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Abstract—Typical mobile agent networks, such as multi-UAV
systems, are constrained by limited resources: energy, computing
power, memory and communication bandwidth. In particular,
limited energy affects system performance directly, such as sys-
tem lifetime. Moreover, it has been demonstrated experimentally
in the wireless sensor network literature that the total energy con-
sumption is often dominated by the communication cost, i.e. the
computational and the sensing energy are small compared to the
communication energy consumption. For this reason, the lifetime
of the network can be extended significantly by minimizing the
communication distance as well as the amount of communication
data, at the expense of increasing computational cost. In this
work, we aim at attaining an optimal trade-off between the
communication and the computational energy. Specifically, we
propose a mixed-integer optimization formulation for a multi-
hop hierarchical clustering-based self-organizing UAV network
incorporating data aggregation, to obtain an energy-efficient
information routing scheme. The proposed framework is tested
on two applications, namely target tracking and area mapping.
Based on simulation results, our method can significantly save
energy compared to a baseline strategy, where there is no data
aggregation and clustering scheme.

Index Terms—Unmanned aerial vehicles, Multi-agent systems,
Cooperative systems, Optimal control, Optimization

I. INTRODUCTION

Inexpensive mobile agents, such as unmanned aerial ve-

hicles (UAVs), are useful for several remote monitoring ap-

plications such as agriculture [1], geology [2], ecology [3]

and forestry [4]. The viability of UAVs for scientific and non-

military applications are due to reduced cost of the UAVs, low

sensor cost and ease in handling. Typically, these applications

are of large scale and the mission time can be shortened by

introducing multiple UAVs.

Central to these applications is the necessity to have a

human-in-the-loop (HITL) capability that increases situational

awareness and operator autonomy to modify missions dy-

namically. For HITL, UAVs have to gather and disseminate

information periodically to the operator who may be located

at a distant (base station) from the operational arena. Typical

information required at the base station is aerial footage [5],
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which is a communication intensive operation consuming con-

siderable energy. Unfortunately, low cost UAVs have limited

flight time due to battery/fuel capacity. Hence, there is a need

to find different mechanisms by which flight time endurance

can be increased. One way is to use gliders that take advantage

of the updrafts to soar for long endurance [6]. However, during

soaring it is highly difficult to maintain a good resolution

of the terrain due to varying UAV height for mapping or

surveillance applications. Instead, we propose to optimize

the energy consumed by various units in a given aircraft to

increase the flight time and hence the UAV team mission time.

For many applications [1], [4], it is necessary that a UAV

must fly at a constant speed and maintain a prescribed height.

Under these conditions, the major energy consumption units

are propulsion, sensing, computation and communication. On

average, the power consumed during flight is approximately

constant. One of the low cost UAV used for civilian applica-

tions is a Skywalker 1880mm wingspan [7]. A typical motor

used for this vehicle is T-motor 2820 [8] that consumes 668W

at full thrust. During the mission, typical thrust is between

50-60% and hence the consumption is ≈335-401 W. The

sensing and the computational units also consume constant

power and they are not a function of the vehicle velocity or

altitude. Typical, popular on board embedded computers used

in low cost UAVs are Raspberry Pi3 [9], ODROID xu4 [10],

and NVIDIA Jetson K1 [11]. These computers have a power

consumption of approximately 8-12 W(J/s), 10-12 W(J/s) and

6-10 W(J/s), respectively which is approximately constant.

However, the energy expended by the communication depends

on (i) the amount of data to be transmitted, (ii) the distance

between a vehicle‘ and the base station and (iii) the number

of vehicles transmitting data to the base station. Moreover,

the communication cost is far greater than the sensing and

computational energy. For example, a typical sensor node

consumes 1 nJ-1µJ/sample, roughly 1 pJ/instruction for com-

putation, while communicating via radio frequency (RF) at the

cost of 100 nJ-50µJ per bit [12]. Consider another example,

where we assume that only one UAV is broadcasting an

image of 1280x720 pixels to the base station at a distance

of 1000m, then the communication cost for transmission

is 2306 Joules which is far higher than the sensing and

computing costs. Clearly, we can see that the communication

cost dominates over propulsion and computation. Moreover,

the costs associated with propulsion and computation are

approximately constant on average, while the communication

cost is a functions of distance and the amount of information to

be broadcast. Hence, it is better for the UAVs to cooperate with
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each other to minimize the team communication energy by

performing computation on-board such that the amount of data

to be transmitted is minimized. That is, optimally selecting

(a) which vehicles should be the computing nodes and (b)

determining how many vehicles are required to communicate

with the base station. In this paper, we propose a general

Mixed Integer Nonlinear Program (MINLP) that determines

an optimal solution to (a) and (b).

A. Related Work

Similar to our Multi-UAV information gathering problem,

the goal of a Wireless Sensor Network (WSN) is to maxi-

mize network lifetime while delivering raw data to the sink

(base station) [13]. In order to maximize the lifetime of a

network, data aggregation techniques have been proposed for

WSNs [14], [15]. Data correlations between different sensor

nodes can be exploited to minimize the number of sensors

sending the data to the base station [16]. A compressed sensing

technique to reduce the data volume to be transmitted was

proposed in [17].

Hierarchical Network Routing is also one of the techniques

in prolonging a network lifetime. For this approach, the nodes

are grouped into clusters and the cluster-head for each group is

selected based on various election algorithms [18]. The cluster

head is responsible for aggregation, compression and forward-

ing data to the base station. In [19], a stochastic scheme

is used to determine whether a node will become a cluster-

head in each decision making round. The stochastic scheme

was improved in [20] by using global information of the

network to determine an optimal number of cluster heads via a

centralized control at the base station. A chain-based protocol

was proposed in [21], where the nodes are only allowed to

communicate with nearby nodes and take turns to transmit data

to the base station. A hierarchical data aggregation technique

where sensor nodes were grouped into clusters was proposed

in [22]. A local aggregator (LA) for each cluster was selected,

then a set of master aggregators (MAs) were selected based on

LAs. To select MAs, an integer program is solved such that the

total communication energy is minimized, while performing

minimum aggregation computation, such as finding an average

or a maximum. For this work, we adopt a hierarchical cluster-

based data aggregation technique from the WSN literature,

but the topology of the network and the number of MAs are

dynamically decided.

Another approach is to have a mobile sensing node collect

data from the nodes to reduce the communication over-

load [23]–[26]. Since the UAVs are mobile, using another

UAV to collect data from the surveying UAVs is not an ideal

approach. However, similar to WSN data aggregation, the

UAVs can perform computations on board to produce concise

data and periodically transmit to the base station, as in [27]

for an image processing application. Data transmission to the

base station can be performed either directly or through a UAV

relay network [28], [29]. Therefore, in this work, we propose a

self-organizing network topology that allows data aggregation

as well as a multi-hop information routing pattern.

Nonetheless, the more related work to ours is the work

of [30]. In particular, they proposed the solution to the

communication-aware information gathering problem. That is

to dynamically decide the information flow between a pair of

robots with the objective of maximizing an information value

of the communication subjected to a bandwidth constraint.

However, our work is different, as our network model allows

multiple data type flows, while theirs assume one data type,

which then increases the complexity of the problem signifi-

cantly. Specifically, our problem cannot simply be modelled

as a network flow problem, which can then be solved using

a linear program. Therefore, we propose a general MINLP

optimization framework to solve the problem of multi-UAV

information gathering applications with a multiple flows of

more than one data type.

A UAV with sensing capabilities can be applied to perform

target tracking due to its adaptability, scalability and better

performance than a static wireless sensor network. However,

most of the work on UAV target tracking applications only

focus on the target tracking accuracy, while the communication

and computation energy consumption has been neglected [31]–

[34]. Hence, this work aims to incorporate both the commu-

nication and computation energy consumption into a multi-

UAV target tracking application. Target tracking algorithms are

based on target state estimation. By combining multiple sensor

readings, which originated from different moments in time and

distances from the UAVs, a more accurate state estimate can be

obtained [35]. Precisely, the tracking objective is to maximize

the information contribution [35], [36] from each node. In

general, it has been shown that the measurement obtained from

the most distant node does not contribute much to the target

tracking accuracy. Therefore, it would be energy-efficient to

select only the subset of the UAVs to be tracking nodes. The

problem of deciding a subset of tracking sensor nodes could

be formulated as an MINLP as in [37], where the observation

covariance depends on the distance, i.e. the further away from

the target, the less accurate the measurement. Therefore, in this

work, we include the information contribution constraint to our

optimal control formulation for a target tracking application.

Energy-efficiency in target tracking applications has been

extensively studied in the WSN area; see [38] for an up-to-

date survey on the topic. In the WSN literature, two classes of

methods have been used to achieve energy-efficiency in col-

laborative WSN-based target tracking applications: a sensing-

related method and a communication-related method. The

sensing-related method uses information-driven [39], [40] and

data filtering techniques [41] to determine which sensor should

sense the information and to which sensor the data should be

sent in order to maximize the information value, i.e. target

tracking accuracy. The communication-related approach aims

at optimizing routing and aggregation techniques [42] as well

as network self-organization [43]–[45] to extend the network

lifetime. Note that, it has to be mentioned that an optimal

energy management scheme cannot be obtained by applying

only one particular approach, since they are highly dependent

on each other. Therefore, for this work, we are interested in

determining the trade-offs between these techniques such that

an optimal energy efficient management scheme is achieved.

UAVs have been used for mapping applications [1], [46]–

[48]. However, the focus of mapping applications using UAVs
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has been on improving the accuracy of the acquired images.

In some applications, the objective is to determine minimum

energy cost path for UAVs. In [49], the objective for the UAV

is to visit a set of pre-defined target locations. The determined

path must minimize the total energy consumed in visiting the

targets. In [50], the objective is to develop multi-UAV explo-

ration strategies under limited battery constraints. In [51], a

multi-UAV cooperative system using behaviors was developed

to efficiently explore a region with the constraint that the

UAVs have limited energy. In most of the above UAV mapping

applications, the issue of optimizing communication energy to

enhance mission time is not considered. In our formulation,

we want to optimize the energy consumed by communication

and computation components, so that the mission duration can

be increased. This aspect has not be adequately addressed in

the UAV mapping literature.

B. Contribution

This paper proposes a simple optimal control problem for

mobile agent systems with the objective of minimizing the

communication and the computation energy. Particularly, we

present an MINLP formulation for a multi-hop hierarchical

cluster-based self-organizing UAV network to attain an energy-

efficient reporting mechanism. The main contributions of this

work are:

• A general MINLP optimization framework for a multi-

UAV network to optimally trade-off between the com-

munication and the computational energy is presented.

That is, to dynamically determine: (i) the optimal number

of agents to communicate to the base station, (ii) the

role of each UAV: a sensor, a relay or an aggregator,

(iii) the communication links among the UAVs to obtain

an energy-efficient information routing network with data

aggregation.

• Our data aggregation network model exploits three ben-

eficial characteristics: (i) a self-organizing network, (ii)

a multi-hop network, and (iii) a hierarchical clustering

network.

• A generalised data aggregation network model that allows

multiple flows of more than one data type within the

network.

• Two information gathering applications, namely target

tracking and area mapping are addressed by our proposed

optimal control framework to illustrate both the correct-

ness and the effectiveness in trading off communication

and computation energy.

• Simulation results show an energy saving of up to 40%

for target tracking and 60% for area mapping when com-

paring the performance of our MINLP formulation with

a baseline approach, where there is no data aggregation

and clustering scheme.

C. Outline of Paper

The rest of the paper is organized as follows: In Section II,

the application details are presented. Details on problem

assumptions, system models and variable definitions are given

in Section III. The optimal control problem formulation is pre-

sented in Section IV. The optimal control problem is applied

to target tracking and mapping applications in Section V as

well as simulation results. We conclude in Section VI.

II. APPLICATION DETAILS

For this paper, we are looking at the scenerio where a team

of n UAVs is given a mission to either pursue a single target

or survey an area of interest (AOI) and needs to periodically

send the data back to the base station.

A. System Assumptions

We will assume that at each decision making time interval,

each UAV (node) i ∈ N := {1, . . . , n} has the same capability

of sensing, data aggregation and communication functions,

where n is the total number of UAVs in the fleet. A UAV

can reach any UAV using one-hop communication. A sensing

UAV periodically senses a target/AOI, i.e. information (a data

packet) is generated at a constant rate, and hence, the energy

consumed by the sensor is constant. We assume that the

UAVs are flying at constant altitude having constant speed

and there are no wind disturbances. The power consumed by

the propulsion unit during level flight is given by the relation

Pprop =
CD

C
3/2
L

√

2Rg3

ρ

m
3

2

b
, (1)

where CD is the drag coefficient, CL is the lift coefficient, R is

the aspect ratio of the aircraft, g is the gravity constant, ρ is the

air density, m is the mass of the aircraft and b is the wing span

[52]. As we can see from the relation that for a level flight, all

the quantities associated with Pprop are constant. Further, since

we assume that the UAV is flying at a fixed altitude, the lift and

drag cooefficients that depend on the velocity of the aircraft

are also constant. Hence we assume that the energy consumed

by the propulsion unit is constant under these assumptions.

As the sensor and propulsion energy consumption is constant,

including them in the formulation does not affect the decision-

making. Hence, we do not consider them in our formulation.

The information can be of different types, therefore our model

can be thought of as either a single source or multiple sources

with different data types. For simplicity, we will consider a

system with only one base station to report the data. Note that

extension to multiple sink nodes (base stations) is relatively

straightforward.

B. UAV as a Mobile Computing Node

For this work, a UAV will be modeled as a mobile com-

puting node, which is composed of three primary modules:

a sensor module, a processing module and a wireless com-

munication module, where interactions between modules are

shown in Figure 1. The main activities of the sensor module

includes sensing, analog to digital conversion (ADC) and

signal modulation. The processing module is responsible for

data processing, sensor control as well as the communication

protocol. The wireless communication module is used for

transmitting and receiving. We will assume that there exists a
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Symbol Description Symbol Description Symbol Description

N Set of all UAVs (nodes) n Total number of nodes C Communication link matrix
c Communication link assignment M Set of all data types m Total number of data types

λ Average data transmitting rate λ Sensing rate ǫ Sufficiently small constant
|G| Number of sensors of a data type a Aggregator assignment γ Aggregator ratio
B Communication bandwidth L Packet length h Decision time interval
E Energy consumption d Distance between nodes e Energy state vector
φ Inertial position vector x Position in x-axis y Position in y-axis
v/V Speed/speed vector φ Heading angle r Distance/range
X State of the system u Control input π Information contribution
H Observation matrix R Measurement covariance matrix F0 State transition matrix
w0 Process noise vector Q0 Noise covariance matrix Z Measurement vector
ν Measurement noise vector K Distance-independent coefficient Q Information matrix
P Covariance error matrix q̂ Information state vector S Set of sensor nodes
W Width of a region T Length of a region ζ Overlap factor
Nℓ Total number of lanes ℓ Lane ω Waypoint
τ Transition boundary χ Entry angle Φ Heading angle vector

Subscritpts/Superscripts

i, j UAV (node) 0 Source (target) node/initial state n+ 1 Sink node (base station)
z Data type c Communication s Sensing
p Processing t Transmitting r Receiving
β Path loss exponent + Next state k Decision making round
κ Lane index b Bottom d Desired heading angle

TABLE I: Notations

Sensor

ADC

Processing 

   Unit

Data Storage

Network

MAC

Transceiver

Sensor Module
Processing 

  Module

    Wireless

Communication

     Module

Power Supply

Fig. 1: The architecture of a mobile computing node (adapted

from [18])

medium access control (MAC) protocol, which allows a UAV

to communicate with other UAVs and the base station within

a transmission range.

C. UAV Role Assignment

Following the works of [14] and [53], we will assume that

the UAVs can be assigned to one or more of the following

roles at each time interval: (i) a sensor, which observes the

target/AOI (called node 0), via a sensor and produces the data

which will be relayed to the base station (called node n +
1), (ii) a relay, which simply relays its own data to the next

level node without any processing, or (iii) an aggregator, which

receives one or more data from other nodes, then aggregates

the data of the same type to produce a single data point and

sends the aggregated data to the next level node.

D. Aggregation Network Topology

Figure 2 illustrates the information flow in an aggregation

network topology. In particular, the data obtained from the

source (target/AOI) can be processed within the aggregator

Sink

sensor 1

sensor 3

sensor 2

relay node

aggregator 1 aggregator 2

Fig. 2: Information Flow in an Aggregation Network Topology

or passed along the relay node and routed to the sink (base

station). Note that, in this work, the network topology is

dynamic, which differs from others in the WSN literature,

i.e. the roles of the UAVs are decided at each time interval.

Moreover, only data of the same type is allowed to be

compressed/aggregated.

III. DYNAMIC MODEL WITH CONSTRAINTS

A. Communication Model and Constraints

Let C := [cijz] denote a communication link matrix, i.e.

cijz = 1 if node i transmits data of type z to node j for

i, j ∈ N+ := N ∪ {0, n + 1}, z ∈ M := {1, . . . ,m}.

Note that c0iz = 1 if node i is a sensor of data type z and

ci(n+1)z = 1 if node i sends data type z to the base station.

The communication link matrix C is subject to

cijz ∈ {0, 1}, ∀i ∈ N+, j ∈ N+, z ∈M (2)
n
∑

j=1

c0jz ≥ 1, ∀z ∈M (3)

n
∑

i=1

ci(n+1)z ≥ 1, ∀z ∈M (4)

n+1
∑

j=1

cijz ≤ 1, ∀i ∈ N, z ∈M (5)
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ciiz = 0, ∀i ∈ N+, z ∈M (6)

where (3)–(4) guarantee that for each information type there

is at least one communication link from a source to a node

and there must be at least one communication link between a

node and the base station, respectively. Note that constraint (3)

defines an initial state of the network flow at each decision

time interval. Constraint (5) enforces that there is only one

communication link of each data type out of a node. Con-

straint (6) prevents self communication.

Let λijz ≥ 0 denote the average rate (packets per second)

at which data of type z is transmitted from node i to node

j. Note that λ0jz represents the sensing rate of data type z,

assumed to be a constant equal to λz packets per time interval.

Following the definition of the communication link matrix C,

λijz needs to satisfy:

λijz = 0 ⇒ cijz = 0, ∀i ∈ N+, j ∈ N+, z ∈M, (7a)

λijz > 0 ⇒ cijz = 1, ∀i ∈ N+, j ∈ N+, z ∈M. (7b)

Constraint (7) says that if there is data flow between two nodes,

then the link assignment should be active. The constraint (7)

can be implemented as the following inequality constraints:

ǫcijz ≤ λijz ≤ |Gz|λzcijz, ∀i ∈ N+, j ∈ N+, z ∈M, (8)

where ǫ is a sufficiently small positive number and |Gz| is

the total number of sensors of data type z. In other words,

suppose λijz 6= 0, then (8) is true if and only if cijz = 1.

Suppose λijz = 0, then (8) is true if and only if cijz = 0.

Denote aiz ∈ {0, 1}, ∀i ∈ N, z ∈ M as the data type

aggregator assignment, where by definition

aiz = 1 ⇐⇒
n
∑

j=0

cjiz > 1, ∀i ∈ N, z ∈M. (9)

In other words, if there are more than one packets of the same

data type transmitted to a node, then the node will act as an

aggregator. Constraint (9) can be written as a set of linear

inequalities as follows:

(1− n)aiz +

n
∑

j=0

cjiz ≤ 1, ∀i ∈ N, z ∈M, (10a)

(1 + ǫ)aiz −

n
∑

j=0

cjiz ≤ 0, ∀i ∈ N, z ∈M, (10b)

where ǫ is a sufficiently small positive number. To guarantee

a feasible communication link, the data flow within the node

needs to be conserved, i.e. the incoming data equals the

aggregated outgoing data:

m
∑

z=1

n+1
∑

j=1

cijzλijz =

m
∑

z=1

n
∑

j=0

cjizλjiz(1 + (γz − 1)aiz),

∀i ∈ N, z ∈M,

(11)

where 0 ≤ γz ≤ 1 is the aggregation ratio of data type z.

Observe that when γz = 1, then there is no data aggrega-

tion/processing.

Since the nodes are communicating via wireless network,

the channel bandwidth are shared among the nodes. This

1

2

3
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Fig. 3: Aggregation Network Topology Example

implies that communication between two nodes restrains avail-

able bandwidth to other neighbor nodes. Therefore, bandwidth

limitation should be considered in our formulation as well,

i.e. all communication data (number of transmitting/receiving

bits) should not be greater than the channel bandwidth limita-

tion. Specifically, the bandwidth constraints can be formulated

as

m
∑

z=1

n+1
∑

j=1

cijzλijzL+

m
∑

z=1

n
∑

j=1

cjizλjizL ≤ Bh, ∀i ∈ N, (12)

where B is the channel bandwidth (bits per second), h is the

decision time interval and L is the packet length (number of

bits per packet).

Finally, we will use an example scenario to show the infor-

mation flow topology that can be achieved from our model.

Consider Figure 3 where the system is composed of five UAVs

that are given a mission to retrieve three different types of

information. Nodes 1, 2 and 4 are sensor nodes, node 3 is both

a sensor and an aggregator, while node 5 is a sensor as well as

a relay node. The correlated data obtained from node 1 (λ131)

and node 2 (λ231) are processed within node 3. At the same

time, the data obtained from nodes 2 (λ232), 3 (λ032) and

4 (λ432) are also processed within node 3. Specifically, from

(11), the outgoing data flow after the aggregation within node

3: λ351 = (λ131 + λ231)γ and λ352 = (λ032 + λ232 + λ432)γ.

Both processed data streams/packets are relayed to node 5,

which are transmitted to the base station. Note that node 5

acts as a relay node because the data received from node 3

and its own data are of different types.

B. Energy Models

We will adopt an energy consumption model, which has

been commonly used in the wireless sensor network litera-

ture [54]–[56]. The total energy in most multi-UAV applica-

tions is composed of three terms. The first term is the sensing

energy Es, which is the energy used to sense a target/AOI. We

will assume that the energy to sense one bit of information is a

constant equal to ǫs J. The sensing energy consumed by node

i within the time interval is

Es
i (c0iz) := ǫsL

m
∑

z=1

λzc0iz, ∀i ∈ N. (13)
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The second one is the aggregation energy Ep, which is the

energy to do data processing. The energy to process one bit

of information is also assumed to be a constant equal to ǫp J.

The aggregation energy consumed by node i within the time

interval is

Ep
i (cjiz, λjiz, aiz) :=ǫpL

m
∑

z=1

λzc0izaiz+

ǫpL

m
∑

z=1

n
∑

j=1

cjizλjizaiz, ∀i ∈ N.

(14)

The last energy term is the communication cost, which is

composed of two parts: the transmitting energy Et and the

receiving energy Er. The transmitting energy depends on

the distance between the nodes dij , i.e. Et(dij) := ǫt +

ǫrfd
β
ij , where β ≥ 2 is the path loss exponent, ǫt (J/bit)

and ǫrf (J/bit/mβ) are constants. The energy of receiving one

bit of information is assumed to be a constant equal to ǫr
J. The receiving energy consumed by node i within the time

interval is

Er
i (cjiz, λjiz) := ǫrL

m
∑

z=1

n
∑

j=1

cjizλjiz, ∀i ∈ N. (15)

The transmitting energy consumed by node i within the time

interval is

Et
i (cijz, λijz, dij) :=

m
∑

z=1

n+1
∑

j=1

(ǫt + ǫrfd
β
ij)cijzλijzL, ∀i ∈ N.

(16)

The total energy used by node i for sensing a target/AOI,

processing information and communication during the time

interval is denoted by

Ei := Es
i + Ep

i + Er
i + Et

i , ∀i ∈ N. (17)

Let ei be the energy stored in the ith UAV at time t, then

the remaining energy e+i at time t+ h is given by

e+i := ei − Ei ≥ 0, ∀i ∈ N. (18)

C. UAV Dynamic Constraints

The two-dimensional UAV kinetic model is given by:
[

ẋi
ẏi

]

= f(ϕi, vi, ψi) =

[

vi cosψi

vi sinψi

]

, ∀i ∈ N, (19)

where ϕi = [xi yi]
T is the inertial position, vi is the speed and

ψi is the heading of the ith UAV. We will assume that UAVs

fly at a constant speed and heading in the interval [t, t + h]
and are subject to the following constraint:

vmin ≤ vi ≤ vmax, ∀i ∈ N, (20)

where vmin and vmax are lower and upper bounds on speed.

Moreover, since we assume that the UAVs are in one-hop

communication range and to avoid collision among UAVs at

each time interval, the following constraints are necessary:

rc > dij ≥ rsafe, ∀i 6= j, (i, j) ∈ N ×N, (21)

where rc is a sufficiently large positive number defined as a

communication range limit, dij is the distance between two

nodes and rsafe is the safety distance.

D. State Update Equation

Let k denote the kth decision making round at time interval

[tk, tk+1], i.e. tk+1−tk = h. The state Xi and the control input

ui for the ith UAV are defined as

Xi := (ei, ϕi), ∀i ∈ N, (22)

uijz := (c0iz, cijz, λijz, aiz, vi, ψi), ∀i ∈ N, z ∈M,

j ∈ N ∪ {n+ 1},
(23)

where X := (X1, X2, . . . , Xn) is the state of the overall

system. The components of the overall system control input u
are all uijz , i ∈ N, j ∈ N ∪ {n+ 1}, z ∈M .

Obviously, all the variables in the previous sections can be

considered as a function of k. Let X(k) denote the state of

the overall system and u(k) denote the system control input

at time tk. The overall system state update equation is given

by

X(k + 1) = φ(X(k), u(k), k), ∀k, (24)

where φ can be derived from (18) and (19).

IV. OPTIMAL CONTROL PROBLEM

We formulate the optimal control problem to determine the

roles of the UAVs as an MINLP. We apply this formulation

to a multi-UAV target tracking application and a multi-UAV

mapping application. The MINLP is solved at each time instant

tk.

I) Target Tracking: Though our main objective is to min-

imize the total energy consumed by all nodes in the sys-

tem (17), for the target tracking application the target tracking

accuracy should be considered as well. Particularly, a shorter

distance between the sensor and the target will result in a

higher contribution to the tracking accuracy. Therefore, it is

more energy-efficient to select only a subset of sensors that

are reasonably close to the target for tracking. This objective

can be incorporated as a constraint that guarantees a minimum

information contribution πmin requirement as

π :=

m
∑

z=1

n
∑

i=1

c0iz tr{Hi(t)
T log (R−1

i (t))Hi(t)} ≥ πmin,

(25)

where π is the information contribution, Hi(t) is the obser-

vation model and Ri(t) is the measurement noise covariance.

Note that Hi(t)
T log (R−1

i (t))Hi(t) represents the informa-

tion contribution of sensor i to the tracking error of the target at

time t. Furthermore, our definition of information contribution

is slightly different from the one defined and used in [35]–

[37]. Specifically, we took the natural logarithm of the inverse

of Ri(t) to reduce the decay rate of information contribution

in order to match with the target tracking application using

mobile agents, i.e. the useful information can be obtained

within a reasonable distance between the sensor and the target.

The sensing range limit can be implemented as the follow-

ing constraint:

c0jz(d
2
0j − r2s) ≤ 0, ∀j ∈ N, z ∈M, (26)

where d0j is the distance between the node and the target and

rs is the maximum sensing range. Constraint (26) states that
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if a node is a sensor, then the distance between the node and

the target has to be less than the maximum sensing range.

Note that the square of the distance is chosen for an easier

implementation.

The multi-UAV target tracking problem can be formulated

as the following optimal control problem: Given n UAVs, a

target and a base station, determine a role for each UAV, a

communication network link and a UAV trajectory that solves

minimize
u

n
∑

i=1

Ei

subject to (2)–(6), (8), (10)–(21),

(25) and (26)

II) Area Mapping: Given n UAVs, an AOI, a base station

and a UAV trajectory, determine a role for each UAV and a

communication network link that solves

minimize
u

n
∑

i=1

Ei

subject to (2)–(6), (8), (10)–(18) and

vi = Vi, ∀i ∈ N, (27a)

ψi = Ψd
i , ∀i ∈ N, (27b)

c0iz = Ci, ∀i ∈ N, (27c)

where Vi is the constant speed of the vehicle and Ψd
i is the

desired heading angle of the path. Ci is a pre-determined data

type sensor assignment vector. Also, note that for an area

surveying/mapping application, the UAV dynamic constraints

described in Section III-C are not included because we assume

that the trajectory of each UAV and the collision avoidance

among UAVs are decided by a path planning controller.

V. APPLICATIONS

This section provides simulation results to illustrate the

correctness and effectiveness of our framework in trading off

communication and computation energy consumption in multi-

UAV applications. A multiple UAV single-target tracking and

area mapping application are chosen as our demonstration

examples. All simulations were simulated on MATLAB [57]

and the MINLP was modelled using OPTI TOOLBOX [58]

and solved with SCIP [59]. We carry out a single simulation

to compute the results. We do not carry out Monte-Carlo sim-

ulations as there are no random parameters in the simulation

settings and hence the results are similar for any number of

simulations.

A. Target Tracking

1) Target and Sensor Models: For a target tracking applica-

tion, we will follow the work of [37] to set up the optimization

problem to make a decision on a subset of the UAVs to be

sensor nodes. The motion of a target will be modelled as a

linear discrete-time Markov process:

X0(t+ 1) = F0(t)X0(t) + w0(t), (28)

where X0(t) is the state vector of a target, F0(t) is the state

transition matrix and w0(t) is the process noise assumed to be

zero mean Gaussian noise with covariance Q0(t).
The measurement equation of a sensor is

Zi(t) = Hi(t)X0(t) + νi(t), (29)

where νi(t) is the measurement noise assumed to be zero

mean Gaussian with covariance Ri(t). We will assume that

the measurement noise covariance is a function of the distance

between a sensor and a target, i.e. Ri(t) := K(t)dβ0i(t),
where K(t) is a distance-independent coefficient, and d0i(t)
is the distance from a sensor to a target. Moreover, we

will also assume that the measurement noise covariances are

uncorrelated between any two nodes.

2) Information Filter: For multi-sensor data fusion, we use

an information filter [37], [60], which is an inverse covariance

form of the Kalman filter. Let X̂0(t|t) and X̂0(t+1|t) denote

the target estimated state vector and target predicted state

vector, respectively. Define the information matrix Q(t|t) :=
P−1(t|t) and Q(t + 1|t) := P−1(t + 1|t), the information

state vector q̂(t|t) := P−1(t|t)X̂0(t|t) and q̂(t + 1|t) :=
P−1(t + 1|t)X̂0(t + 1|t), where P (t|t) and P (t + 1|t) are

the covariances of the estimation error X0(t|t)− X̂0(t|t) and

the prediction error X0(t+1|t)− X̂0(t+1|t). The prediction

and estimation steps are

Estimation:

q̂(t|t) = q̂(t|t− 1) +HT
i (t)R

−1
i (t)Zi(t), (30)

Q(t|t) = Q(t|t− 1) +HT
i (t)R

−1
i (t)Hi(t), (31)

Prediction:

q̂(t+ 1|t) = Q(t+ 1|t)F0(t+ 1)Q−1(t|t)q̂(t|t), (32)

Q(t+ 1|t) = (F0(t+ 1)Q−1(t|t)FT
0 (t+ 1) +Q0(t+ 1))−1.

(33)

For multi-sensor data fusion, i.e more than one node track-

ing the target, (30) and (31) are replaced, respectively by

q̂(t|t) = q̂(t|t− 1) +
∑

i∈S

HT
i (t)R

−1
i (t)Zi(t), (34)

Q(t|t) = Q(t|t− 1) +
∑

i∈S

HT
i (t)R

−1
i (t)Hi(t), (35)

where S is a set of sensor nodes.

3) Simulation settings: For simplicity, we consider a small

UAV network, i.e. n = 3, which are deployed to track a single

target in a two-dimensional area and needs to periodically

report the target state back to the base station. Note that we

consider the single target state as one data type. The base

station is at (0,0). The initial positions of the UAVs are at

positions (0,100), (100,0), and (100,100). The target initial

position is (20,20). The target state vector X0(t) in (28) is

composed of the target positions in the x and y axes, and

velocities in the x and y axes, denoted as vx and vy , respec-

tively. The parameters corresponding to the target state (28),

measurement equations (29) and information filter are [37]:

F0(t) =









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









, Q0(t) =









2 0 0 0
0 2 0 0
0 0 0.04 0
0 0 0 0.04









, ∀t
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Fig. 4: (a) Normalised total energy consumption for different

channel bandwidths with respect to baseline scheme (b) Ag-

gregator node assignments at different time steps for channel

bandwidth B = 7 Kbps.

Hi(t) =

(

1 0 0 0
0 1 0 0

)

, K(t) =

(

1× 10−6 0
0 1× 10−6

)

, ∀t

q̂(1|0) =









0
0
0
0









, Q(1|0) =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1.









For all simulations, we let the target velocities be vx =
10 m/s vy = 15m/s. The UAV parameters [61] are vmin =
10 m/s, vmax = 30m/s, the initial UAV energy budget is

100KJ, the communication range rc = 500m, the sensing

range rs = 200m, the safety distance rsafe = 50m, the

decision time interval h is 1 s. The energy parameters [14]

are ǫs = 50 nJ/bit, ǫp = 10 nJ/bit, ǫr = 135 nJ/bit, ǫt =
45 nJ/bit, ǫrf = 0.1 nJ/bit/m2, γz = 0.7, β = 2, L = 1024
bits/packet, λz = 5 packets/time interval and πmin = 6.

4) Simulation Results: We compare the results obtained

from the MINLP with a baseline strategy where all sensor

nodes individually communicate with the base station using

a single-hop communication protocol. The comparison is

performed in terms of energy consumed per decision time

interval [t, t+h] between the MINLP and the baseline strategy.

The vertical axis in Figure 4a represents the system energy

consumption per decision time [t, t + h] normalized by the

baseline scheme. Our simulation suggests that the channel

bandwidth constraint has an effect on the energy consumption

of the system due to the restriction on the information flow

pattern. Specifically, when the bandwidth is limited below

the threshold value of 5 Kbps (not shown on the plot),

the MINLP algorithm cannot find a solution that is better

than the baseline strategy, hence no energy saving can be

obtained. However, when the channel bandwidth is above the

threshold, the MINLP can provide an optimal strategy that

can save energy consumption up to 40% compared to the

baseline strategy, as shown in Figure 4a. However, the energy

saving improvement cannot be observed with an increase in

B > 6 Kbps. Figure 4b shows the aggregator role assignments

of each UAV at each time instance of the simulation, where 1

refers to an active role.

B. Area mapping

A team of n UAVs are deployed to survey a rectangular

region with a length of T meters and a width of W meters

using cameras. The vehicles are subject to communication,

sensing and energy constraints. Each UAV has a sensing range

of rs meters determined by the camera resolution and altitude.

Typically, mapping applications are performed using a lawn-

mowing pattern and hence we split the rectangular region into

lanes of width ζrs, where 0 < ζ ≤ 1 is the overlap factor. ζ =
1 implies the distance between the lanes is rs and there is no

overlap of sensing regions between the aerial survey of UAVs,

while 0 < ζ < 1 implies there is some overlap of the sensor

footprint between two adjacent lanes. In terms of area coverage

ζ = 1 is the best strategy. However, for mapping purposes,

there must be at least 50% overlap between two lanes to create

good mosaics [62]. We assume a linear relationship between

the overlap factor and the data aggregation ratio, i.e. ζ = γ,

which means that the higher the overlapping area, the higher

the data reduction after data processing. Note that here we

assume that the overlap factor is a constant and the same for

all nodes, therefore the subscript z of γ notation is dropped.

The number of lanes are Nℓ := ⌈ T
2ζrs

⌉ + 1 and each lane

is denoted by ℓκ, κ = 1, . . . , Nℓ. The vehicles use waypoint

navigation for the survey and hence each lane ℓκ is represented

by two waypoints ℓκ = (ωb
κ, ω

t
κ), where, ωb

κ = (xbκ, y
b
κ), ω

t
κ =

(xtκ, y
t
κ) as shown in Figure 5a. Lane ℓκ can be accurately

tracked using any accurate path following algorithm [63].

The time taken by the UAV team to survey the complete

region depends on the number of UAVs deployed; when n =
1, the lower bound on the mission time is WTNℓ seconds.

Initially, UAV i is given a lane ℓi, i ∈ N in terms of their

waypoints ℓi = (ωb
i , ω

t
i). Once the vehicle reaches ωt

i , the

lane ℓi+n = (ωt
i+n, ω

b
i+n) is assigned. However, we can see

that UAV i is assigned the waypoint sequence (ωb
i , ω

t
i) for the

first lane while (ωt
i+n, ω

b
i+n) was assigned the next lane. If

we assigned (ωb
i+n, ω

t
i+n), then the vehicle has to travel from

ωt
i to ωb

i+n, which is unproductive travel, since the vehicle

expends fuel without surveying any of the region. Hence, we

assign the UAV with an alternating sequence of waypoints.

The desired heading angle ψd
i is determined as

ψd
i =

{

arctan(ybκ − ytκ, x
t
κ − xbκ) if ℓκ = (ωb

i , ω
t
i)

arctan(ybκ − ytκ, x
b
κ − xtκ) if ℓκ = (ωt

i , ω
b
i ).

(36)

1) Simulation Setting: We consider a region of

3000 m×3000 m and the base station is located in the

middle at (1500, 1500). The sensing range of the vehicles

rs = 100m, the communication range rc = 2500m and the

speed of the vehicles is 10 m/s. We assume three vehicles

are deployed to perform the mapping. The parameters used

in the simulation are ǫs = 50 nJ/bit, ǫp = 10 nJ/bit, ǫr =
135 nJ/bit, ǫt = 45 nJ/bit, ǫrf = 0.1 nJ/bit/m2, β = 2,

L = 1280× 720 bits/packet and λz = 5 packets/time interval.

Each UAV communicates to the base station every h = 5
seconds. The vector field based path following algorithm [64]

is selected as the UAV path planning controller. The vector

field based path following approach uses a two-fold strategy.

When the vehicle is far away from the desired path, the

algorithm directs the vehicle towards the path until the vehicle

is τ meters from the path as shown in Figure 5b, where

the parameter τ is the transition boundary between moving

towards the path and following the path. The vehicle then
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Fig. 5: (a) The search area is decomposed into lanes and each

UAV is assigned to one lane. Once the UAV completes one

lane, then another lane is assigned. (b) The vector field of the

vehicle at various locations is shown. τ = 20 and χ = π/3.
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Fig. 6: (a) No common data between the nodes (b) nodes 2

and 3 have common data of type 1 (c) node 2 and node 1 has

common data of type 0 (d) node 2 has common data of type

0 with node 1 and type 1 with node 3 (e) all the nodes have

common data of type 0 and 1.

transits into following the desired path with an entry angle of

χ. The effects of τ and χ are well studied in [64] and [25].

For all simulations, we use τ = 20 meters and χ = π/3 rad.

For the mapping application, the values for c0iz depends

on the distance between the nodes. That is, if the distance

is greater than twice that of the sensing range rs, then we

will assume that the sensing data are not related and cannot

be aggregated. In other words, the data are of different types.

In order to illustrate how c0iz values are determined at each

decision interval, consider a three vehicle system in Figure 6(a)

where a distance between node i and node j dij > 2rs. For

this scenario, there is no common data type between the nodes

due to no overlap of the sensed regions, i.e. z ∈ {0, 1, 2}.

Therefore, the values of c010 = 1, c011 = 0, c012 = 0, c020 =
0, c021 = 1, c022 = 0, c030 = 0, c031 = 0 and c032 = 1, which

implies that none of the nodes have common data type.

Now consider the scenario as shown in Figure 6(b), where

nodes 1 and 2 have a common data type z = 0 and node

3 is distant from nodes 1 and 2. Therefore, in this case, we

have c010 = 1, c011 = 0, c020 = 1, c021 = 0, c030 = 0 and

c031 = 1. Similarly, we can determine values for other agent

configurations shown in Figure 6.

2) Simulation Results: The bandwidth allocated to commu-

nicate with the base station plays a key role in determining the

computing nodes. Figure 7 shows the total energy consumption

of the MINLP normalised to the baseline strategy for every

h = 5 seconds with an overlap factor ζ = 0.5. When the

available bandwidth is less than 6 Mbps (not shown on the

plot), the nodes communicate directly to the base station.

Hence, we do not show this effect. However, when we increase
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Fig. 7: The normalized total energy of the MINLP compared to

the baseline strategy for different bandwidth constraints having

ζ = 0.5.
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Fig. 8: The aggregator node selection at different time steps

when the bandwidth parameter is varied for the same overlap

ζ = 0.5. (a) B = 6 Mbps and (b) B = 10 Mbps.

the bandwidth, data aggregation behaviours can be observed.

As shown in Figure 7, the energy saving is close to 20% for

most of the decision cycles (for B = 6 Mbps). With further

increase in bandwidth to B = 10 Mbps, we can see that there

is further increase in energy saving of 35%. However, with

additional increase in bandwidth to B = 13 Mbps, there is

no further improvement in energy saving. As expected, the

energy reduction is due to co-operation among the agents,

i.e. when the bandwidth is sufficiently large, more energy-

efficient feasible information flow patterns are allowed.

Effect of overlap factor: In the mapping application, the

overlap factor ζ plays a key role in determining the amount

of information that needs to be transmitted by the aggregator

node to the base station. When ζ increases, the agents are close

to each other with high overlap. Therefore, during the mosaic

operation, the resultant image size will be smaller compared

to the sum of individual images. In order to validate this

hypothesis, we carried out experiments with different overlap

factors ζ = 0.3, 0.5, 0.7 and 0.9 for the same bandwidth of

10 Mbps. In Figure 9a, we can see the effect of ζ for a

given bandwidth. Specifically, the energy saving increases as ζ
increases. For example, when ζ = 0.9, we can achieve savings

up to 60% compared to the baseline strategy.

We further, carry out simulations for 5 agents having the

same simulation parameters as above. Figure 9b shows the

respective energy saving when 5 agents perform the survey.

With increasing overlap factor, the amount of information to

be dispatched reduces and hence there is a decrease in energy



10

0 50 100

Time (s)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su
m
p
ti
o
n

ζ=0.3

ζ=0.5

ζ=0.7

ζ=0.9

(a)

0 50 100

Time (s)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su
m
p
ti
o
n

ζ=0.6

ζ=0.7

ζ=0.8

ζ=0.9

(b)

Fig. 9: The normalized total energy of the MINLP with

reference to the baseline strategy for different overlap factors.

(a) For 3 agents with channel bandwidth of B = 10 Mbps.

(b) For 5 agents with channel bandwidth of B = 20 Mbps.

consumption. With increase in number of agents we can see

that a trend in energy conversation similar to that of agent 3

simulation can be seen.

Energy savings: For the given simulation setting in the

mapping application, the total energy consumed by the base-

line strategy for 3 agents is 524030 Joules while that of the

MINLP is 335310 Joules. The MINLP strategy gives a saving

of 188720 Joules, which results in 95 seconds of additional

flight time, including communicating with the base station

19 times. The speed of the UAV is 10 m/s and hence the

additional distance travelled is 950 m. Similarly for the 5

agents case, the baseline strategy consumes 743680 Joules

while our proposed method consumes 405130 Joules. This

gives a saving of 338550 Joules that results in 135 seconds

of additional flight time for each agent and the agents can

communicate to the base station 27 times. Since the speed of

the vehicle is 10 m/s, the additional distance the vehicles can

travel using the proposed approach is 1350 m.

Comparison with rigid structures: We compare the perfor-

mance of the MINLP approach against some representative

rigid hierarchical structures and baseline strategy. Since there

are multiple agents, a rigid hierarchical structure represents

one type of solution that may not be optimal. For a 3 agent

scenario, we consider two hierarchical rigid structures – H1

and H2, as shown in Figure 10(a). In H1 structure, vehicles

1 and 3 broadcast their information to agent 2 which in turn

assimilates the information and broadcasts to the base station.

Another type of rigid structure is H2, where agents 1 and

2 broadcast the information to agent 3 which assimilates the

information and then broadcasts to the base station. As the

agents are deployed in lanes (see Figure 5a), the distance

between agent 1 and the base station is greater than the

distance between agent 3 and the base station, and hence

we did not consider a rigid structure where only agent 1 is

communicating. Figure 10(b) shows the normalized mission

time for each of these strategies. The mission time represents

the time to accomplish the coverage until one of the agent’s

drains its battery. We normalize by taking the time taken by

the baseline strategy as the reference.

The performance of the rigid structure is poor, because

the agents that need to communicate with the base station

is fixed. Therefore, the agents that communicate with the base

station will drain their battery quicker than the non-base station

communicating agents. The strategy H2 performs better than

H1 since the communicating agent is closer to the base station

in H2 than in H1 strategy. The MINLP strategy performs the

best.

Similarly, we carried out a comparison between rigid

structures, baseline strategy and the proposed strategy for 5

agents. With 5 agents, there can be different combinations

in which clusters can be formed. For example, clusters can

be: {1, 2, 3, 4, 5} – individual agents, or {(1, 2), 3, 4, 5} – a

set of two agents cooperating while the others transmitting

directly to the base station or {(1, 2, 3), 4, 5} – a team of

three agents and the rest directly communicate to the base

station or {(1, 2)(3, 4), 5} – two agents teams of different

combinations or {(1, 2, 3, 4), 5} – four agent teams with a

single member broadcasting to the base station. It is difficult to

compare with all of the combinations in which rigid structure

can be formed and hence we select few representative ones as

shown in Figure 10(c). The strategy H3 and H4 represents a

scenario where the agent 3 and agent 5 are the information

assimilation as well as broadcast agents to the base station

respectively. The strategy H5 represents a case where there

are two data assimilation and broadcasting agents to the base

station – agent 2 and 4. Even for 5 agents, the rigid structures

have lowest performance compared to the baseline strategy as

shown in Figure 10(d), while the MINLP performs the best.

Effect of increasing the number of agents: We carried

out empirical evaluation through simulation by increasing

the number of agents and recording the average time taken

to compute the solution. It is well known that the MINLP

computational complexity increases with an increase in the

number of agents which is also depicted in the Figure 11.

Our formulation works well till 10 number of agents, for

which the average time taken is 2.67 seconds. Therefore, in

order to reduce the computational complexity one may have

to use hierarchical partitioning of the agents, where a small

set of UAVs (≤ 10) are assigned to a single base-station and

the operation consists of many base stations. With increase

in number of nodes, the amount of data to be transmitted

increases and a single receiver may not be able to handle

such high traffic. Hence, the usual approach especially when

imagery data need to be transmitted from UAVs is to assign

a receiver to which a small set of UAVs communicate.

VI. CONCLUSIONS

Cooperation between mobile computing agents enables

them to optimize the computation and communication energy

consumption, thereby increasing the system lifetime. We have

devised an MINLP formulation that shows lower energy

consumption by incorporating data aggregation and clustering

schemes. The MINLP formulation is generic and we utilized

this generality by validation on two data gathering applica-

tions, namely target tracking and mapping. We have studied

the effect of different parameters on the MINLP decision-

making. Simulation results show that the channel bandwidth
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Fig. 10: (a) Two rigid structures H1 and H2. In H1, vehicle 2 transmits the data to the base station B and in H2 vehicle 3

transmits the information to the base station. (b) Performance of different strategies against the baseline strategy for a complete

mission. (c) Three rigid structures H3, H4 and H5 for 5 agent scenario. (d) Normalized mission time of different strategies

against the baseline strategy for a complete mission.
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Fig. 11: Computational time taken to compute MINLP solution

for increasing number of agents

has a direct impact on the energy saving scheme, i.e. sufficient

bandwidth is necessary for an implementation of an intelligent

information routing scheme.

The proposed MINLP formulation can be further extended

to optimize the energy consumption of various units. One po-

tential direction is to make a decision on when to communicate

to the base station. Currently, we assume that the decision

interval is fixed. However, depending on the amount of data,

channel bandwidth and the transceiver energy properties, the

decision cycle can be dynamically selected to optimize the

overall energy consumption. Further, developing efficient al-

gorithms to solve the MINLP problem as well as whether

to implement the proposed framework in a centralized or

distributed manner could be subjects for future work.
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