parameters on the feasibility cuts (Goffin et al., 1992; duMerle et al., 1998). The

choice of the weights is problem and data dependent (see Section 5.2 for the particular choice used

in our implementation).

In practice it is useful to maintain a lower bound on the optimal value of the problem (3)

throughout the algorithm, in addition to the upper bound z. In particular, the algorithm can be

terminated as soon as the gap between the upper and lower bounds is sufficiently small, indicating

16

Initialization Start with a solution y0 feasible to Problem (3). Let z0 := f(y0), and y∗ := y0.
Let P 0 = {y ≥ 0 : D0y ≥ d0}, where D0 and d0 are empty. Choose an ε > 0, a ∈ (0, 1) and
w0 > 0. Let k := 0.

Step 1 Solve problem (9) with w = wk, z = zk, and P = P k. If (9) does not have a (feasible)
solution, then terminate with y∗ as the optimal solution and zk as the optimal value;
otherwise let yac be the solution of (9).

Step 2 Solve problem (10) with z = zk and P = P k. If (10) is infeasible, then terminate with
y∗ as the optimal solution and zk as the optimal value; otherwise let yk be the optimal
solution of (10) found.

Step 3a If ḡi(yk;n) ≥ 0 ∀ i = 1, . . . , p, let zk+1 := f(yk), y∗ := yk, Dk+1 := Dk and dk+1 := dk.

Step 3b If ḡi(yk; n) < 0 for some i = 1, . . . , p, then add the constraint q̄i(yk;n)T y ≥
q̄i(yk; n)T yk + ε for each i such that ḡi(yk; n) < 0. Update Dk and dk to include the
added inequalities, and let P k+1 = {y ≥ 0 : Dk+1y ≥ dk+1} represent the new constraint
set. Let zk+1 := zk.

Step 4 Compute wk+1 and let k := k + 1. Go to Step 1.

Figure 4: The simulation-based analytic center cutting plane method (SACCPM).

that the current “incumbent” y∗ is a sufficiently good solution of the problem. A lower bound can

be found as the optimal objective value of

min f(y)

s.t. Dy ≥ d

y ≥ 0 and integer,

(12)

or, for a weaker but easier to compute bound, of the linear programming relaxation of (12).

4.3 Convergence of the SACCPM

In this section we give conditions under which the SACCPM terminates with y∗ as an optimal

solution of (3). First, we argue that the algorithm does indeed terminate and then we show that

y∗ is an optimal solution of (3) at termination. To prove the results we make the following two

assumptions.

Assumption 2. The functions ḡi(y;n) are discrete pseudoconcave in y for all i = 1, . . . , p.

17

Assumption 3. In the implementation of the SACCPM, q̄i(ŷ; n) is a pseudogradient of ḡi(·;n) at

ŷ.

We also define the sets

Γ := {y ≥ 0 and integer : f(y) ≤ z0},

Ψ := Γ ∩ {y : ḡi(y;n) ≥ 0 ∀ i = 1, . . . p},

Υ := Γ \ Ψ and

I(y) := {i : ḡi(y; n) < 0}.

In words, Γ is the set of points that are potentially visited by the algorithm, and it contains the

set of optimal solutions. The set Ψ is the set of points in Γ that are feasible for the sample average

approximation problem (3). The set Υ is the set of points in Γ that are not feasible for the sample

average approximation problem (3). The set I(y) is the set of periods in which the sample average

of the service level function is not acceptable given the staffing levels y. The following lemma says

that all solutions in Ψ satisfy potential feasibility cuts (11) for some appropriately chosen ε.

Lemma 2. Let q̄i(ŷ; n) be a pseudogradient of ḡi(·;n) at ŷ and suppose Assumptions 1 and 2 hold.

Then there exists an ε̃ > 0 such that q̄i(ŷ; n)T (y − ŷ) ≥ ε̃ ∀ y ∈ Ψ, ŷ ∈ Υ, i ∈ I(ŷ).

Proof: Let ŷ ∈ Υ be fixed. Suppose that q̄i(ŷ;n)T (y− ŷ) ≤ 0 for some y ∈ Ψ and i ∈ I(ŷ). Then

ḡi(y; n) ≤ ḡi(ŷ; n) < 0, where the first inequality follows by Assumption 2 and the second inequality

follows since i ∈ I(ŷ). This is a contradiction since y ∈ Ψ, and therefore q̄i(ŷ;n)T (y − ŷ) > 0 ∀ y ∈

Ψ, i ∈ I(ŷ).

Let ε(ŷ) = mini∈I(ŷ) miny∈Ψ q̄i(ŷ;n)T (y − ŷ). The set Ψ is finite by Assumption 1; therefore,

the inner minimum is attained for some y ∈ Ψ. Since I(ŷ) is also finite, the outer minimum is also

attained for some i ∈ I(ŷ). Therefore ε(ŷ) > 0.

Finally, let ε̃ = minŷ∈Υ ε(ŷ). Then ε̃ > 0 since Υ is finite.

Theorem 3. Suppose (3) has an optimal solution and that Assumptions 1, 2 and 3 hold. Further-

more, let 0 < ε ≤ ε̃, where ε̃ is as in Lemma 2. Then the SACCPM terminates in a finite number

of iterations returning y∗, which is an optimal solution of (3).

Proof: The SACCPM only visits points that are feasible solutions of (10). The set of feasible

solutions of (10) at every iteration is a subset of Γ and therefore is a finite set by Assumption 1.

18

Suppose that the kth iterate yk is the same as a previous iterate yj for some j < k. If yj is in Ψ

then f(yk) ≤ z − 1 ≤ f(yj)− 1, where the second inequality follows since z is the cost of the best

feasible solution visited before iteration k. This is a contradiction, so yj is not in Ψ. On the other

hand, if yj is in Υ then ḡi(yj ; n) < 0 for some i ∈ I(yj). Since yk is in P , q̄i(yj ;n)T (yk−yj) ≥ ε > 0

which is also a contradiction and yk can therefore not be equal to yj for any j < k. Therefore, the

SACCPM does not visit any point in Γ more than once. Since Γ is a finite set, the algorithm is

finite.

By Lemma 2 the feasibility cuts never cut off any of the feasible solutions of (3). When at

termination problems (9) or (10) do not have a feasible solution it means that all the feasible

solutions for (3) have an objective value greater than z − 1. But y∗ is feasible for (3) and has an

objective value of z and is, therefore, optimal, since f(y) is integer by Assumption 1.

The theorem says that there exists an ε̃ such that the algorithm terminates with an optimal

solution of (3) if 0 < ε ≤ ε̃. In practice, the value of ε̃ is unknown, but in general a “small” value

for ε should be chosen, as in Section 5.4.

5 Numerical results

In this section we give an implementation of the SACCPM for a call center with time varying

arrival rates. In Section 5.1 we describe the example that we use for the numerical experiments.

In Section 5.2 we discuss how to compute, or estimate, the pseudogradients, and we also describe

how the algorithm was implemented. We compare the results with staffing levels obtained by

analytical queueing methods (see Section 1 for references). Analytical queueing methods based on

the Erlang C formula (14) are widely used to determine staffing levels in call centers (Cleveland

and Mayben, 1997). In Green et al. (2001, 2003) several heuristics for improving the performance

of the basic Erlang C model are evaluated and we give a summary of these heuristics in Section 5.3.

We believe that the methods in Green et al. (2001, 2003) are among the best analytical methods

for determining required staffing levels to answer a minimum fraction of calls before a threshold

time limit. Therefore we use these methods as benchmarks for our method. The results of our

experiments are in Section 5.4 and we comment on the computational requirements of the SACCPM

in Section 5.5.

19

5.1 Example

Our test model is similar to the models used in Green et al. (2001, 2003), which are call centers

that can be modeled as M(t)/M/s(t) queueing systems. In the Green et al. (2001) paper a call

center operating 24 hours a day and 7 days a week is studied, while the subject of the Green et al.

(2003) paper are call centers with limited hours of operation. We consider a call center with limited

hours of operation that is open from 6am to 12am.

The call center has the following additional characteristics. The planning horizon consists of a

single day’s operation. The 18 hour planning horizon is broken into 72 time periods, each of length

15 minutes. In each period 80% of calls should be answered immediately. This is equivalent to

setting τ = 0 and π = 0.8. The service times are independent exponential random variables with

rate µ; see Table 1. The size of the system is measured by average load R, which is the average

arrival rate divided by the service rate. The arrival process on any given day is a nonhomogeneous

Poisson process with continuous, piecewise-linear arrival rate defined at the end of period i by

λi = λ(1 + θ sin(2π(ti− 6)/18)), where ti is the end time of period i and is measured in the hour of

the day (e.g., t0 = 6 and t72 = 24). The average daily arrival rate is λ = Rµ and θ is the relative

amplitude. Calls are answered in the order they are received. When there is a reduction in the

number of servers at the end of a period, outgoing servers complete calls that they are already

servicing before ending their shifts. A new call cannot enter service until there are fewer calls in

service than there are servers for the new period.

We study the performance both in the presence of shift constraints and when there are no shift

constraints. When there are no shift constraints, the tour matrix A is the identity matrix in Rp, and

the cost for each tour is equal to 1 agent-period, i.e., the total staffing cost equals the total number

of servers over all 72 periods. We assume that the shift constraints are such that each tour covers 6

hours, or 24 periods. The tours can only start on the hour and no later than 6 hours before the end

of the day. This results in 13 tours: 6am-12pm, 7am-1pm, . . . , 5pm-11pm and 6pm-12am. There

are no meal-type breaks incorporated in the shifts, but they can easily be included by changing the

appropriate values in the tour matrix A. The cost for each tour is equal to 24 agent-periods per

tour.

Note that we are yet to specify a value for µ, R and θ. In the experiments, we study how the

SACCPM performs under two different settings (high and low) of each of these parameters. Along

with the two settings for the shift constraints this results in a total of 24 = 16 experiments. The

20

Parameter Low High
µ 4 calls/hour 16 calls/hour
R 8 32
θ .25 .75

Shifts Yes No

Table 1: The parameter settings in the experiments.

high and low values for each parameter are given in Table 1. Green et al. (2001, 2003) additionally

studied the effect of the target probability, π. The target level did not appear to have as significant

an effect on the reliability of each method as the other parameters did, so we do not include different

settings of it in our study. Instead of shifts, they included a factor that they call the planning period

which is similar to the shift factor in that the number of servers is constant in each planning period

(which can be longer than what we, and they, call a period and measure the performance in).

5.2 Estimating the pseudogradients and implementing the SACCPM

Before we describe the implementation of the continuous and discrete optimization problems solved

in each iteration of the SACCPM, we discuss what is perhaps the most challenging part of the

implementation of the algorithm: estimating the pseudogradients. Up until now we have assumed

that in the implementation of the SACCPM, q̄i(ŷ; n) is a pseudogradient of ḡi(·; n) at ŷ. What

makes computing (or estimating, since it may prove difficult to ensure that the resulting vector

satisfies condition (7) exactly) such a pseudogradient particularly challenging is that the service

level function is a discrete function of the number of agents. In addition, we do not have a closed

form expression of the function.

The simplest and perhaps the most intuitive method for estimating a gradient (or pseudogra-

dient) when an expression for the function is unknown is the method of finite differences (see, e.g.,

Andradóttir, 1998). The method of finite differences can easily be extended to discrete functions,

i.e., we let

q̄i
j(ŷ;n) = ḡi(ŷ + ej ; n)− ḡi(ŷ;n) ∀ j = 1, . . . , p, (13)

where ej is the jth unit vector in Rp, be the estimate of the pseudogradient of ḡi(y;n) at the

staffing level ȳ. It is clear that p+1 function evaluations of ḡi are required to compute q̄i. We note,

however, that estimates of the pseudogradients of the service level functions ḡi in all p periods,

21

i = 1, . . . , p, can be obtained from those same p + 1 simulations.

The number of periods p can be quite large in staffing applications. Therefore, if we could

estimate a pseudogradient from a single simulation, the computation time of the SACCPM would

be greatly reduced. Atlason (2004) includes, however, an implementation of the SACCPM us-

ing infinitesimal perturbation analysis to estimate pseudogradients, and the solutions from that

algorithm are inferior to solutions that the algorithm gives when finite differences are used. Pseu-

dogradient estimates based on the likelihood ratio gradient estimation method have also not been

reliable (Atlason, 2004; Atlason et al., 2003).

At low staffing levels there are so few servers, and calls are so backed up, that no calls are

answered on time, and adding a server does little to alleviate the situation; cf. low values of y1 and

y2 in Figure 2. It is certainly possible that we would encounter such a staffing level in the cutting

plane algorithm for the sample average approximation of the service level function; an attempt to

compute or estimate a pseudogradient at this point would produce a zero vector. Therefore, as a

feasibility cut at such a point ŷ, we impose a lower bound on the number of servers in the period i,

i.e., add the constraint yi ≥ ŷi +1. This is not necessarily a valid feasibility cut, since the reason for

calls backing up might be under-staffing in previous periods. In our implementation, if such a cut

is added during the algorithm, we verify at termination that the corresponding constraint is not

tight at the optimal solution found. If it is tight, then we lower the bound and do more iterations

of the cutting plane method.

Other parts of the SACCPM were implemented as follows. We used a sample size of n = 100.

We built a simulation model using the ProModel simulation software to compute the sample average

of the service level function. We used Visual Basic for Applications and Microsoft Excel to store

the data and to compute the cuts. We used the AMPL modeling language to model, and call a

solver for, the analytic center problem (9) and the IP (10) of finding an integer point close to the

analytic center. We used the MINOS solver to solve the analytic center problem (9). We used

the CPLEX solver to solve the IP (10). We used the Excel solver to compute the cost f(ŷ) of a

particular staffing level ŷ.

Finally, we describe the settings of the parameters that are specific to the SACCPM. We let

wk = r, where r is the number of feasibility cuts that have been added in iterations 1 through k−1

(we let wk = 1 if no feasibility cuts have been added). We used ε = 10−5 and chose a = 1 − ε.

Instead of specifying a particular feasible starting point y0, we started with an upper bound on

22

the staffing levels in each period to ensure boundedness of the localization set. For the parameters

chosen in the experiment it is unlikely that in an optimal solution more than 130 agents will be

allocated in any period. Hence we added the term −
∑p

i=1 log(130 − yi) to the objective of the

analytic center problem (9) and the constraints yi ≤ 130 ∀ i = 1, . . . , p to the IP (10).

5.3 Analytical queueing methods

In this section we describe the queueing methods in Green et al. (2001, 2003) that we use as

benchmarks for our computational study. Traditional queueing methods for staffing call centers

assume that the process is in steady state, i.e., the arrival rate is fixed and the call center has been

open long enough, so that the initial state of the call center does not matter. Then assuming that

the call center can be modeled as an M/M/s queueing system, the probability that a customer has

to wait more than τ time units, as a function of the number of servers s, is given by (Cooper, 1981,

p. 91,97)

P (s) = C(s,R)e−(sµ−λ)τ for s > R, (14)

where R = λ/µ is the offered load. If s ≤ R then P (s) = 1. The term C(s,R) is the probability

that an incoming call is delayed, also called the Erlang-C probability of delay. It can be computed

in a numerically stable way via the recursion (Cooper, 1981, p. 82,92)

B(0, R) = 1,

B(s,R) = R·B(s−1,R)
s+R·B(s−1,R) for s ≥ 1 and

C(s,R) = sB(s,R)
R·B(s,R)+s−R for s > R.

When the arrival rate changes between periods or within periods, Green et al. (2001) proposed

adjusting the value of the arrival rate λ used in (14). This is a straightforward method that can

give good staffing levels, at least for a call center operation that is similar to the M(t)/M/s(t)

model. They consider 6 different adjustments of the arrival rate. The 6 different schemes are given

in Table 2. In Green et al. (2003) only SIPPavg, LAGavg and LAGmax are considered. When

we computed the arrival rate to use for the LAG methods in the first period we assumed that the

arrival rate prior to time zero was equal to the arrival rate at the beginning of the first period.

The required staffing, yi, in period i is computed by letting λ = Λi in (14) and letting

yi = min{s > 0 and integer : P (s) ≤ 1− π}.

23

Method Λi

SIPPavg
∫ ti
ti−1

λ(t)dt

SIPPmax maxti−1<t≤ti λ(t)
SIPPmix If λ(t) is nondecreasing in period i use SIPPavg rate,

otherwise use SIPPmax rate.
LAGavg

∫ ti−1/µ
ti−1−1/µ λ(t)dt

LAGmax maxti−1−1/µ<t≤ti−1/µ λ(t)
LAGmix If λ(t) is nondecreasing in [ti−1 − 1/µ, ti − 1/µ] use LAGavg rate,

otherwise use LAGmax rate.

Table 2: Different methods for adjusting the arrival rate to use in Equation (14). Here, ti is the
time when period i ends (t0 ≡ 0), 1/µ is the mean service time, and Λi is the rate to be used to
determine the staffing in period i.

The cost of the resulting staffing level is f(y).

5.4 Results

The parameter settings and the cost of the staffing levels obtained by each method in each of the

16 experiments are shown in Table 3. The table also shows the cost savings of the SACCPM versus

the LAGavg method. We chose the LAGavg method for comparison because it performs best of the

6 analytical methods. The comparison only includes feasible solution determined by the criteria

described below.

Determining feasibility. The solutions obtained by the 6 queueing methods and the SACCPM

are not guaranteed to be feasible for the call center staffing problem with expected service level

constraints (2) (although it is true that a solution obtained by the SACCPM is feasible for the

respective sample average approximation problem). To determine feasibility we increased the sam-

ple size to n = 999 (the maximum in ProModel) and simulated the call center using each of the

solutions found, at the staffing level vector Ax. We simulated at Ax rather than y, since the ith

component of the vector Ax is the actual number of agents available in period i and can be greater

than yi because of slack in the shift constraint Ax ≥ y in (1). Because the simulation output of

the 999 experiments is still random, we decided to declare the service level requirements not met if

the fraction of calls answered immediately is less than 75% in any period instead of the π = 80%

from the example and was used in the implementation of the SACCPM algorithm. This is similar

to what Green et al. (2001) used to determine feasibility. They computed the service level using

24

numerical integration of transient queueing formulas and said that the service level is infeasible

in a period if the target probability is exceeded by at least 10%. We chose 75% as our threshold

because the largest 95% confidence interval half-width in our simulations using n = 999 was 4.4%,

and 80%− 4.4% ≈ 75%.

The feasibility of the solutions is reported in Table 4. We first note that all the methods do

well in most cases. The SIPPavg method struggles when there are no shifts present and the service

rates are low. In this case there is significant dependence between time periods, which none of the

SIPP methods take into account. We also note that the solutions from the SACCPM do not always

meet the service level requirements by the 75% criterion and in many periods fail to meet the 80%

requirements. This is because the sample size was only 100 when the solution was computed, so

there is a significant error in the estimates of the service level functions.

Ranking the methods. In Table 3 we put in boldface text the cost of the method that we

declared a “winner.” We selected a winner based on two criteria. The first criterion is that the

service level must be greater than 75% in all periods based on the simulation using sample size 999.

The second criterion is cost. We see that the SACCPM is a winner in all but three experiments.

In two of these the solutions fail to meet the feasibility criterion. In the third case the cost of the

best solution was only 0.3% lower than that obtained by SACCPM. In the case of ties it would

make more sense to use one of the analytical queueing heuristics because they are much easier

to implement. However, one would not know beforehand whether a tie would occur, and which

heuristic to use.

The analytical queueing heuristics have been shown to do well on this particular type of queueing

model. In the SACCPM, however, no assumptions are made on the arrival process or the service

times, so it may apply in even more general settings.

In Section 5.2 we noted that the finite difference estimator of a pseudogradient for low staffing

levels can be zero. In one or more iterations in some of the experiments the finite difference method

produced a zero vector, which could not be used to generate feasibility cuts. Instead we imposed

the lower bounds described in Section 5.2 and then checked upon termination of the algorithm

whether these lower bounds were tight. The bounds were tight in experiment 16, so we relaxed

the bounds and ran the algorithm until it terminated again, this time with a solution where these

kinds of bounds were not tight.

25

5.5 Computational requirements

We can divide each iteration of the algorithm into 3 main parts in terms of computations:

1. Solve the analytic center problem (9). This usually took less than 1 second using the MINOS

solver and never took more than 3 seconds.

2. Solve the IP (10) to get an integer solution close to the analytic center. In the initial stages of

the algorithm this takes on the order of seconds to solve. However, when there were no shifts,

meaning that the solution space for y is larger, it could take millions of branch and bound

nodes to find an optimal solution after a number of cuts were added. Since it is not necessary

to find an optimal solution of the IP (10) to advance the algorithm, we often terminated the

IP with a suboptimal, but feasible, solution to determine the next iterate. If the IP seemed

infeasible, but the infeasibility was difficult to prove and the optimality gap in the SACCPM

was less than 1%, the SACCPM was terminated with a possibly suboptimal solution.

Solving the IPs was much easier when the shift constraints were included, which is the scenario

one usually faces in practice. In that case, an optimal solution of the IP was found, or the IP

was deemed infeasible, in a matter of seconds.

3. Simulate to estimate the expected service level and gradients. Simulating at each staffing level

in ProModel took from 6 seconds to about 1 minute, depending on the number of arrivals

to the system, on a Pentium 4 3GHz computer. Up to 73 such simulations are required

per iteration, although we did not always compute all 72 differences to compute the FD

pseudogradient. It appeared that dependence between time periods was not a factor over

more than 10 periods, so as a rule of thumb we only computed the differences for the 10

periods preceding period i and for period i if the service level constraint was not satisfied in

period i. Staffing levels in subsequent periods do not have any effect on the service level in

period i since the requirement is to answer 80% of the calls immediately.

Hence, estimating the pseudogradients and solving the IP (10) requires the most computation; see

Section 6 for ideas on how the computational requirements can be reduced.

The number of iterations required is given in Table 4. In the initial stages, the SACCPM

sometimes produced several optimality cuts before any feasibility cuts were generated. Because the

weight on the optimality cuts is only 1 in the beginning, the optimality cuts will be fairly close to

each other in such a case, and progress will be slow. This happens when the starting point has much

26

Experi- Sav-
ment µ R θ Shifts λ SACCPM SIPPavg SIPPmax SIPPmix LAGavg LAGmax LAGmix ings
1 4 8 0.75 Y 32 1008 1056 1056 1056 1056 1056 1056 4.6%
2 16 8 0.75 Y 128 1032 1056 1056 1056 1032 1056 1032 0.0%
3 4 32 0.75 Y 128 3456 3552 3624 3576 3456 3552 3552 0.0%
4 16 32 0.75 Y 512 3504 3552 3624 3576 3576 3576 3528 2.0%
5 4 8 0.25 Y 32 936 936 936 936 936 936 936 0.0%
6 16 8 0.25 Y 128 936 936 936 936 936 936 936 0.0%
7 4 32 0.25 Y 128 3024 3048 3096 3072 3048 3048 3048 0.8%
8 16 32 0.25 Y 512 2976 3048 3096 3072 3024 3072 3048 1.6%
9 4 8 0.75 N 32 829 848 862 855 848 862 855 -
10 16 8 0.75 N 128 838 848 858 853 847 862 853 1.1%
11 4 32 0.75 N 128 2746 2786 2838 2812 2787 2838 2813 -
12 16 32 0.75 N 512 2786 2786 2838 2812 2778 2830 2804 -0.3%
13 4 8 0.25 N 32 846 856 862 859 856 862 859 1.2%
14 16 8 0.25 N 128 850 854 860 857 856 861 859 0.7%
15 4 32 0.25 N 128 2774 2802 2818 2810 2802 2818 2810 1.0%
16 16 32 0.25 N 512 2790 2802 2818 2810 2797 2815 2806 0.3%

Table 3: Cost of the solutions in agent-periods. The bold numbers in each row are the lowest cost
solutions out of the solutions that satisfy the feasibility requirements; see Table 4. “Savings” shows
the cost savings of using the SACCPM versus the LAGavg method.

higher staffing levels than what is really needed. When this occurred, we added deeper optimality

cuts until the first feasibility cuts were generated by the algorithm, i.e., we lowered z. One could

start the algorithm close to the solutions of the analytical queueing heuristics, to hopefully speed

up the convergence. We did not try to implement this approach.

6 Conclusions and future research

The SACCPM presented in this paper is a promising method for computing optimal staffing levels

in a call center when traditional methods fail. Although the computational requirements of our

method are large, we were able to solve, or at least approximately solve, a number of moderately

sized hypothetical call center staffing problems. The results of the SACCPM were encouraging and

they show that the method can potentially be applied in real world situations with good results.

Furthermore, the algorithm can be automated, so that no user intervention is required while the

algorithm is running.

The algorithm is robust in the sense that it works well on a range of different problems which

gives it further credibility over the traditional methods. Compared to the traditional queueing

methods, the SACCPM does best in the presence of shift constraints. To see why, recall that

27

Experi- Itera- Feas. Opt.
ment SACCPM SIPPavg SIPPmax SIPPmix LAGavg LAGmax LAGmix tions cuts cuts

1 2 1 1 2 17 23 8
79.0% 79.0% 79.0% 79.0% 81.3% 84.4% 85.9%

2 20 36 9
82.1% 83.1% 83.1% 83.1% 82.1% 83.1% 82.1%

3 1 4 (1) 10 77 3
76.7% 74.4% 81.6% 81.5% 82.1% 85.9% 82.5%

4 15 97 4
82.1% 82.0% 84.3% 83.1% 82.0% 86.2% 82.1%

5 39 34 16
82.4% 83.1% 81.3% 82.5% 81.8% 83.3% 83.1%

6 39 115 14
81.8% 81.8% 81.8% 81.8% 81.8% 81.8% 81.8%

7 12 123 3
80.1% 80.4% 82.5% 80.8% 83.5% 83.8% 83.8%

8 3 11 119 3
76.6% 82.0% 82.5% 83.0% 81.6% 82.3% 81.6%

9 15 (3) 14 (3) 3 3 2 1 47 210 6
74.2% 73.2% 76.2% 76.2% 76.5% 81.2% 79.8%

10 12 3 2 2 24 173 7
77.8% 78.4% 80.8% 80.8% 79.9% 81.1% 79.9%

11 21 (3) 33 (23) 29 (4) 29 (4) 4 38 374 4
74.7% 61.2% 71.5% 71.5% 78.7% 80.8% 80.7%

12 5 11 1 26 271 5
77.9% 76.0% 80.8% 80.8% 79.7% 81.9% 80.2%

13 7 1 1 1 1 51 273 8
76.1% 79.9% 80.5% 80.5% 80.0% 80.0% 80.0%

14 6 3 1 2 2 1 2 27 290 7
75.9% 79.0% 79.8% 79.6% 79.6% 79.8% 79.6%

15 17 19 8 8 3 2 32 294 4
75.1% 76.7% 78.2% 78.2% 79.0% 80.3% 79.0%

16 10 2 1 53 376 7
76.6% 79.1% 81.1% 81.1% 79.7% 81.1% 81.1%

Table 4: Feasibility of the solutions and number of iterations of the SACCPM. Each cell has up to 3
values. The first value is the number of periods in which the fraction of calls answered immediately
is less than 80%. The boldface values in parentheses are the number of periods in which the fraction
of calls answered immediately is less than 75%. The percentages show the lowest fraction of calls
answered immediately in any period. We do not display the first two values when they are equal
to 0. The last three columns show the number of iterations of the SACCPM and the number of
feasibility and optimality cuts added.

28

the SACCPM solves both the problem of determining minimum staffing levels and the problem of

computing the best assignments to cover these staffing levels simultaneously, while the queueing

methods compute the required staffing levels first and the shift assignments afterwards, using the

staffing levels as input.

There are several interesting directions for related future research, some of which we are actively

pursuing. From the numerical experiments we identified that both the simulations and solving the

integer programs can be computationally expensive. It would be beneficial to study more efficient

methods for estimating the pseudogradients that could mimic the performance of the finite difference

method. In relation to the integer programs one should investigate integer programming algorithms

that can utilize the special structure of the relaxed problems solved in each iteration and consider

allowing approximate solutions of the IPs, especially in early stages of the algorithms. Another

technique often used in the continuous case to speed up the computation of the next iterate is to

drop cuts that are redundant (see, e.g., Mitchell, 2003, for more on this approach), and it is quite

possible that the same technique could reduce the time required to solve the IPs in the later stages

of the SACCPM. One could also generate some initial cuts by running simulations at the staffing

levels suggested by heuristics.

It is conceivable that other optimization methods could perform well in this setting. The ex-

tended cutting plane method in Westerlund and Pörn (2002) seems to fit the framework particularly

well, although some details of the implementation are unclear.

The problems solved in this paper were fairly simple instances of a call center staffing problem,

but since no assumptions are made on the arrival and service processes and simulation is used to

evaluate performance, it seems that the method would also apply in more complicated settings.

Call abandonments, skill-based routing and prioritizing multiple customer classes are problems

that call center managers commonly face and it would be interesting to incorporate those in the

algorithm. Moreover, it is likely that the SACCPM could, with appropriate modifications, be

applied to problems other than call center staffing.

Acknowledgments

This research was supported by National Science Foundation grants DMI 0230528 and DMI 0400287

and a Horace H. Rackham School of Graduate Studies Faculty Grant. The first author would like to

thank the Department of Industrial and Operations Engineering at the University of Michigan for

29

its generous financial support. The authors would like to thank the two referees for their comments,

which lead to improvements of the paper.

References

S. Andradóttir. Simulation optimization. In J. Banks, editor, Handbook of Simulation, chapter 9,

pages 307–333. John Wiley & Sons, New York, 1998.

D. S. Atkinson and P. M. Vaidya. A cutting plane algorithm for convex programming that uses an-

alytic centers. Math. Programming, 69(1, Ser. B):1–43, 1995. ISSN 0025-5610. Nondifferentiable

and large-scale optimization (Geneva, 1992).

J. Atlason. A Simulation Based Cutting Plane Method for Optimization of Service Systems. PhD

thesis, University of Michigan, Ann Arbor, MI, 2004.

J. Atlason, M. A. Epelman, and S. G. Henderson. Using simulation to approximate subgradients

of convex performance measures in service systems. In S. Chick, P. J. Sánchez, D. Ferrin, and

D. J. Morrice, editors, Proceedings of the 2003 Winter Simulation Conference, pages 1824–1832,

Piscataway, NJ, 2003. IEEE.

J. Atlason, M. A. Epelman, and S. G. Henderson. Call center staffing with simulation and cutting

plane methods. Annals of Operations Research, 127:333–358, 2004.

O. Bahn, O. du Merle, J.-L. Goffin, and J.-P. Vial. A cutting plane method from analytic centers

for stochastic programming. Math. Programming, 69(1, Ser. B):45–73, 1995. ISSN 0025-5610.

Nondifferentiable and large-scale optimization (Geneva, 1992).

M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algorithms.

John Wiley & Sons, New York, 1993.

S. Borst, A. Mandelbaum, and M. I. Reiman. Dimensioning large call centers. Operations Research,

52:17–34, 2004.

I. Castillo, T. Joro, and Y. Li. Workforce scheduling with multiple objectives. Submitted, 2003.

B. Cleveland and J. Mayben. Call Center Management on Fast Forward. Call Center Press,

Annapolis, MD, 1997.

30

R. B. Cooper. Introduction to Queueing Theory. Second Edition. Elsevier North Holland, New

York, NY, 1981.

O. du Merle. Interior Points and Cutting Planes: Development and Implementation of Methods for

Convex Optimization and Large Scale Structured Linear Programming. (In French). PhD thesis,

University of Geneva, Geneva, Switzerland, 1995.

O. duMerle, J.-L. Goffin, and J.-P. Vial. On improvements to the analytic center cutting plane

method. Computational Optimization and Applications, 11:37–52, 1998.

S. Elhedhli and J.-L. Goffin. The integration of an interior-point cutting plane method within a

branch-and-price algorithm. Math. Programming, 100, Ser. A:267–294, 2003.

N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review and research

prospects. Manufacturing & Service Operations Management, 5(2):79–141, 2003.

J.-L. Goffin, A. Haurie, and J.-P. Vial. Decomposition and nondifferentiable optimization with the

projective algorithm. Management Science, 38(2):284–302, 1992.

J.-L. Goffin, Z.-Q. Luo, and Y. Ye. Complexity analysis of an interior cutting plane method for

convex feasibility problems. SIAM J. Optim., 6(3):638–652, 1996. ISSN 1052-6234.

L. V. Green, P. J. Kolesar, and J. Soares. Improving the SIPP approach for staffing service systems

that have cyclic demands. Operations Research, 49(4):549–564, 2001.

L. V. Green, P. J. Kolesar, and J. Soares. An improved heuristic for staffing telephone call centers

with limited operating hours. Production and Operations Management, 12(1):46–61, 2003.

A. Ingolfsson, E. Cabral, and X. Wu. Combining integer programming and the randomization

method to schedule employees. Submitted, 2003.

A. Ingolfsson, M. A. Haque, and A. Umnikov. Accounting for time-varying queueing effects in

workforce scheduling. European Journal of Operational Research, 139:585–597, 2002.

O. B. Jennings, A. Mandelbaum, W. A. Massey, and W. Whitt. Server staffing to meet time-varying

demand. Management Science, 42(10):1383–1394, 1996.

J.E. Kelley, Jr. The cutting-plane method for solving convex programs. Journal of the Society for

Industrial and Applied Mathematics, 8(4):703–712, 1960.

31

A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello. The sample average approximation method

for stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–502, 2001.

P. J. Kolesar and L. V. Green. Insights on service system design from a normal approximation to

Erlang’s delay formula. Production and Operations Management, 7:282–293, 1998.

A. Mandelbaum. Call centers (centres): Research bibliography with abstracts. Version 5. Acces-

sible online via 〈http://ie.technion.ac.il/serveng/References/ccbib.pdf〉 [accessed June

7, 2004], 2003.

A. J. Mason, D. M. Ryan, and D. M. Panton. Integrated simulation, heuristic and optimisation

approaches to staff scheduling. Operations Research, 46:161–175, 1998.

J. E. Mitchell. Computational experience with an interior point cutting plane algorithm. SIAM J.

Optim., 10(4):1212–1227 (electronic), 2000.

J. E. Mitchell. Polynomial interior point cutting plane methods. Optim. Methods Softw., 18(5):

507–534, 2003.

K. Murota. Discrete Convex Analysis. SIAM, Philadelphia, PA, 2003.

Y. Nesterov. Complexity estimates of some cutting plane methods based on the analytic barrier.

Math. Programming, 69(1, Ser. B):149–176, 1995. Nondifferentiable and large-scale optimization

(Geneva, 1992).

O. Peton and J.-P. Vial. A tutorial on ACCPM: User’s guide for version 2.01. Working Paper.

University of Geneva, 2001.

A. Shapiro. Monte Carlo sampling methods. In A. Ruszczynski and A. Shapiro, editors, Stochastic

Programming, Handbooks in Operations Research and Management Science. Elsevier, 2003.

T. Westerlund and R. Pörn. Solving pseudo-convex mixed integer optimization problems by cutting

plane techniques. Optimization and Engineering, 3:253–280, 2002.

W. Whitt. The pointwise stationary approximation for Mt/Mt/s queues is asymptotically correct

as the rates increase. Management Science, 37:307–314, 1991.

32

