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Abstract
In the past few years, all manner of storage applica-

tions, ranging from disk array systems to distributed and
wide-area systems, have started to grapple with the re-
ality of tolerating multiple simultaneous failures of stor-
age nodes. Unlike the single failure case, which is opti-
mally handled with RAID Level-5 parity, the multiple
failure case is more difficult because optimal general
purpose strategies are not yet known.

Erasure Coding is the field of research that deals
with these strategies, and this field has blossomed in re-
cent years. Despite this research, the decades-old Reed-
Solomon erasure code remains the only space-optimal
(MDS) code for all but the smallest storage systems.
The best performing implementations of Reed-Solomon
coding employ a variant called Cauchy Reed-Solomon
coding, developed in the mid 1990’s [4].

In this paper, we present an improvement to Cauchy
Reed-Solomon coding that is based on optimizing the
Cauchy distribution matrix. We detail an algorithm for
generating good matrices and then evaluate the per-
formance of encoding using all implementations Reed-
Solomon codes, plus the best MDS codes from the lit-
erature. The improvements over the original Cauchy
Reed-Solomon codes are as much as 83% in realistic
scenarios, and average roughly 10% over all cases that
we tested.

1 Introduction
Erasure codes have profound uses in applications that
involve distributed or networked storage. These include
disk array systems, wide-area storage platforms, peer-
to-peer storage platforms and grid storage platforms. An
erasure code may be defined as follows.

∗This material is based upon work supported by the National
Science Foundation under grants CNS-0437508, CNS-0549202, IIS-
0541527, EIA-0224441 and ACI-0204007.

We are given n storage nodes with B bytes of data
each. To these, we add m storage nodes, also with B
bytes of storage capacity. Any of these nodes may fail,
which results in its stored data being inaccessible. Node
failures are recognized by the storage system and are
termed erasures. An erasure code defines how to en-
code the Bn bytes of data on the collection of n + m
nodes such that upon failure of up to m nodes from the
collection, the Bn bytes of data may be recovered from
the non-failed nodes.

Erasure codes have been employed for fault-
tolerance and improved performance in single-site [12,
14, 31], archival [13, 28], wide-area [1, 7, 32] and peer-
to-peer storage systems [35, 18, 19, 9]. They have ad-
ditional uses in content distribution systems [5, 23] and
applications with fault-tolerant data structures [20]. As
the number of components in these systems grow and
as they continue to employ failure-prone interconnec-
tion networks, the need for erasure codes will continue
to grow in the future.

There are three dimensions of performance of an
erasure code. Space overhead is defined in one of
two ways – either by the number of (redundant) cod-
ing nodes required to achieve a baseline of fault-
tolerance [16, 15], or by the average number of failures
tolerated by a given number of coding nodes [21, 30,
27]. Regardless of the evaluation methodology, space
optimality may be achieved when the number of coding
nodes is equal to the number of failures that may be tol-
erated. These codes are called Maximum Distance Sep-
arable codes [22], denoted as “(n+m,m) MDS codes.”
Clearly, they are desirable. Encoding performance is
the time/computation complexity of creating the m cod-
ing nodes from the n data nodes. A related metric is the
update performance of a code, which is the number
of blocks on coding nodes that must be updated when a
data node block is updated. Finally, decoding perfor-
mance is the time/computation complexity of recover-
ing data from the surviving data and coding nodes.



In this paper we focus solely on MDS codes, because
of their space optimality. Moreover, discussions are lim-
ited to the encoding (and update) performance. Decod-
ing performance is a far more complex problem and will
be addressed in future work.

The Current State of the Art
We focus first on MDS codes. There are two triv-
ial classes of MDS codes: the repetition code (where
n = 1) and the single parity code (where m = 1). These
are used in RAID-1 (or mirroring) and RAID-5 [6] re-
spectively. Obviously both codes achieve their optimal
time complexity.

It is well known in coding theory that besides the
above two classes of codes, there are no other binary
MDS codes [22, Ch.11]. In other words, any (n + m,
m) MDS code where m ≥ 2 must define its codeword
symbols over a finite field other than (binary) GF (2).
It is also well known that a dual code of an (n + m,m)
MDS code is also MDS [22, Ch.11]. In other words, an
(n + m,n) MDS code can be easily constructed from an
(n+m,m) MDS code. Thus one only needs to focus on
(n + m, m) MDS codes with m ≤ n.

Most research effort on time-efficient MDS codes has
been on array codes, a class of 2-dimensional MDS
codes whose encoding and decoding operations can be
performed using binary XORs, which can be computed
very efficiently in hardware and/or software. See [17]
for a complete list of references on array codes. Most
of these array codes are for m = 2, including EVEN-
ODD [2], X-Code [34], B-Code [33], and RDP [8]. The
latter codes achieve optimal performance along all di-
mensions. For m = 3, there are a generalized EVEN-
ODD code [3], its recent variation [17], and an ar-
ray code derived from the (n + 3, 3) Reed-Solomon
code [10]. None of these achieves optimal time com-
plexity, though all are quite close. For m ≥ 4, some
MDS array codes do exist [11], but their time complex-
ity is not optimal either.

Apart from these codes, the only known MDS codes
are the Reed-Solomon codes, which have existed for
decades [22] and are widely used in communication and
storage systems. Reed-Solomon codes are very power-
ful as they can be defined for any value of n and m.
However, they have a drawback of requiring n Galois
Field multiplications per coding block, and since cod-
ing blocks are typically smaller than a machine’s word
size, they can require 2n to 8n multiplications per ma-
chine word. Thus, Reed-Solomon codes are expensive.
However, they remain the only MDS coding alternative
in a large number of storage applications [20, 28, 7].

In 1995, Blomer et al presented Cauchy Reed-
Solomon (CRS) coding [4] which improved the perfor-

mance of Reed-Solomon codes. To date, CRS coding is
the state of the art for general MDS erasure coding.

Since MDS codes can be expensive, recent research
has relaxed space optimality in order to improve the
computation performance. Low-Density Parity-Check
(LDPC) codes have received much recent attention as
high-performance alternatives to MDS codes. See [27,
25] for tutorial material on LDPC codes and for ci-
tations. While LDPC codes are asymptotically MDS,
they have significant space overhead penalties for the
values of n and m that many storage applications re-
quire. When the ratio of networking performance to
CPU speed is high enough, LDPC codes do outperform
their MDS alternatives. However, when that ratio is
lower, MDS codes perform better [27, 7].

A second class of non-MDS codes are the recently-
developed HoVer and WEAVER codes [15, 16]. Both
are array codes for small m that have time-optimal char-
acteristics, but are only MDS in two cases: (n = 2, m =
2 and n = 3, m = 3).

The Contribution of This Paper
As described above, currently known time-efficient
MDS codes are limited to small m (in fact, mostly
m = 2 and m = 3). As storage systems increase in size,
(i.e. as the number of storage nodes grows) so does the
probability of concurrent multiple-node failures. This
calls for MDS codes with large m, which at present
means Reed-Solomon codes. This paper improves the
encoding performance of Cauchy Reed-Solomon codes,
and by so doing improves the state of the art in MDS
erasure codes.

CRS coding employs a Cauchy distribution matrix
to perform encoding (and upon failure, decoding). Any
Cauchy matrix will suffice, and the number of Cauchy
matrices for given values of n and m is exponential
in n and m. The original work on CRS coding treats
all Cauchy matrices as equivalent and specifies an arbi-
trary construction. The authors quantify the matrix’s im-
pact on performance as a factor of O(log2(m + n)) [4].
While this is true, big-O notation treats constant factors
as equal, and in these applications, constant factors can
have a significant performance impact. In this paper, we
show that two Cauchy matrices for the same values of n
and m can differ in performance by over 81%. More-
over, we give an algorithm for constructing Cauchy ma-
trices that have excellent performance.

Additionally, we compare the performance of our
Reed-Solomon coding to Cauchy Reed-Solomon cod-
ing as originally described [4], classical “Vandermonde”
Reed-Solomon coding [24], and the parity-based MDS
codes [2, 34, 17, 15, 10, 11]. As such, this paper pro-
vides a useful reference for the performance of various
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Figure 1: Cauchy Reed-Solomon coding example with
n = 5, m = 2, and w = 3. The Cauchy distribution ma-
trix is selected with X = {1, 2} and Y = {0, 3, 4, 5, 6}.

MDS codes.

2 Cauchy Reed-Solomon Coding
The mechanics of Reed-Solomon Coding, both regular
and Cauchy variants, are well understood and presented
in tutorial form in a variety of sources [4, 24, 26, 29].
The presentation in [25] is most germaine to this paper
and is recommended for readers who desire to imple-
ment this scheme.

Figure 1 summarizes the mechanics of CRS encod-
ing, using an example with n = 5 and m = 2. A word
size w ≥ log2(n + m) is selected (w = 3 in Figure 1),
and the data/coding devices are each partitioned into w
packets of size B/w bytes. The wn data packets are
arranged as 8B/w column vectors of one bit each.

A Cauchy distribution matrix is defined over the Ga-
lois Field GF (2w) in the following way. Let X =
{x1, . . . , xm} and Y = {y1, . . . , yn} be defined such
that each xi and yi is a distinct element of GF (2w), and
X ∩ Y = ∅. Then the Cauchy matrix defined by X and
Y has 1/(xi + yj) in element i, j. For example, Fig-
ure 1 displays the Cauchy distribution matrix over over
GF (23), where X = {1, 2} and Y = {0, 3, 4, 5, 6}.

The m×n Cauchy distribution matrix over GF (2w)
is next converted into a wm × wm binary distribution
matrix using a projection defined by GF (2w)’s primi-
tive polynomial [4]. With this matrix, addition is XOR
and multiplication is binary AND, and thus instead of
encoding using standard matrix multiplication, one may
create a coding packet as the XOR of all data packets
whose corresponding columns of the binary distribution
matrix have ones in the coding packet’s row. Note that
this is a big improvement over standard Reed-Solomon
coding, because the Galois Field arithmetic over por-
tions of 32 or 64 bit words is replaced by XOR’s, each
of which may be executed by one machine instruction.

Let o be the average number of ones per row in the

distribution matrix. Then the number of XORs to pro-
duce a word in each coding packet is equal to o− 1. For
example, in the distribution matrix of Figure 1, there
are 47 ones. Since there are six rows, o = 47/6,
and thus the average number of XORs per coding word
is o − 1 = 47/6 − 1 = 6.83. Compared to standard
Reed-Solomon coding, where each coding word would
require 4 XORs plus 20 multiplications over GF (28),
this is an improvement indeed, and is why, for example,
OceanStore [28] uses Cauchy Reed-Solomon coding in-
stead of standard Reed-Solomon coding.

All Cauchy Matrices Are Not Equal
In [4], the performance of CRS is reported to
be O(nlog(n + m)) per coding word. This is because o
is O(w), and w is O(log(n+m)). Since all Cauchy ma-
trices have the property that o is O(w), the authors give
an arbitrary Cauchy matrix construction: X equals the
first m elements of GF (2w) and Y equals the next n ele-
ments. For our example scenario where n = 5 and m =
2, this yields a matrix which has 54 ones, as opposed to
the 47 ones when X = {1, 2} and Y = {0, 3, 4, 5, 6}.
The impact on performance is significant: 54/6− 1 = 8
XORs per word, or a 17% decrease in performance over
the matrix in Figure 1. This observation fuels the explo-
ration in the remainder of the paper.

3 Enumerating Cauchy Matrices
The simplest way to discover optimal Cauchy Matrices
is to enumerate them. Given n, m, and w, the num-
ber of ways to partition the 2w elements into the sets X
and Y is

( 2w

n+m

)(

n+m
n

)

, which is clearly exponential in n
and m. However, for w ≤ 4, and in 107 of the 225
possible combinations of n and m when w = 5, we
have enumerated all Cauchy matrices and determined
the best and worst distribution matrices.1 We plot the
results for w ≤ 4 in Figure 2. Instead of plotting the
number of XORs, we plot the factor over optimal cod-
ing, where optimal is defined as n− 1 XORs per coding
word [34, 16]. Thus, for example, our exploration shows
that the Cauchy matrix of Figure 1 indeed has the min-
imal number of ones. Since matrix requires 6.83 XORs
per coding word, and optimal coding would require 4,
its factor is 6.83/4 = 1.71, which is plotted in the right-
most graph of Figure 2 at n = 5, m = 2.

There are three features of Figure 2 worth mention-
ing. First, there is a significant difference in the perfor-
mance of the minimum and maximum Cauchy matrices

1While this is roughly half of the combinations of n and m

for w = 5, it is only 3.7% of the work required to calculate all of
the combinations of n and m. We are continuing to enumerate opti-
mal matrices for the remainder of these cases.
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Figure 2: Minimum and maximum Cauchy matrices for w ≤ 4 (i.e., n + m ≤ 16).

for these values. This difference is most pronounced
when n is small, because that is when there is a greater
variety of possible values in the Cauchy matrix. Second,
the performance of CRS coding gets worse as n grows.
This is to be expected, again because as the Cauchy ma-
trix grows, it must contain more values from GF (2w).
The elements of GF (2w) vary in their number of ones,
from exactly w (element 1) to close to w2. Therefore,
small matrices can be populated with elements that have
have O(w) ones. The larger matrices must include ele-
ments with O(w2) ones, and thus they perform worse.

The third feature is perhaps unexpected. This is
that for the same values of n and m, the best matri-
ces for w = 4 perform better than those for w = 3
and w = 2. For example, consider n = 2, m = 2.
When w = 2, the best matrix has 10 ones, which means
10/4 − 1 = 1.5 XORs per coding word. When w = 3,
the best matrix has 14 ones, which means 1.33 XORs
per coding word, and when w = 4, the best matrix has
18 ones, which means 1.25 XORs per coding word. We
explore this phenomenon further in [25].

4 Generating Good Cauchy Matri-
ces for Larger w

For larger w, it is impractical to use exhaustive search
to find optimal Cauchy matrices. Therefore, we have
developed the following algorithm to construct good
Cauchy matrices. We call the matrices that it pro-
duces GC matrices (for “Good Cauchy”), and param-
eterize GC with n, m, and w. The GC(n, m, w) ma-
trices where n = m are optimal in all cases that we
have corroborated by enumeration. When n '= m,
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Figure 3: (a): ONES(3). (b): The optimal Cauchy
matrix for n = 5, m = 2, w = 3.

some GC(n, m, w) matrices are slightly worse than op-
timal. We measure this effect below.

To construct a GC(m, n, w) matrix, we first con-
struct a 2w×2w matrix ONES(w). ONES(w)i,j con-
tains the number of ones in the bit matrix M(1/(i+ j)).
Obviously, ONES(w)i,i is always undefined. The ma-
trix ONES(3) is shown in Figure 3(a).

We may define a Cauchy matrix by select-
ing m columns, X1, . . .Xm, and n rows, Y1, . . . Yn,
of ONES(w), such that no Xj = Yi. We define the
weight, W (w, X, Y ) of a Cauchy matrix to be:

W (w, X, Y ) =
n

∑

i=1

m
∑

j=1

ONES(w)Yi,Xj
.

The weight is equal to the number of ones in the Cauchy
distribution matrix, and thus may be used to measure
the encoding performance of the matrix. For exam-
ple, in Figure 3(b), we show the Cauchy matrix of Fig-
ure 1, where X = {1, 2} is represented by the shaded



columns, and Y = {0, 3, 4, 5, 6} is represented by the
shaded rows. The weight of this Cauchy matrix is equal
to the sum of the black squares, 47, which indeed is the
number of ones in the matrix.

Our goal, therefore is to define X and Y such that
W (w, X, Y ) is minimal or close to minimal. First, note
that ONES(w) has an extremely high degree of sym-
metry. There are only 2w values in ONES(w), which
correspond to the number of ones in M(1/e) for each
element e ∈ GF (2w). Each of these values occurs ex-
actly once in each row of ONES(w) and in each col-
umn of ONES(w). Moreover, when n = m is a power
of two, it is possible to choose X and Y such that

W (w, n, m) = n
n

∑

i=1

ONES(w)Yi,X1
.

In other words, for each column Xj of ONES(w), the
values where Xj intersects Y are the same as the val-
ues where the first column X1 intersections Y . They are
simply permuted. We call such a Cauchy matrix a bal-
anced Cauchy matrix. We show two such matrices for
w = 3 in Figure 4.
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Figure 4: Balanced Cauchy matrices for w = 3. (a):
n = m = 2, (b): n = m = 4.

We now define GC(n, n, w) where n is a power of
two. Obviously, 2n must be less than or equal to 2w.
For w ≥ 2, GC(2, 2, w) is the minimum-weight bal-
anced Cauchy matrix with X = {1, 2}. For example,
GC(2, 2, 3) is pictured in Figure 4(a), and has a weight
of 14.

For n > 2, we construct GC(n, n, w) to be the
minimum-weight balanced Cauchy matrix which con-
tains GC(n/2, n/2, w). For example, GC(4, 4, w) is
pictured in Figure 4(b). That GC(n, n, w) always exists
is a simple proof, based on the symmetry of ONES(w),
which we omit for brevity.

We now define GC(n, n, w) where n is not a power
of two to be the minimum weight submatrix of GC(n+
1, n + 1, w). Thus, we construct GC(n, n, w) by con-
structing GC(n+1, n+1, w), and deleting the row and
column that results in a minimal weight matrix. Since n

is not a power of two, we know that there is a value
of n′ > n such that n′ is a power of two and 2n′ ≤ 2w.
Thus, GC(n′, n′, w) exists, and it is possible to con-
struct GC(n, n, w) by constructing GC(n′, n′, w), and
iteratively deleting rows and columns until there are n
rows and columns left. For example, GC(3, 3, 3) is pic-
tured in Figure 5(a), and is constructed by deleting row
6 and column 7 from GC(4, 4, 3) (Figure 4(b)).
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Figure 5: (a): GC(3, 3, 3), (b): GC(3, 4, 3).

Finally, we define GC(n, m, w), where n '= m
to be the minimum weight supermatrix
of GC(min(n, m), min(n, m), w). Suppose n > m.
One constructs GC(n, m, w) by first construct-
ing GC(m, m, w), then sorting the weights of the
rows that can potentially be added to GC(m, m, w)
to create GC(n, m, w), and then adding the n − m
smallest of these rows. The construction when m > n is
analogous, except columns are added rather than rows.
For example, GC(3, 4, 3) is pictured in Figure 5(b), and
is constructed by adding column 7 (rather than column
6) to GC(3, 3, 3).

The running time complexity of construct-
ing GC(n, m, w) is a very detailed calculation, which
is outside the scope of this paper. However O(22w+1) is
a succinct upper bound. While that is exponential in n
and m (since n + m ≤ 2w), it grows much more slowly
that the number of possible Cauchy matrices, detailed
in Section 3, and allows us to construct good matrices
for larger values of n and m.

5 Performance of GC Matrices
Our first evaluation of GC matrices is to compare them
to the best Cauchy matrices generated from our exhaus-
tive search. All GC matrices for w ≤ 3 are optimal
Cauchy matrices. For w = 4 and w = 5, the GC
matrices are all optimal when n = m. Overall, in the
166 cases where we were able to determine the optimal
Cauchy matrix, 53 of them matched the GC matrix. In
the other 113 cases, the maximum performance differ-
ence was for GC(10, 2, 5), which differed by 7.9% from



the optimal matrix in the number of XORs per coding
word. On average, the performance difference between
the GC matrix and the optimal matrix over all cases was
1.78%.

In terms of their performance as n and m grow, we
present two studies – one for small m, and one where n
and m both grow. In both studies, we compare the fol-
lowing MDS coding techniques:

• WEAVER: There are two MDS WEAVER
codes [15] — one for m = 2, n = 2, and one
for m = 3, n = 3. Both perform optimally.

• X-Code: The optimal X-Code [34] is defined
for m = 2 and n + 2 prime .

• EVENODD: This is defined for m = 2 and
all n [2]. Its performance is slightly worse than
optimal.

• STAR: This is an extrapolation of EVENODD cod-
ing for m = 3 [17].

• FENG: These are the recently-defined MDS array
codes by Feng et al [10, 11].

• CRS Coding (GC): This uses the matrices defined
above for all values of w between 2 and 10, and
selects the one that performs the best.

• CRS Coding (Original): This uses the original
matrix construction as defined in [4], where X con-
sists of the first m elements in the field, and Y con-
sists of the next n elements.

• CRS Coding (BC): This uses BC, or “Bad
Cauchy” matrices, by employing the GC algo-
rithm, but starting with columns 1 and 3, and find-
ing maximum weight matrices rather than mini-
mum weight matrices.

• Standard RS Coding: This uses distribution ma-
trices based on the Vandermonde matrix, and arith-
metic over GF (2w) as outlined in [26, 24, 29].

The metric for comparison is the factor over optimal
coding, as in Figure 2. For the XOR-based codes (all
but standard Reed-Solomon coding), this is the number
of XORs per coding word, divided by n − 1. As noted
above, the X-Code and the two WEAVER codes attain
this bound.

Standard Reed-Solomon coding uses Galois Field
multiplication in addition to XOR. To enable a com-
parison of it to the XOR-based codes, we measured the
bandwidth of XOR operations (B⊕), and of multipli-
cation in GF (28) (B∗), which covers values of n +
m ≤ 256. For maximum performance, we implemented
multiplication using a 256 × 256 multiplication table.
This is faster than either using log and anti-log tables
(as in [24]), or than simulating polynomial arithmetic
over GF (2) using XOR and bit-shifting [22]. This
was done on a Dell Precision Workstation with a 3.40
GHz Intel Pentium 4 processor. The measurements are:

B⊕ = 2992 MB/s and B∗ = 787.9 MB/s. Note, we
measure both in terms of their bandwidth (megabytes
per second), which accounts for the fact that XORs
may be done over 32-bit words, while multiplication
over GF (28) operates on 8-bit quantities.

Reed-Solomon coding requires n multiplications
and n − 1 XORs per coding word. Thus, we calculate
the factor of Reed-Solomon coding as:

(

n − 1

B⊕

+
n

B∗

)

/

(

n − 1

B⊕

)

.

The results for small m are in Figure 6. Handling
small numbers of failures is the most common case for
disk controllers and medium-scale storage systems. The
most glaring feature of these graphs is that the special-
purpose codes (EVENODD, X-Code, etc.) drastically
outperform the Reed-Solomon codes. Thus, in appli-
cations which need resilience to two and three failures,
these should be used in all cases. Note, this is not a
new result; it simply reaffirms the original research on
special-purpose codes, and fuels the search for good
MDS codes for higher values of m.

Focusing solely on the Reed-Solomon codes, we
draw a few conclusions from Figure 6. First, Cauchy
Reed-Solomon coding in all cases outperforms standard
Reed-Solomon coding. Although it appears that the
two techniques will converge as n grows larger, it must
be noted that when n + m becomes greater than 256,
standard Reed-Solomon coding must use multiplication
over GF (216), which is much slower than over GF (28)
(we measured B∗ = 148.5 MB/sec).

Second, not only do the GC matrices outperform
the other constructions, but their performance decreases
gradually as n increases, rather than exhibiting jumps at
the points where n + m crosses a power of two. We
illuminate this as follows. If one holds n and m con-
stant and increases w, the range of weights of Cauchy
matrices (and therefore factors over optimal) increases
drastically; however, the minimum factors stay roughly
the same. For example, in Table 1, we show the weights
of the GC and BC matrices for m = 3, n = 29, and
w ranging from 5 to 10. Note then when w = 5, the
difference between the GC and BC matrices is slight,
whereas when w = 10, the difference is more than a fac-
tor of two. This means that when a value of w becomes
unusable (for example, when m = 3 and n = 30, one
cannot use w = 5), there is far less of a performance
penalty in using the GC matrix for the next value of w
than using the BC matrix. The “Original” matrices split
the difference between the two.

Our second case study is for larger values of n and m,
which is applicable to wide-area storage systems and
content distribution systems. In Figure 7, we show
the performance of the Reed-Solomon codes for three
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Figure 6: Performance comparison of MDS codes for 2 ≤ m ≤ 5.

GC(3, 29, w) BC(3, 29, w)
Weight Factor Weight Factor

5 1118 2.63 1154 2.71
6 1370 2.68 1854 3.64
7 1666 2.80 2680 4.52
8 2162 3.18 3470 5.13
9 2303 3.01 4579 6.02

10 2750 3.24 5749 6.81

Table 1: Weights and factors of GC and BC matrices
for m = 3, n = 29, and w ranging from 5 to 10.

rates R = n
n+m

: 1
2 (m = n), 2

3 (2m = n), and 4
5

(4m = n). These are rates that are popular in coding
studies and implementations [21, 30, 27]. For exam-
ple, OceanStore has employed (n, m) pairs of (64, 16),
(32, 32) and (16, 16) in various installations. For these
values of n and m, Reed-Solomon coding is the only
MDS coding technique.

The only real difference between Figures 6 and 7 is
that the GC matrices for R = 1

2 exhibit minor perfor-
mance jumps when n+m crosses a power of two. With
respect solely to Cauchy Reed-Solomon coding, the GC
matrices are a significant improvement over the others in
nearly all cases. This effect is summarized in Table 2,
which shows the maximum, minimum and average per-
formance improvement of GC matrices versus the orig-
inal constructions. The greatest improvements come for
small values of n, which are the most frequently im-
plemented cases. The smallest improvements typically
come when n + m equals a power of two. In terms
of averages, the GC matrices show roughly a 10% im-
provement over the original constructions in all cases.
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Figure 7: Performance of Reed-Solomon coding for
higher values of n and m

6 Additional Resources/Results
For brevity, we omit some further explorations on how
codes with larger w can perform better than those with
smaller w. The reader is referred to [25], which also in-
cludes the the optimal and GC matrices generated for
this paper, so that those who need to implement this
technique may do so easily.

7 Conclusions and Future Work
In this paper, we have shown that the construction of
the distribution matrix in Cauchy Reed-Solomon coding
impacts the encoding performance. In particular, our
desire is to construct Cauchy matrices with a minimal
number of ones. We have enumerated optimal matrices
for small cases, and given an algorithm for construct-
ing good matrices in larger cases. The performance dif-
ference between good and bad matrices is significant,
averaging roughly 10% across all cases, with a maxi-



Test Maximum Minimum Average
m = 2 81.8% (n = 2) 6.1% (n = 100) 17.3%
m = 3 42.9% (n = 6) 1.2% (n = 61) 11.3%
m = 4 56.8% (n = 5) 1.8% (n = 60) 10.8%
m = 5 51.4% (n = 5) 1.2% (n = 59) 9.4%
R = 1

2 81.8% (n = 2) 3.7% (n = 32) 12.9%
R = 2

3 42.9% (n = 6) 1.7% (n = 42) 11.3%
R = 4

5 34.0% (n = 8) 1.6% (n = 64) 10.1%

Table 2: The improvement in performance of GC ma-
trices, compared to the original Cauchy constructions.

mum of 83% in the best case. The work is significant,
because for m > 3, these are the best MDS codes cur-
rently known.

Additionally, we have put the performance of Cauchy
Reed-Solomon coding into perspective, comparing its
performance to standard Reed-Solomon coding, and to
special-purpose MDS algorithms for small numbers of
failures. The main conclusion to draw here is that
the special-purpose algorithms vastly outperform Reed-
Solomon codes, and that more research should be per-
formed on broadening these algorithms for larger num-
bers of failures. The recent work by Hafner [15, 16] and
Feng [10, 11] are promising in this direction.

In this work, we have not studied decoding perfor-
mance, nor have we included non-MDS codes for com-
parison. Both are topics for the future.

Finally, we note the rather counter-intuitive result
that Cauchy Reed-Solomon coding can perform better
for larger values of w while holding the other parame-
ters constant. This is because larger Galois Fields may
have more elements with proportionally fewer ones than
smaller Galois Fields. It is a subject of future work to
explore this phenomenon and construct Cauchy matrices
for large fields that perform well. w = 28 and w = 29
are interesting candidates here, as they both have primi-
tive polynomials with only three non-zero coefficients.

References
[1] S. Atchley, S. Soltesz, J. S. Plank, M. Beck and T. Moore. Fault-tolerance

in the network storage stack. IEEE Workshop on Fault-Tolerant Parallel
& Dist. Systems, Ft. Lauderdale, FL, April, 2002.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures. IEEE
Trans. Comp., 44(2):192–202, 1995.

[3] M. Blaum, J. Bruck, and A. Vardy. MDS array codes with independent
parity symbols. IEEE Trans. Inf. Thy, 42(2):529–542, 1996.

[4] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zucker-
man. An XOR-based erasure-resilient coding scheme. Technical Report
TR-95-048, International Computer Science Institute, August 1995.

[5] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain
approach to reliable distribution of bulk data. ACM SIGCOMM ’98, Van-
couver, August 1998, pp. 56–67.

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.
RAID: High-performance, reliable secondary storage. ACM Computing
Surveys, 26(2):145–185, June 1994.

[7] R. L. Collins and J. S. Plank. Assessing the performance of erasure codes
in the wide-area. DSN-05: Int. Conf. on Dependable Sys. and Networks,
Yokohama, 2005.

[8] P. Corbett et al. Row diagonal parity for double disk failure correction.
4th Usenix Conf. on File and Storage Tech., San Francisco, 2004.
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