
Research Article

Optimizing Checkpoint Restart with Data Deduplication

Zhengyu Chen, Jianhua Sun, and Hao Chen

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China

Correspondence should be addressed to Jianhua Sun; jhsun@hnu.edu.cn

Received 1 March 2016; Accepted 5 May 2016

Academic Editor: Laurence T. Yang

Copyright © 2016 Zhengyu Chen et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e increasing scale, such as the size and complexity, of computer systems bringsmore frequent occurrences of hardware or so�ware
faults; thus fault-tolerant techniques become an essential component in high-performance computing systems. In order to achieve
the goal of tolerating runtime faults, checkpoint restart is a typical and widely used method. However, the exploding sizes of
checkpoint 	les that need to be saved to external storage pose a major scalability challenge, necessitating the design of e
cient
approaches to reducing the amount of checkpointing data. In this paper, we 	rst motivate the need of redundancy elimination
with a detailed analysis of checkpoint data from real scenarios. Based on the analysis, we apply inline data deduplication to achieve
the objective of reducing checkpoint size. We use DMTCP, an open-source checkpoint restart package, to validate our method.
Our experiment shows that, by using our method, single-computer programs can reduce the size of checkpoint 	le by 20% and
distributed programs can reduce the size of checkpoint 	le by 47%.

1. Introduction

Infrastructure as a Service (IaaS) [1] is a form of cloud com-
puting that provides virtualized computing resources over the
Internet. IaaS allows customers to rent computing resources
from large data centers rather than buy and maintain ded-
icated hardware. More and more so�ware production and
services are directly deployed and run on IaaS clouds.
With the increase of computing nodes, the probability of
failures increases. Hardware failure fail-over or any unex-
pected reasonmakes node inactive. For distributed and high-
performance computing (HPC) applications, a failure in one
node causes the whole system to fail.

Fault tolerance is an indispensable component of cloud
computing. However, due to the embarrassingly parallel
nature of mainstream cloud applications, most approaches
are designed to deal with fault tolerance of individual pro-
cesses and virtual machines. �is either involves restarting
failed tasks from scratch (e.g., MapReduce) or leveraging live
migration to replicate the state of virtual machines on-the-y
in order to be able to switch to a backup virtual machine in
case the primary instance has failed [2, 3].

Checkpoint is an important method to provide fault
tolerance for distributed and HPC applications [4]. �rough
the use of checkpoint, program’s in-memory states can be

written to persistent storage. If a crash occurs, the previously
saved checkpoint can be used to recover program to the
latest state. In IaaS cloud environments, checkpoint technique
can be more bene	cial. For example, when resource prices
become expensive or the budget is tight, we can suspend the
running program and recover it later, or we can transfer the
program to a new cloud provider without losing progress.

However, with the increasing scale of computation, the
checkpoint size also increases. So the e
ciency of the
checkpoint operation is becomingmore andmore important.
Not only will checkpoints incur performance cost, but the
checkpoint 	les consume large storage space, which causes
I/O bottlenecks and generates extra operational costs. For
example, saving 1 GBRAMfor each 1,000 processes consumes
1 TB of space. Although there have been attempts to reduce
the IO overhead using hardware technology (i.e., SSDs), with
the increasing of the number of computational nodes, this
method is still not an ideal solution.

In this paper, we focus on the reduction of the checkpoint
	le size and ultimately achieve the purpose of reducing
the I/O and storage overhead. In the storage space of the
checkpoint 	le is mainly consumed by the content of the
process’s address space. We analyzed the content of the
process’s address space in order to identify di�erent segments

Hindawi Publishing Corporation
Scientific Programming
Volume 2016, Article ID 9315493, 11 pages
http://dx.doi.org/10.1155/2016/9315493

2 Scienti	c Programming

of redundancy. �e results of analysis show that there exist a
lot of duplicate data in the stack section. For distributed appli-
cations, in heap segment between di�erent processes, there
are a lot of duplicate data, and the contents in their dynamic
link library and code segments are the same. But the amount
of duplicate data in dynamic link library is less. According to
these characteristics, we propose a method that uses inline
deduplication to identify and eliminate duplicate memory
contents at the page level to reduce the checkpoint 	le
size. DMTCP (Distributed Multithreaded Checkpointing) is
a transparent user-level checkpoint package for distributed
applications. We implement our method based on DMTCP.
Experiments show that our method can greatly reduce the
checkpoint size.

�e contributions of our work are as follows:

(i) We conduct a detailed analysis of the contents of the
checkpoint 	le, which reveals some characteristics
of data redundancy and the potential of integrating
deduplication into existing checkpoint systems.

(ii) Motivated by our experimental analysis, we propose
a method to reduce the size of the checkpoint 	le,
which works for both single-node and distributed
high-performance computing systems.

(iii) We present the design and implementation of our
approach in DMTCP and perform extensive evalua-
tion on a set of representative applications.

�is paper is organized as follows. Section 2 presents
related work. Section 3 describes our motivation and related
background. Section 4 contains the design and implemen-
tation of our approach. In Section 5, we provide an exper-
imental evaluation of our design. Section 6 analyzes the
experimental results, and the conclusions and future work are
given in Section 7.

2. Related Work

2.1. Checkpoint Restart. �ere are roughly four major direc-
tions of research on reducing the size of checkpoint 	le.
Incremental checkpointing reduces the checkpoint size by
saving only the changes made by the application from the
last checkpoint [5–7]. Usually, a 	xed number of incremental
checkpoints is created in between two full ones. During a
restart, the state is restored by using the most recent full
checkpoint 	le and applying in an ordered manner all the
di�erences before resuming the execution.

Memory exclusion [8] skips temporary or unused bu�ers
to reduce the size of the checkpoint 	le size. �is is done by
providing an interface to the application to specify regions of
memory that can be safely excluded from the checkpoint.

Checkpoint compression is a method for the reduction
of the checkpoint 	le size by reducing the size of process
images before writing them to stable storage [9]. Besides
compression, another possible solution is deduplication that
is the mainstream storage technology. It can e�ectively
optimize storage capacity. �is technology can reduce the
requirement on physical storage space and can meet the data
storage need which grows day by day. Our work focuses on

inline deduplication to identify and eliminate duplicate data
in the process.

2.2. Data Deduplication. Data deduplication is a specialized
data compression technique for eliminating duplicate copies
of repeating data [10, 11]. Data deduplication splits the input
	le into a set of data blocks and calculates a 	ngerprint
for each of them. If there exists a block sharing the same
	ngerprint, it indicates that block is duplicated, and we only
need to store the index number for the duplicated block.
Otherwise, it means that data block is unique, and its content
needs to be stored. As can be seen from the above process,
the key technology of deduplication mainly includes data
block segmentation, 	ngerprint computation, and data block
retrieval. Among these techniques, data block segmentation
is the most crucial.

Block segmentation algorithm is divided into three types:
the 	xed-size partition, content-de	ned chunking, and slid-
ing block. Fixed-size partition algorithm 	rst splits the input
data into 	xed-size chunks. �en, chunks are compared
between each other in order to identify and eliminate dupli-
cates. While simple and fast, 	xed-size partition algorithm is
very sensitive to data insertion and deletion and not adaptive
to the changes of content.

To deal with such issues, content-de	ned approaches [12]
are proposed. Essentially, they involve a sliding window over
the data and that hashes the window content at each step
using Rabin’s 	ngerprinting method [13]. When a particular
condition is ful	lled, a new chunk border is introduced and
the process is repeated until all input data was processed,
leading to a collection of variable-sized chunks. Content-
de	ned chunking algorithm is not sensitive to changes in
content, data insertion and deletion only a�ects a few blocks,
and the remaining data blocks are not a�ected. But it also
has disadvantages, the size of the data block is di
cult to
determine; coarse granularity results in nonoptimal e�ect,
and 	ne-grained granularity o�en leads to higher cost. �us,
the most di
cult part of this algorithm lies in how to choose
a suitable granularity.

Sliding block algorithm [14] combines the advantages of
	xed-size partition algorithm and content-de	ned chunk-
ing algorithm. �is algorithm uses Rabin 	ngerprinting to
subdivide byte-streams into chunks with a high probability
of matching other chunks generated likewise. If a signature
of the chunck/block matches one of the precomputed or
prespeci	ed delimiters, the algorithm designates the end
of this window as a chunk boundary. Once the boundary
has been identi	ed, all bytes starting from the previous
known chunk boundary to the end of the current window is
designated a chunk. A hash of this new chunk is computed
and compared against the signatures of all preexisting chunks
in the system. In practice, this method makes use of four
tuning parameters, namely, the minimum chunk size, the
maximum chunk size, the average chunk size, and the
window size. �e sliding block algorithm deals with data
insertion and data deletion process e
ciently and can detect
more redundant data than content-de	ned approaches; its
drawback is that it is prone to data fragmentation. In order
to obtain more redundant information, we use the sliding

Scienti	c Programming 3

block algorithm in our approach, which will be described
later.

At present, data deduplication technology is widely used
in the storage system and network system; by using dedupli-
cation it can e�ectively reduce the data storage and system
overhead. For example, Srinivasan et al. [15] can achieve 60–
70% of the maximum deduplication with less than a 5% CPU
overhead and a 2–4% latency impact through the use of
deduplication.Agarwal et al. [16] designedEndRE; the system
uses the technology of data deduplication to eliminate the
redundancy of network data and reduce the cost of WAN
access. �e experiment results show that EndRE can save an
average of 26% of the bandwidth and reduce the end-to-end
delay of 30%.

3. Background and Motivation

3.1. Background. Checkpoint restart is a mechanism that
periodically saves the state of an application to persistent
storage and o�ers the possibility to resume the application
from such intermediate states.

Depending on the transparency with regard to the appli-
cation program, single-process checkpoint techniques can
be classi	ed as application-level, user-level, or system-level.
User-level checkpoint services are implemented in user space
but are transparent to the user application. �is is achieved
by virtualizing all system calls to the kernel, without being
tied to a particular kernel [17]. System-level checkpointing
services are either implemented inside the kernel or as a
kernel module [18]. �e checkpoint images in system-level
checkpointing are not portable across di�erent kernels.

DMTCP (Distributed Multithreaded Checkpointing) is
a transparent user-level checkpoint package for distributed
applications [19]. DMTCP is very convenient for applications
to set checkpoint and restart. It works completely in user
space and does not require any changes to the application
or operating system. DMTCP automatically tracks all local
and remote child processes and their relationships. DMTCP
implements a coordinator process because DMTCP can also
checkpoint distributed computations across many comput-
ers. �e user can issue a command to the coordinator, which
will then relay the command to each of the user processes of
the distributed computation.

Like the principles of a checkpoint, DMTCP also copies
the program information in-memory to the checkpoint 	le.
Program’s in-memory information includes the process id,
the process’s address space, opened 	le information, and
signal state. In the checkpoint 	le, the content of the pro-
cess’s address space occupies the main storage space. �e
process’s address space information is mainly read from
/proc/self/maps, fromwhich we can obtain the contents of the
address space. �e program’s address space consists of heap,
stack, shared libraries, mmap memory area, data, and text
segment.

3.2. Motivation. In this paper, we focus on reducing the size
of checkpoint 	le based on deduplication. In this section,
we analyze the content redundancy in regular checkpoint
	les. �e content needed to be stored by the checkpoint 	les

Table 1: Single-node program heap (KB).

Type Original gzip Deduplication Deduplication + gzip

BaseLine 132 0.49 68.18 0.51

Python 868 128.24 600 130.20

Vim 2220 283.14 2107.46 289.68

BC 264 8.8 232.23 8.83

Perl 264 23.63 264 23.98

generated byDMTCP can be classi	ed into 5 categories: heap,
stack, code, dynamic link library, andmmap.We ignore other
types of content in checkpoint 	les due to the limited space
they occupy. �e target programs used in our experiment
can be divided into two types: single-node program and
distributed program. Next, we conduct analysis on program
address spaces of these 	ve categories on the two kinds of
programs, respectively, in order to characterize data duplica-
tion in prospective applications. A�er retrieving the content
of their progress address space, three methods can be used to
perform the analysis: gzip compression, deduplication, and
the hybrid of compression and deduplication. Sliding block
algorithm is used in deduplication, the minimum chunk size
is 512 B, the maximum chunk size is 32768 (32K), average
chunk size is 4096 B (4KB), and the window size is 48 B.

3.2.1. Single-Node Program Analysis. We perform experi-
ments using the following applications: BaseLine, a simple
C program, whose functionality is to print numbers con-
sistently; Python(2.7.6), an interpreted, interactive, object-
oriented programming language; Vim(7.4), an advanced
text editor; BC(1.06.95), an arbitrary precision calculator
language; and Perl(5.18.2), Practical Extraction and Report
Language interpreter.

Table 1 displays the experimental results on heap. �e
compression rate of BaseLine, Vim, BC, and Perl is 99.6%,
87%, 96.6%, and 91%, respectively, showing that gzip based
compression has good e�ect on heap. But the results become
unsatisfying when redundant data deletion technique is
used. For example, in BaseLine, the original size of heap is
132 KB; a�er deduplication it still occupies 68.18 KB, with a
deduplication rate of 48.3%. For some applications the results
are even worse. For example, the rate for Python and Vim is
30.8% and 5.1%, respectively. �e results become even worse
if we try to use gzip directly succeeding the deduplication
procedure. As shown in Table 1, a�er the deduplication +
gzip operations, the resulting heap size is even bigger than
when only the gzip compression approach is used. Of course,
the redundant data comes from adding unnecessary index
information.

Table 2 illustrates that applying deduplication and dedu-
plication + gzip to stack is much more e�ective as compared
to heap. In BaseLine, the original stack size is 8072KB; a�er
compression it shrinks to 11.69 KB, and a�er deduplication
it is 105.1 KB. With deduplication + gzip, the size is only
4.15 KB, which means the compression rate is 99.86% and the
deduplication rate is 98.7%.

In single-node program experiments, we can conclude
that the duplication of heap is quite limited as compared to its

4 Scienti	c Programming

Table 2: Single-node program stack (KB).

Type Original gzip Deduplication Deduplication + gzip

BaseLine 8072 11.69 105.16 4.15

Python 8072 13.19 137.24 5.75

Vim 8068 13.03 101.36 5.57

BC 8072 13.32 105.18 5.8

Perl 8072 12.37 105.28 4.86

Table 3: Distributed program heap (KB).

Type Original Deduplication Redundancy rate

BaseLine 264 101.59 61.52%

CG 264 165.14 37.54%

EP 264 149.07 43.53%

LU 264 153.09 42%

MG 264 161.13 38.98%

IS 264 129 51.13%

relatively high compression e
ciency. On the other hand, the
compression and duplication rates are both high in the case of
stack, and using gzip + deduplication can achievemuch better
e�ect. During the analysis of code, dynamic link library, and
mmap, we 	nd that the duplication rate is not high, and gzip
compression is more suitable for reducing the size of these
components.

3.2.2. Distribute Program Analysis. We conduct experiments
on distributed programs using the following applications:
BaseLine and NAS NPB3.3. �e BaseLine is a simple MPI
program, whose function is to calculate Pi. �e NAS Parallel
Benchmarks (NPB) are a small set of programs designed to
help evaluate the performance of parallel supercomputers.
NPB 3.3-MPI was used in our experiments. �e benchmarks
run under MPICH2 are CG (Conjugate Gradient, irregular
memory access and communication, level C), EP (Embar-
rassingly Parallel, level C), LU (Lower-Upper Gauss-Seidel
Solver, level C), MG (Multigrid on a sequence of meshes,
long- and short-distance communication, memory intensive,
level C), and IS (Integer Sort, random memory access, level
C). For convenience, we adopt two computers to build the
experiment cluster. A single process is run on each node.�e
content of various segments, that is, heap, stack, code, DLL,
and mmap of each process, is collected. “Original” in Tables
3 and 4 represents the total size of each segment of the two
nodes.

Table 3 shows the results of the heap of distributed
programs.�eoriginal size of BaseLine is 264KB.A�er dedu-
plication, the size becomes 201.59 KB, obtaining a duplication
rate of 61.52%. Table 3 also shows that the duplication rates
of CG, EP, LU, MG, and IS are 37.54%, 43.53%, 42%, 38.98%,
and 51.13%, respectively. �e rates increase signi	cantly as
compared to the single-program counterparts, inferring that
there exists a lot of duplicated information on the heap of each
process between the two di�erent nodes.We can apply gzip +
deduplication method to reduce the heap size of distributed
programs.

Table 4: Distributed program stack (KB).

Type Original Deduplication Redundancy rate

BaseLine 16140 80.21 99.5%

CG 16144 88.24 99.45%

EP 16140 80.24 99.5%

LU 16136 88.27 99.45%

MG 16144 88.27 99.45%

IS 16136 76.2 99.53%

Table 4 displays the result of the stack of distributed pro-
grams, which implies that there is a lot of redundant data in
stacks. For example, the original size of BaseLine is 16140KB,
and the size becomes 80.21 KB a�er deduplication, obtaining
a duplication rate of 99.5%. Other testing applications also
reveal a very high duplication rate. �e rates of CG, EP, LU,
MG, and IS are 99.45%, 99.5%, 99.45%, 99.45%, and 99.53%,
respectively. In conclusion, not only do stacks have a lot of
redundant data themselves, but also the duplication rates of
the stack between di�erent processes are even higher.

Other segments, like code, DLL, and mmap, do not
have too much redundant data on the same node, but their
contents are the same between di�erent nodes in distributed
programs. But DMTCP stores every code, mmap, and DLL
of each node when setting checkpoints. �us we only need
one checkpoint 	le to store the code and mmap of multiple
processes on the same node and DLL, while others only need
to keep the index.

In this section, we analyze the duplication rate of heap,
stack, DLL, and mmap in single program and distributed
program, respectively. In order to reduce the checkpoint 	le
size e
ciently, we implement di�erent strategies on di�erent
segments, which can be summarized as follows:

Single-node program:

(i) for heap, code, DLL, mmap, and others: we con-
tinue to use gzip for compression;

(ii) for stack: gzip + deduplicationmethod is adopt-
ed.

Distributed program:

(i) for heap and stack between di�erent processes:
gzip + deduplication method is adopted;

(ii) for code, DLL, and mmap of multiple processes
on the same node: only one copy is stored
in the checkpoint 	le; others just keep the
corresponding index;

(iii) other: we continue to use gzip compression.

4. Design and Implementation

4.1. Overview. In this paper, we focus on how to reduce the
checkpoint 	le size. When setting a checkpoint, we examine
each memory page in the program and apply techniques
tailored to the page type as detailed in the following.

Scienti	c Programming 5

DMTCP coordinator

Ckptmsg

Ckpt thread

User thread

Ckpt thread

User thread

User process User process

IPC

SIGUSR2 SIGUSR2

Ckptmsg

Figure 1: Architecture of DMTCP.

(i) Heap: in single-node programs, redundancy in heap
is not high, so gzip compression is used. In distributed
programs, we employ a combination of deduplication
and gzip to identify and eliminate redundancy within
heap pages.

(ii) Stack: for both single-node programs and distributed
programs, we employ a combination of deduplication
and gzip to identify and eliminate redundancy within
stack pages.

(iii) DLL and mmap of multiple processes on the same
node and code: in single programs, we only use gzip
compression. In distributed programs, for DLL, code,
and mmap of multiple processes on the same node,
only one copy is stored in the checkpoint 	le, while a
corresponding index is kept.

(iv) Other: for both single-node programs and distributed
programs, the remaining pages are compressed using
gzip.

Figure 1 shows the architecture of DMTCP. DMTCP uses
a stateless centralized process, the coordinator, to synchro-
nize checkpoint and restart between distributed processes. In
each user process, DMTCP creates a checkpoint thread. �e
checkpoint thread is used to receive commands sent from
the coordinator, such as setting up checkpoints. In addition,
the checkpoint thread contacts user thread through the
signal (SIGUSR2). Our approach is implemented based on
DMTCP. Next, we discuss in detail the speci	c implementa-
tion.

4.2. Heap and Stack. �e application can request a new
checkpoint at any time by using the command: dmtcp
command-c. When this command is issued and received by

the coordinator, each node will start to set checkpoint. From
the previous analysis, we can know that heap segment redun-
dancy in single-node program is not high, and stack segments
have higher duplicate data. In a distributed application, heap
and stack segment between di�erent processes have a high
possibility of containing duplication. We need to identify the
single-node program and distributed programs. So, 	rst we
need to check the type of the program. �e process of each
node sends a request to the coordinator; the coordinator
determines whether the program is a distributed application
through collecting process information of each node and
returns the results to them. If the program is not a distributed
application, we only need to identify and eliminate duplicate
memory contents at the heap and stack page. Otherwise, we
need to rely on the information provided by the coordinator
to eliminate the redundancy between di�erent process of
nodes.

Now we describe the heap and stack data deduplication
algorithm in distributed application. First, we need to get the
hash value of each memory page by hashing the content of
each page. If the hash value exists in the local hash table,
we can regard the page as a duplicate and obtain the page
index from the hash table and copy it to the checkpoint
	le. Otherwise, we need to send the information to the
coordinator to query whether the hash value exists in other
processes.

If the coordinator returns true, we will get the page
index from the coordinator and copy it to the checkpoint
	le. Otherwise, we need to store the page content to the
checkpoint 	le and generate a page index and send it to the
coordinator. �e index contains the checkpoint 	le name,
the o�set of the page in checkpoint 	le, and the page
length. �e steps of this algorithm are depicted graphically
in Algorithm 1.

6 Scienti	c Programming

(1) function DoDedup(�������	
	,
���)
(2) ��	��	�ℎ�� ← ���
(3) �����	� ← ��
�����	�����()
(4) �������ℎ������ ← 0
(5) �ℎ������ ← 0
(6) if �����	� = �	��� then

(7) return �����!������(�������	
	,
���)
(8) end if

(9) while �� ∈ �������	
	 do

(10) ℎ� ← �	�ℎ(��)
(11) if ℎ� ∉ ��	��	�ℎ�� then
(12) �������ℎ������ + +
(13) if $������%�������(ℎ�,
���) =
���

then

(14) !�&���	�$���'$���(����'����)
(15)
����������ℎ���(����'����)
(16) else

(17)
����������ℎ���(��)
(18) �����	
�$���'(����'����)
(19) ����	�$���'$���(ℎ�,
���, ����'����)
(20) end if

(21) ��
	!	
	[�ℎ������] ←*
�������ℎ������

(22) �ℎ������ ← �ℎ������ + 1
(23) �	�ℎ�� ← ��	��	�ℎ�� ∪ {ℎ�}
(24) else

(25) ��
	!	
	[�ℎ������] ←*
�������ℎ������

(26) �ℎ������ ← �ℎ������ + 1
(27) end if

(28) end while

(29) end function

Algorithm 1: Heap and stack data depulication algorthim.

4.3. Dynamic Link Library, Shared Memory, and Code. In
a distributed application, all of the dynamic link library,
code, and mmap of multiple processes on the same node are
the same. For all the running processes, this content only
retains one copy. In DMTCP, however, these contents are
copied to the local checkpoint 	le. �erefore, when setting a
checkpoint, we just need to copy the pages of the dynamic link
library, sharedmemory, and code to a checkpoint 	le, and the
other checkpoint 	les only need to save the corresponding
index information. However, for single-node applications,
the e�ects of data deduplication are not prominent. So
this algorithm does not apply to single-node applications.
DMTCP invokes gzip compression by default.

Like Algorithm 1, we 	rst need to query the program
type. For a distributed program, we continue to the next
step. Otherwise, the algorithm is over. Next, we just have to
send local IP address to the coordinator to query whether
there are multiple processes running on the local node. If the
coordinator receivesmultiple IP addresses, itmeans the result
is true. �e coordinator will send the result to all processes.
For shared memory segments, our algorithm is only suitable
for multiple processes on a node. In order to eliminate
redundancy between all processes dynamic link library and
code segment, we send a query to the coordinator to know

whether there is an index for the segment on the coordinator.
If the index does not exist, we copy the dynamic link library,
code, and DLL content to the checkpoint 	les and then
build an index and upload it to the coordinator. Otherwise,
the index information is obtained from the coordinator and
saved to the checkpoint 	le. �e steps of this algorithm are
depicted in Algorithm 2.

4.4. Restart. Let us look at the operation of the stack segment
during the restart. For single-node applications, according
to the normal process of restart, the di�erence is that if the
data read from the checkpoint 	le is index, we need to locate
and read the real content from the memory according to
the index. For distributed applications, the restart is more
complicated. Eachnode containing unique block information
needs to create a listener thread, which is used to monitor
requests from other processes. A�er receipt, the requested
content will be sent to the requesting process. Before creating
the listener, we need to send initialization information to
the coordinator for registration. Registration information
includes the checkpoint 	le name, IP address, and port
number. When reading the stack and heap information from
the checkpoint 	le, we 	rst read the metadata of each page
and locate each page from the meta information. If the page

Scienti	c Programming 7

(1) function DoDedup1(��.$��,
���)
(2) �����	� ← ��
�����	�����()
(3) ��� ← 0
(4) ���
�	�� ← ��
��
�	��()
(5) if �����	� =
��� then
(6) return �����!������(��.$��,
���)
(7) end if

(8) if $������%�������(��.$��.�	��,
���) =
��� then

(9) $���' ← ���
(10) ��.$��.��	� ← 2
(11) ��
$��%��������($���')
(12) ��.$��.��� ← $���'.���
(13) ��.$��.��� ← $���'.��
�	��
(14)
�����%���(��.$��)
(15) else

(16) ��.$��.��	� ← 1
(17)
�����%���(��.$��, ���)
(18)
�����%���(��.$��.�	
)
(19) ����	��������(��.$��, ���
�	��, ���)
(20) end if

(21) end function

Algorithm 2: Dynmic link library, code, and mamap data deduplication algorthim.

exists locally, then we can read the corresponding content
to restart. Otherwise, we need to get the content from other
nodes. Before sending the request message to other nodes,
we need to send a request to the coordinator to get the
connection information to other nodes. �e steps of this
algorithm are depicted in Algorithm 3.

At the checkpoint recovery phase, we need to remap
program states into memory. We take the dynamic link
library as an example to introduce the recovery phase. When
reading the dynamic link library from the checkpoint 	le,
we 	rst obtain the header information of the dynamic link
library. We get the checkpoint 	le name of the dynamic link
library and check its existence on the local node. If true,
we continue to read the content from the checkpoint 	le.
Otherwise, we need to read the corresponding content from
other nodes. Like the previous recovery operation, we need
to request the coordinator to obtain information about the
checkpoint 	le and 	nally retrieve its content to restart.When
the content of the checkpoint 	le is read and remapped into
memory, the program can be restored to a correct state to run.

5. Experiment

In this section, we evaluate our approach on QingCloud,
which is a public cloud service, providing on-demand, ex-
ible, and scalable computing power. In particular, QingCloud
is a popular cloud platform, and, due to its per-second charge
method, our experiment will be conducted on QingCloud.
For simple comparisons, we use two nodes on QingCloud
to conduct our experiments. �e con	guration of the cloud

node is dual-core processors and 2GB of RAM. �e system
ran 64-bit ubuntu 14.04. �e two nodes are connected by
LAN. Experimental programs are divided into two categories:
single-node programs and distributed programs across the
nodes of a cluster.

For single-node programs experiments, we use the fol-
lowing applications: Python (2.7.6) an interpreted, inter-
active, object-oriented programming language; Vim (7.4)
interactively examining a C program; BaseLine, a simple
C application, whose function is to print a 32-bit integer
value every one second; BC (1.06.95) an arbitrary precision
calculator language; Emacs (2.25) a well known text editor;
and Perl (5.18.2) Practical Extraction and Report Language
interpreter. To show the breadth, we present checkpoint
times, restart times, and checkpoint sizes on a wide variety
of commonly used applications. �ese results are presented
in Figures 2, 3, and 4.

For distributed programs, the checkpoint will be written
to local disk. We use the MPI package for our experiments.
We use the following programs to implement our experi-
ments: NAS NPB3.3 and BaseLine. �e BaseLine is a simple
MPI program that calculates Pi. �e NAS Parallel Bench-
marks (NPB) are a small set of programs designed to help
evaluate the performance of parallel supercomputers. Prob-
lem sizes in NPB are prede	ned and indicated as di�erent
classes. �e benchmarks run under MPICH2 are BT (Block
Tridiagonal, level C), SP (Scalar Pentadiagonal, level C),
EP (Embarrassingly Parallel, level C), LU (Lower-Upper
Symmetric Gauss-Seidel, level C), MG (Multigrid, level C),
and IS (Integer Sort, Level C).

8 Scienti	c Programming

(1) function UndedupHeapAndStack(��)
(2) �����	� ← ��
�����	�����()
(3) 3��	$�� ← ���
(4) �����$�� ← ���
(5) �����%� ← ���
(6) if �����	� =
��� then

(7) ���	
� ��V���ℎ��	�()
(8) 4����
��()
(9) ��
�����$��%�������(�����$��)
(10) else

(11) return �������!������(��)
(12) end if

(13) while 4�	�3��	(��, 3��	$��) do
(14) if 3��	$��.��
�	�� = �����
�	��() then
(15) 4�	�3��4��	�(��, 3��	$��)
(16) else

(17) if ����%�[3��	$��.��
�	��] ̸= ��� then
(18) ����%� ← 0
(19) ����%� ←*

�����
����(�����$��, 3��	$��.��
�	��)
(20) �����%�[3��	$��.��
�	��] ←*

����%�
(21) 4��	�%���6
ℎ������(�����%�, 3��	$��)
(22) end if

(23) end if

(24) end while

(25) end function

Algorithm 3: Restart.

Unoptimized
Optimized

Python

2.5

T
im

e
(s

)

2.0

Vim Bc Emacs PerlBaseLine

1.5

1.0

0.5

0.0

Figure 2: Checkpoint time of single-node programs.

Wereport checkpoint times, restart times, and checkpoint
	le sizes for a suite of distributed applications. In each case,
we report the time and 	le size when no compression is
involved.�e experimentwas repeated 	ve times. In Figure 7,
the checkpoint 	le size includes the sumof the checkpoints on
the two nodes.

Unoptimized
Optimized

T
im

e
(s

)

Python Vim Bc Emacs PerlBaseLine

0.20

0.15

0.10

0.05

0.00

Figure 3: Single-node programs restart time.

6. Experimental Analysis

�e graphs in Figure 2 show that, as compared to the original
DMTCP, the optimized version increases the checkpointing
time. Using the data deduplication algorithm and checking
the application category are twomain reasons for the increase
of time consumption. �e checkpointing times under the

Scienti	c Programming 9

Unoptimized
Optimized

90

75

60

45

C
h

ec
kp

o
in

t
si

ze
 (

M
B

)

30

15

0

Python Vim Bc Emacs PerlBaseLine

Figure 4: Single-node programs checkpoint 	le size.

original DMTCP are 0.08, 0.13, 0.08, 0.11, 0.35, and 0.11
seconds for Python, Vim, BaseLine, Bc, Emacs, and Perl,
respectively. As a comparison, for the optimized DMTCP, the
checkpointing time increases, such as 1.15 seconds for Python,
1.56 seconds for vim, 1.12 seconds for BaseLine, 1.11 seconds
for Bc, 2.9 seconds for Emacs, and 1.34 seconds for Perl.

Figure 3 presents the restart time. In the restart time, For
the original DMTCP, the time consumption for the restart
operation is 0.03, 0.02, 0.03, 0.03, 0.05, and 0.04 seconds for
Python, Vim, BaseLine, Bc, Emacs, and Perl, respectively. As
in the case of the checkpoint phase, the restart time also
increases. �e restart time for each application is increased
by about 0.1 seconds, in order to check the type of application
to communicate with the coordinator, which resulted in
additional costs.

In Figure 4, we can see that the checkpoint 	le size of
all applications is di�erent between the original DMTCP
and optimized DMTCP. For single-node programs, we only
remove redundant data in the stack, but the 	nal e�ect is still
good. Python’s checkpoint 	le size using the original DMTCP
is 29M and the 	le size for the optimized version is only 21,
indicating about 25% saving. Similarly, the 	le sizes of other
programs in optimized DMTCP are all reduced nontrivially.
For example, Vim is reduced by 24%; BaseLine is reduced by
35%; Bc is reduced by 31%; Emacs is reduced by 10%; Perl is
reduced by 29%.

Figures 5, 6, and 7 show the results for distributed
applications. Similar to the single-node programs, the check-
point time when using the optimized DMTCP increases for
all of the applications. For example, for the case of CG,
the checkpoint time is 8 seconds versus 12 seconds. For
other test programs, the time is also increased. For example,
BaseLine increases 7.2 seconds, EP increased 7 seconds, and
LU increased 5.5 seconds. �e cost is mainly incurred by the
operation of data deduplication. Restart time also increases,
and the quantity depends on the duplicate data volume of the
various applications.

Unoptimized
Optimized

0

T
im

e
(s

)

70

60

50

40

30

20

10

BaseLine CG MG ISLUEP

Figure 5: Distributed programs checkpoint time.

2.5

1.5

Unoptimized
Optimized

2.0

1.0

0.5

0.0

4.5

4.0

3.5

3.0

T
im

e
(s

)

BaseLine CG MG ISLUEP

Figure 6: Distributed programs checkpoint restart time.

Figure 7 shows all the checkpoint 	le sizes of the dis-
tributed program. In the original DMTCP, the checkpoint
sizes for the testing programs range from 65MB to 1607MB.
Correspondingly, in the optimized DMTCP, the checkpoint
size for BaseLine, CG, EP, LU, MG, and IS is 34M, 564M,
36M, 396M, 47M, and 800M, respectively, indicating a
checkpoint size reduction by 47.7%, 49.8%, 47.7%, 49%,
50.4%, and 50%.

�rough the above experiments, we can conclude that,
by using our method, despite the increase of checkpoint
and restart time, the checkpoint 	le size can be greatly
reduced. For the distributed applications, the e�ect is much
more prominent. In the experiment, single-node program
mainly reduced the stack segment of redundant information.
But, for distributed applications, we reduce the redundant
information in the heap and stack segments between di�erent
processes.Moreover, the code, dynamic link libraries, and the

10 Scienti	c Programming

Unoptimized
Optimized

C
h

ec
kp

o
in

t
si

ze
 (

M
B

)

0

1536

1280

1024

768

512

256

BaseLine CG MG ISLUEP

Figure 7: Distributed programs checkpoint 	le size.

contents of sharedmemory in the same node are stored in the
checkpoint 	le of a process, while the remaining checkpoint
	les are only stored in the content index. �is is the e�ect of
the experimental program distributing better the single-node
program.

In this paper, the experimental program will be divided
into two types: single-node program and distributed pro-
gram. When checking the type of the program, process
of each node needs to wait until the coordinator collects
information of all processes, which will lead to some of the
processes being blocked.When the checkpoint is set, the heap
and stack segment uses data deduplication technology, which
will be segmented data block. In the distributed application,
the data deduplication technology will communicate with the
coordinator to query block information. In the checkpoint
restart phases, each node containing unique block informa-
tion needs to create a listener thread, which is used tomonitor
requests from other processes. Above all, these operations
will make extra time overhead; of course, there are some
other operations that will also have time overhead. We plan
to improve our approach to reduce the time overhead in the
future.

7. Conclusions and Future Work

In this paper, we conduct a detailed analysis about the data
redundancy in checkpoint 	les and the potential of utilizing
this 	nding to optimize checkpointing systems. Based on
the 	ndings, we propose the design and implementation
of a system, which leverages inline data deduplication to
achieve the goal of reducing the size of checkpoint 	le.
We perform extensive experiments on a wide range of
single-node and distributed applications, and the results
demonstrate the e�ectiveness of our system that is more
prominent for distributed applications. However, the results
also indicate that there are rooms for improvement in
time consumption, which we plan to address in future
work.

Competing Interests

�e authors declare that they have no competing interests.

Acknowledgments

�is research was supported in part by the National Science
Foundation of China under Grants 61272190 and 61572179,
the Program forNewCentury Excellent Talents in University,
and the Fundamental Research Funds for the Central Univer-
sities of China.

References

[1] M. Armbrust, A. Fox, R. Gri
th et al., “A view of cloud com-
puting,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[2] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. War	eld, “Remus: high availability via asynchronous virtual
machine replication,” in Proceedings of the 5th USENIX Sympo-
sium onNetworked Systems Design and Implementation, pp. 161–
174, San Francisco, Calif, USA, 2008.

[3] M. Rosenblum and T. Gar	nkel, “Virtual machine monitors:
current technology and future trends,” Computer, vol. 38, no.
5, pp. 39–47, 2005.

[4] E. N. Elnozahy, L. Alvisi, Y.-M.Wang, andD. B. Johnson, “A sur-
vey of rollback-recovery protocols inmessage-passing systems,”
ACM Computing Surveys, vol. 34, no. 3, pp. 375–408, 2002.

[5] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive
incremental checkpointing for massively parallel systems,” in
Proceedings of the 18th Annual International Conference on
Supercomputing, pp. 277–286, ACM, July 2004.

[6] N. Naksinehaboon, Y. Liu, C. Leangsuksun, R. Nassar, M. Paun,
and S. L. Scott, “Reliability-aware approach: an incremental
checkpoint/restartmodel inHPC environments,” inProceedings
of the 8th IEEE International Symposium on Cluster Computing
and the Grid (CCGRID ’08), pp. 783–788, IEEE, Lyon, France,
May 2008.

[7] K. B. Ferreira, R. Riesen, P. Bridges, D. Arnold, and R. Bright-
well, “Accelerating incremental checkpointing for extreme-scale
computing,” Future Generation Computer Systems, vol. 30, no. 1,
pp. 66–77, 2014.

[8] J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley, “Memory
exclusion: optimizing the performance of checkpointing sys-
tems,” So	ware—Practice and Experience, vol. 29, no. 2, pp. 125–
142, 1999.

[9] D. Ibtesham, D. Arnold, K. B. Ferreira, and P. G. Bridges, “On
the viability of checkpoint compression for extreme scale fault
tolerance,” in Euro-Par 2011: Parallel Processing Workshops, pp.
302–311, Springer, 2012.

[10] X. Lin, G. Lu, F. Douglis, P. Shilane, and G. Wallace, “Migratory
compression: coarse-grained data reordering to improve com-
pressibility,” in Proceedings of the 12th USENIX Conference on
File and Storage Technologies (FAST ’14), pp. 257–271, USENIX
Association, 2014.

[11] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore
speed for backup systems that use inline chunk-based dedupli-
cation,” in Proceedings of the 11th USENIX Conference on File
and Storage Technologies (FAST ’13), pp. 183–198, San Jose, Calif,
USA, February 2013.

Scienti	c Programming 11

[12] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication 	le system,” in Proceedings
of the 6th USENIX Conference on File and Storage Technologies
(FAST ’08), article 18, USENIX Association, 2008.

[13] L. Valiant, Center for Research in Computing Technology, Har-
vard University, Cambridge, Mass, USA, 1994.

[14] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani,
“Demystifying data deduplication,” in Proceedings of the ACM/
IFIP/USENIX Middleware’08 Conference Companion, pp. 12–17,
ACM, Leuven, Belgium, 2008.

[15] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti,
“iDedup: latency-aware, inline data deduplication for primary
storage,” in Proceedings of the 10th USENIX Conference on File
and Storage Technologies (FAST ’12), vol. 12, pp. 1–14, San Jose,
Calif, USA, February 2012.

[16] B. Agarwal, A. Akella, A. Anand et al., “Endre: an end-system
redundancy elimination service for enterprises,” in Proceedings
of the 7th USENIX Conference on Networked Systems Design and
Implementation (NSDI ’10), pp. 419–432, 2010.

[17] M. Litzkow and M. Solomon, Supporting Checkpointing and
Process Migration Outside the Unix Kernel, 1992.

[18] J. Duell,�e Design and Implementation of Berkeley Lab’s Linux
Checkpoint/Restart, Lawrence Berkeley National Laboratory,
Berkeley, Calif, USA, 2005.

[19] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: transparent
checkpointing for cluster computations and the desktop,” in
Proceedings of the 23rd IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS ’09), pp. 1–12, IEEE,
Rome, Italy, May 2009.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

