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ABSTRACT
Developed for multimedia and game applications, as well as
other numerically intensive workloads, the CELL processor
provides support both for highly parallel codes, which have
high computation and memory requirements, and for scalar
codes, which require fast response time and a full-featured
programming environment. This first generation CELL pro-
cessor implements on a single chip a Power Architecture pro-
cessor with two levels of cache, and eight attached stream-
ing processors with their own local memories and globally
coherent DMA engines. In addition to processor-level par-
allelism, each processing element has a Single Instruction
Multiple Data (SIMD) unit that can process from 2 double
precision floating points up to 16 bytes per instruction.

This paper describes, in the context of a research pro-
totype, several compiler techniques that aim at automat-
ically generating high quality codes over a wide range of
heterogeneous parallelism available on the CELL proces-
sor. Techniques include compiler-supported branch predic-
tion, compiler-assisted instruction fetch, generation of scalar
codes on SIMD units, automatic generation of SIMD codes,
and data and code partitioning across the multiple proces-
sor elements in the system. Results indicate that significant
speedup can be achieved with a high level of support from
the compiler.

1. INTRODUCTION
The increasing importance of multimedia, game applica-

tions, and other numerically intensive workloads has gener-
ated an upsurge in novel computer architectures tailored for
such applications. Such applications include highly parallel
codes, such as image processing or game physics, which have
high computation and memory requirements. They also in-
clude scalar codes, such as networking or game artificial in-
telligence, for which fast response time and a full-featured
programming environment are paramount.

Developed with such applications in mind, the CELL pro-
cessor provides both flexibility and high performance. This
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first generation CELL processor includes a 64-bit multi-
threaded Power Processor Element (PPE) with two lev-
els of globally-coherent cache. It supports multiple op-
erating systems including Linux. For additional perfor-
mance, a CELL processor includes eight Synergistic Pro-
cessor Elements (SPEs). Each SPE consists of a new pro-
cessor designed for streaming workloads, a local memory,
and a globally-coherent DMA engine. Computations are
performed by 128-bit wide Single Instruction Multiple Data
(SIMD) functional units. An integrated high bandwidth bus
glues together the nine processors and their ports to external
memory and IO.

In this paper, we present our compiler approach to sup-
port the heterogeneous parallelism found in the CELL ar-
chitecture, which includes multiple, heterogeneous processor
elements and SIMD units on all processing elements. The
proposed approach is implemented as a research prototype
in IBM’s XL product compiler code base and currently sup-
ports the C and Fortran languages.

Our first contribution is a set of compiler techniques that
provide high levels of performance for the SPE processors.
To achieve high rates of computation at moderate costs in
power and area, functionality that is traditionally handled in
hardware has been partially offloaded to the compiler, such
as memory realignment and branch prediction. We provide
techniques to address these new demands in the compiler.

Our second contribution is to automatically generate
SIMD codes that fully utilize the functional units of the
SPEs as well as the VMX unit found on the PPE. The pro-
posed approach minimizes the overhead due to misaligned
data streams and is tailored to handle many of the code
structures found in multimedia and gaming applications.

Our third contribution is to enhance the programmabil-
ity of the CELL processor by parallelizing a single source
program across the PPE and 8 SPEs. Key to this is our ap-
proach of presenting the user with a single shared memory
image, effected through compiler mediated partitioning of
code and data and the automatic orchestration of any data
movement implied by this partitioning.

We report an average speedup factor of 1.3 for the
proposed SPE optimization techniques. When they are
combined with SIMD and parallelization compiler tech-
niques, we achieve average speedup factors of, respectively,
9.9 and 7.1, on suitable benchmarks. Although not inte-
grated yet, the latter two techniques will be cumulative as
they address distinct sources of parallelism.
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Figure 1: The implementation of a first-generation CELL Processor

This paper is organized as follows. We describe the CELL
processor in Section 2 and our programming model in Sec-
tion 3. We present our SPE optimization techniques in Sec-
tion 4 and our automatic SIMD code generation techniques
in Section 5. We discuss our techniques for parallelization
and partitioning of single source programs among the PPE
and its 8 SPEs in Section 6. We report performance results
in Section 7 and conclude in Section 9.

2. CELL ARCHITECTURE
The implementation of a first-generation CELL proces-

sor [1] includes a Power Architecture processor and 8 at-
tached processor elements connected by an internal, high-
bandwidth Element Interconnect Bus (EIB). Figure 1a
shows the organization of the CELL elements and the key
bandwidths between them.

The Power Processor Element (PPE) consists of a 64-bit,
multi-threaded Power Architecture processor with two lev-
els of on-chip cache. The cache preserves global coherence
across the system. The processor also supports IBM’s Vector
Multimedia eXtensions (VMX) [2] to accelerate multimedia
applications using its VMX SIMD units.

A major source of compute power is provided by the eight
on-chip Synergistic Processor Elements (SPEs) [3, 4]. An
SPE consists of a new processor, designed to accelerate me-
dia and streaming workloads, its local non-coherent mem-
ory, and its globally-coherent DMA engine. Key units and
bandwidths are shown in Figure 1b.

Nearly all instructions provided by the SPE operate in
a SIMD fashion on 128 bits of data representing either 2
64-bit double floats or long integers, 4 32-bit single float
or integers, 8 16-bit shorts, or 16 8-bit bytes. Instructions
may source up to three 128-bit operands and produce one
128-bit result. The unified register file has 128 registers and
supports 6 read and 2 write per cycle.

The memory instructions also access 128 bits of data, with
the additional constraint that the accessed data must reside
at addresses that are multiples of 16 bytes. Namely, the
lower 4 bits of the load/store byte addresses are simply ig-
nored. To facilitate the loading/storing of individual values,
such as a byte or word, there is additional support to ex-
tract/merge an individual value from/into a 128-bit register.

Instructions Pipe Lat.

arithmetic, logical, compare, select even 2
shift, rotate, byte sum/diff/avg even 4
float even 6
16-bit integer multiply-accumulate even 7
128-bit shift/rotate, shuffle, estimate odd 4
load, store, channel odd 6
branch odd 1-18

Figure 2: Latencies and pipe assignment for SPE.

An SPE can dispatch up to two instructions per cycle
to seven execution units that are organized into even and
odd instruction pipes. Instructions are issued inorder and
routed to their corresponding even/odd pipe. Independent
instructions are detected by the issue logic hardware and are
dual-issued provided they satisfy the following code-layout
conditions: the first instruction must come from an even
word address and use the even pipe, and the second in-
struction must come from an odd word address and use the
odd pipe. When this condition is not satisfied, the two in-
structions are simply executed sequentially. The instruction
latencies and their pipe assignments are shown in Table 2.

The SPE’s 256K-byte local memory supports fully-
pipelined 16-byte accesses for memory instructions and 128-
byte accesses for instruction fetch and DMA transfers. Be-
cause the memory is single ported, instruction fetches,
DMA, and memory instructions compete for the same port.
Instruction fetches occur during idle memory cycles, and up
to 3.5 fetches may be buffered in the 32-instruction fetch
buffers to better tolerate bursty peak memory usages. To
further avoid instruction starvation, an explicit instruction
can be used to initiate an inline instruction fetch.

The branches are assumed non-taken by the SPE hard-
ware but the architecture allows for a branch hint instruction
to override the default branch prediction policy. In addi-
tion, the branch hint instruction prefetches up to 32 instruc-
tions starting from the branch target, so that a correctly-
hinted taken branch incurs no penalty. One of the instruc-
tion fetch buffers is reserved for the branch hint mechanism.
In addition, there is extended support for eliminating short
branches using bit-wise select instructions.



Data is transfered between the local memory and the
DMA engine in chunks of 128 bytes. The DMA engine can
support up to 16 requests of up to 16K bytes. Both the
PPE and SPEs can initiate DMA requests from/to each-
other’s local-memory as well as from/to global memory. The
DMA engine is part of the globally coherent memory address
space; addresses of local DMA requests are translated by an
MMU before being sent on the bus. Bandwidth between
the DMA and the EIB bus is 8 bytes per cycle in each direc-
tion. Programs interface with the DMA unit via a channel
interface and may initiate blocking as well as non-blocking
requests.

3. PROGRAMMING MODELS
Programmers of the CELL architecture are presented with

a wide range of approaches to extracting maximum perfor-
mance. At one end of the spectrum, a dedicated developer
has full control over the machine resources. At the other
end, an application writer can enjoy a single-source program
targeting a shared-memory multi-processor abstraction.

By programming the SPE in assembler, a dedicated pro-
grammer can select which registers to use, choose scalar or
SIMD instructions, and schedule the code manually. This
provides a high degree of flexibility and, when used judi-
ciously, will yield the highest performance. Within this
realm there are a number of different approaches to mask-
ing the system complexity, including the use of libraries, the
function offload model, and task pipelining.

Prototypes developed using this model have demonstrated
significant performance potential. Notwithstanding, this ap-
proach can be extremely labor intensive, and may repre-
sent an approach adopted by a small fraction of CELL pro-
grammers. Frequently, even dedicated application develop-
ers want to deploy high level programming languages, for
example, for less performance-critical sections of an appli-
cation, to reach higher productivity and programmability.

At the next level of support, we provide distinct compilers
highly tuned to the respective ISAs. The programmer still
has to deal with separate SPE and PPE programs, their
respective address spaces and explicit interprocessor com-
munication. However, most of the machine dependent op-
timization is performed automatically by the highly tuned
compilers.

For critical sections of an application, a programmer can
use a rich set of SPE and VMX intrinsics to precisely con-
trol the SIMD instruction selection and data layout, while
leaving scheduling and register allocation decisions to the
compiler. An intrinsic provides to the programmer a func-
tion that mimics the behavior of the underlying instructions
in the target architecture. An intrinsic generally translates
to a single instruction in the final output of the compiler, and
we provide intrinsics for nearly all SPE/VMX instructions,
including a full complement to support DMA operations.
However, even programming with intrinsics and addressing
data-layout issues manually can incur a significant invest-
ment of time. Moreover, the resulting source code will not
be portable.

At the next level of support, our compiler provides auto-
matic simdization targeting the SPE/PPE SIMD units. As
will be shown in Section 5, we have developed techniques
to extract SIMD parallelism from multiple language scopes
such as across loop iterations or within a basic block. We
also provide a systematic solution to addressing alignment

constraints imposed by SPE/PPE memory subsystems. At
this level, the application developer must still manually par-
tition the program in consideration of the differing charac-
teristics of the underlying ISAs and the constraints of the
underlying memory subsystem. Code and data transfers
must be positioned to ensure maximum overlap of commu-
nication and computation. The application must be hand
parallelized to run on all the CELL processing elements to
ensure the maximum performance benefit.

At the highest level of support, our compiler provides an
abstraction of the underlying architectural complexity, pre-
senting a single shared memory, multi-processor image, and
providing parallelization across all the processing elements.
In our current implementation, we use an OpenMP program-
ming model, whereby the user specifies the parallel sections
of the program. Our approach is equally applicable to au-
tomatic parallelization support and other parallel program-
ming paradigms such as UPC.

4. OPTIMIZED SPE CODE GENERATION
In this section, we describe the current compiler optimiza-

tion techniques that address key architectural features of the
SPE. During initial development of the SPE instruction set,
a preliminary scalar compiler was prototyped as proof-of-
concept. This allowed us to quickly investigate the perfor-
mance impact of a SIMD-only instruction set with a unified
scalar/vector register file as well as with a memory interface
based on loading a 128-bit vector, extracting, and appropri-
ately formatting the desired scalar value. However, in this
section we describe our later implementation within IBM’s
XL compiler code base.

4.1 Scalar Code on SIMD Units
As mentioned in Section 2, nearly all SPE instructions op-

erate on 128-bit wide SIMD data fields, including all mem-
ory instructions. One notable exception is the conditional
branch instructions which branch on nonzero values from the
primary slot1 of a 128-bit register. The other notable excep-
tion is the memory address fields which are also expected to
reside in the primary slot by the memory instructions.

When generating scalar codes on an SPE, we must ensure
that the SIMD nature of the processor does not get in the
way of program correctness. Mainly, we must ensure that
the alignment of the data within SIMD registers is properly
taken into consideration.

To illustrate the impact of SIMD units on scalar code,
consider the following a=b+c scalar computation. Because
the SPE memory subsystem processes only 16-byte aligned
memory requests, loading b from memory yields the 32-bit b
value2 plus 96 bits of unrelated data. The actual location of
the b value within the register is determined by the 16-byte
alignment of b in memory.

Once the input data is in registers, the compiler must
continue to keep track the alignment of its data since data
can safely be operated on in SPE SIMD units only when

1The primary slot corresponds to highest order (leftmost)
32 bits of a register. For subword data types, only the least
significant bits in the primary slot are considered.
2This is technically true only when the data is naturally
aligned, e.g. when a 32-bit integer resides in memory at
addresses that are multiples of 4 bytes. In this paper, we
assume and support only naturally aligned data elements.



they reside at the same register slots. For example, the 128-
bit registers containing b and c can only be added if the b

and c values reside at the same byte offset within their re-
spective registers. When relatively misaligned, we permute
the register content to enforce matching alignment. Since
scalar computations in highly optimized multimedia codes
are mostly about address and branch-condition computa-
tions, the default policy is to move any misaligned scalar
data into the primary slot of their registers.

The storing of a scalar value also requires some care on
the SPEs since stores are also 128-bit wide instructions. For
scalars, the compiler must first load the original 128-bit data
in which the result resides, then splice in the new value, and
store the resulting 128-bit data to the memory.

We take several steps to avoid such overhead. First, we
allocate all temporary and global scalar variables in the pri-
mary slot of their own, private 128-bit chunk in memory.
The padding overhead is insignificant compared to the code
size increase incurred by additional instructions that would
be otherwise needed to realign the data at runtime. Sec-
ond, we perform aggressive register allocation for all local
computations, such as address and loop index variables, to
make good use of the 128-entry register file. As a result,
most local variables reside exclusively in the primary slot of
their respective registers, and thus memory storage and as-
sociated load/store instructions are not needed. Finally, we
attempt to automatically simdize code to reduce the amount
of scalar codes in an application.

4.2 Branch Optimizations
The SPE has a high branch-misprediction penalty of 18

cycles. Because branches are only detected late in the
pipeline at a time where there are already multiple fall-
through instructions in flight, the SPE simply assumes all
branches to be non-taken.

Because taken branches are so much more expensive than
non-taken branches, the compiler first attempts to eliminate
taken branches. One well-known approach for eliminating
short if-then-else constructs is if-conversion via the use of
select instructions provided by the SPE. Another well-known
approach is to determine the likely outcome of branches in
a program, either by means of compiler analysis or via user
directives, and perform code reorganization techniques to
move cold paths out of the fall-through path.

To boost the performance of the remaining taken-
branches, such as function calls, function returns, loop-
closing branches, and some unconditional branches, the SPE
provides a branch hint instruction. This instruction, re-
ferred to as Hint for Branch or hbr, specifies the location of
a branch and its likely target address. Instructions from the
hinted branch target are prefetched from memory in a ded-
icated hint instruction buffer and the buffered instructions
are then inserted into the instruction stream immediately
after the hinted branch. When the hint is correct and sched-
uled at least 11 cycles prior to its branch, the branch latency
is essentially one cycle; otherwise, normal branch penalties
apply. Presently, the SPE supports only one active hint at
a time.

Likely branch outcomes can either be measured via branch
profiling, estimated statically, or provided by the user via
expect builtins or exec freq pragmas. We use the latter
two techniques. We then insert a branch hint for branches
with taken probability higher than a given threshold.

For loop-closing branches, we attempt to move the hbrs
outside the loop to avoid repetitive execution of hint in-
structions. This optimization is possible because a hint re-
mains effective until replaced by another one. Unconditional
branches are also excellent targets for branch hint instruc-
tions. The indirect form of the hbr instruction is used for
hinting function returns, function calls via pointers, and all
other situations that give rise to indirect branches.

4.3 Instruction Scheduling
The scheduling process consists of two closely interacting

subtasks: scheduling and bundling. The scheduler’s main
objective is to schedule operations that are on the critical
path with the highest priority and schedule the other less
critical operations in the remaining slack. While typical
schedulers deal with resources and latencies, the SPEs also
have constraints that are expressed in numbers of instruc-
tions. For example, the hbr branch hint instruction cannot
be more than 256 instructions away from its target branch
and should be no closer than 8 instructions. Constraints
expressed in terms of instruction counts are further compli-
cated by the fact that the precise number of instructions in
a scheduling unit is known only after the bundling subtask
has completed.

The bundler’s main role is to ensure that each pair of in-
structions that are expected to be dual-issued satisfies the
SPE’s instruction issue constraints. As mentioned in Sec-
tion 2, the processor will dual-issue independent instruc-
tions only when the first instruction uses the even pipe and
resides in an even word address, and the second instruction
uses the odd pipe and resides in an odd word address. Once
the instruction ordering is set by the scheduling subtask,
the bundler can only impact the even/odd word address of
a given instruction by judiciously inserting nop instructions
into the instruction stream.

Another important task of the bundler is to prevent
instruction-fetch starvation. Recall in Section 2 that a single
local memory port is shared by the instruction-fetch mecha-
nism and the processor’s memory instructions. As a result,
a large number of consecutive memory instructions can stall
instruction fetching. With a 2.5 instruction-fetch buffers re-
served for the fall-through path, the SPE can run out of
instructions in as few as 40 dual-issued cycles. When a
buffer is empty, there may be as few as 9 cycles for issu-
ing an instruction-fetch request to still hide its full 15-cycle
latency. Since the refill window is so small, the bundling
process must keep track of the status of each buffer and in-
sert explicit ifetch instructions when a starvation situation
is detected.

The refill window is even smaller after a correctly hinted
taken branch since there is only 1 valid buffer after a branch
as opposed to 2.5 buffers for the fall-through path. In this
case, instruction starvation is prevented only when all in-
structions in the buffer are useful. Namely, the branch target
must point to an address that is a multiple of 16 instructions,
which is the alignment constraint of the instruction-fetch
unit. This constraint is enforced by introducing additional
nop instructions before a branch target to push it to the next
multiple of 16 instructions. Our heuristics are fairly success-
ful at scavenging any idle issue slots so that nop instructions
may be inserted without performance penalties.

A final concern of the bundling process is to make sure
that there is a sufficient number of instructions between a



branch hint and its branch instruction. This constraint is
due to the fact that a hint is only fully successful if its tar-
get branch address is computed prior to that branch entering
the instruction decode pipeline. The bundler will add extra
nop instructions when the scheduler did not succeed in in-
terleaving a sufficient number of independent instructions
between a hint and its branch.

For best performance, our approach uses a unified schedul-
ing and bundling phase. We generally preserve the cy-
cle scheduling approach where each nondecreasing cycle of
the schedule is filled in turns, except that we may retroac-
tively insert nop or ifetch instructions, as required by the
bundling process. When getting ready to schedule the next
cycle in the scheduling unit, we first investigate if an ifetch

instruction is required. When this is the case, we forceably
insert an ifetch instruction in that cycle and update the
scheduling resource model accordingly. We then proceed
with the normal scheduling process for that cycle. When no
additional instruction can be placed in the current cycle, we
then investigate if nop instructions must be inserted in prior
cycles to enable dual-issuing. Once this task is completed,
we proceed to the next cycle.

5. AUTOMATIC SPE/VMX SIMDIZATION
In this section, we present our simdization framework

which targets both the SPEs and the PPE’s VMX SIMD
units. While their SIMD units have a distinct instruction
set architecture, both units share a set of common SIMD ar-
chitectural characteristics. For instance, both units support
128-bit packed SIMD registers; and both memory subsys-
tems allow loads and stores from 16-byte aligned addresses
only. Our framework capitalizes on these commonalities
by parameterizing the simdization algorithm and generating
platform-specific code in the later phases of the simdization
process.

Our simdization framework is part of the high-level opti-
mization component of the XL compiler. We can thus lever-
age a rich set of analysis tools and optimizations, such as
interprocedural analysis and loop transformations, in a ma-
ture optimizing compiler. We focus here on the three steps
introduced for simdization purposes, i.e., SIMD-parallelism
extraction, alignment handling, and SIMD code-generation.
The first two transformations address issues common to SPE
and VMX, whereas the last deals with specific target instruc-
tion sets.

5.1 Extracting SIMD Parallelism
We use generic vector data types and operations to repre-

sent extracted SIMD parallelism. In our framework, a vector
initially has arbitrary length and alignment properties. As
shown below, this relaxed length constraint is key to ex-
tracting SIMD parallelism from both within and across loop
iterations [5].

5.1.1 Loop-Level Simdization
Loop-level simdization follows an approach similar to vec-

torization for innermost loops [6, 7]. A simdizable loop
must first satisfy the same dependence conditions as a tra-
ditionally vectorizable loop. Specifically, a simdizable loop
has either no loop-carried dependence or has forward de-
pendences; if it has other dependences, either the depen-
dence distances are greater than the blocking factor of the
simdized loop; or it has simple dependence cycles that can

be recognized as certain vectorizable idioms, such as paral-
lel reductions. In addition, since SIMD vectors are packed
vectors and are loaded from memory only as 16-byte con-
tiguous chunks, strided accesses are considered not simdiz-
able. We currently simdize the following 5 types of accesses:
stride-one memory accesses, loop invariant, loop private, in-
duction, and reduction.

For loops that contain non-simdizable computation, a cost
model is employed to determine whether to distribute the
loop. Avoiding excessive loop distribution is particularly im-
portant for simdization because the SIMD parallelism being
exploited is fairly narrow, e.g., 4-way for integer and float.
Thus, the overhead of loop distribution, such as reduced in-
struction level parallelism, register, and cache reuse, may
override the benefit of SIMD execution. For example, one
of our heuristics is to not distribute a loop if the simdizable
portion involves only private variables, many of which are
introduced by the compiler during common subexpression
elimination.

Once deemed simdizable, the loop is blocked, and scalar
operations are transformed into generic vector operations on
vector data types. The blocking factor is determined such
that the byte length of each vector is a multiple of 16 bytes.

5.1.2 Basic-block Level Simdization
Short vectors enable us to extract SIMD parallelism

within a basic block. Such parallelism is often found in
unrolled loops, either manually by programmers or auto-
matically by the compiler. It is also common in graphic
applications that manipulate adjacent fields of aggregates,
such as the subdivision computation shown in Figure 3.

for (i=0; i<n; i++) {
1: q = quads[i];

2: v[i].x=w0*q.p[0].x+w1*q.p[1].x+w2*q.p[2].x;

3: v[i].y=w0*q.p[0].y+w1*q.p[1].y+w2*q.p[2].y;

4: v[i].z=w0*q.p[0].z+w1*q.p[1].z+w2*q.p[2].z;

5: v[i].w=w0*q.p[0].w+w1*q.p[1].w+w2*q.p[2].w;

}

Figure 3: An example of basic-block level packing.

During basic-block level simdization, isomorphic compu-
tations on adjacent memory are packed into vector opera-
tions, using an algorithm similar to Superword Level Paral-
lelism [8]. In Figure 3, for instance, Statements 2 to 5 can
be packed into one vector statement because they are both
isomorphic and operate on adjacent fields (x, y, z, and w)
in memory. Note that Statement 1 in the same loop is an
aggregate copy that can also be simdized into a vector copy.

In our framework, basic-block level simdization is per-
formed before loop-level simdization. Thanks to arbitrary
length vectors, a loop simdized at the basic-block level may
be further transformed by loop-level simdization. For exam-
ple, if fields x, y, z, and w in Figure 3 are 16-bit integers,
both basic-block and loop-level simdization are needed to
extract enough SIMD parallelism for a 16-byte vector.

5.2 Alignment Handling
The memory subsystems of the SPE and VMX can only

access 16-byte contiguous memory from 16-byte aligned ad-
dresses. When a simdizable loop contains misaligned ac-
cesses, special handling may be required to re-align data on



the fly to ensure the correctness of the simdized codes. For
example, consider the loop in Figure 4, where for conciseness
the bases of arrays a, b, and c are 16-byte aligned.

for (i=0; i<100; i++) {
a[i+2] = b[i+1] + c[i+3];

}

Figure 4: A loop with misaligned accesses.

In this example, the data involved in any given loop itera-
tion always reside at different byte offsets (i.e., slots) of their
respective vector registers after being loaded from memory.
For example, data involved in the i = 0 iteration, namely
b[1], c[3], and a[2] as shown in, respectively, Figures 5a,
5c, and 5f, reside in different slots within their respective
vector registers. This is a problem since each arithmetic
SIMD instruction (such as the add instruction in this exam-
ple) operates in parallel over the data residing in the same
slot of its respective input vector register.

To ensure the correctness of simdized computation, part
of the simdization process deals with “re-aligning” data in
registers, so that the same data involved in the original com-
putation reside in the same slots in their respective registers
after simdization. Figure 5 illustrates one such scheme. In
Figure 5b, we first shift right3 by one integer slot the stream
of data generated by b[i+1] for i=0 to 99. In Figure 5d, we
shift left by one integer slot the stream of data generated by
c[i+3] for i=0 to 99. At this stage, both the b and c register
streams start in the third integer slot. The SIMD add in-
struction is then applied to the shifted streams and produces
the expected results, b[1]+c[3],. . . ,b[100]+c[102].

In prior work [9, 10], we proposed an alignment handling
scheme that automatically re-arranges data to satisfy align-
ment constraints imposed by hardware like SPE and VMX.
Our algorithm deals with streams of contiguous data in
memory that are represented as stride-one accesses in a loop.
For example, the data touched by access a[i+2] for i = 0

to 99 are considered as a stream. If a computation involves
misaligned accesses, our algorithm will shift in registers en-
tire streams associated one or more misaligned accesses so
that data involved in the original computation reside in the
same vector register slot before SIMD arithmetic operations
are performed.

For a given statement, there are typically several ways
to shift misaligned streams to satisfy alignment constraints.
We refer to an algorithm that generates one such way as
a stream-shift placement policy. For example, the scheme
illustrated in Figure 5 uses the eager-shift policy, where load
streams are eagerly shifted to the alignment of the store
stream.

Another commonly used policy is called lazy-shift pol-
icy. Consider a different a[i+3]=b[i+1]+c[i+1] loop. In-
stead of shifting each misaligned input to the alignment of
the store, this policy will lazily shift the result stream of
b[i+1]+c[i+1], since both streams participating in the ad-
dition are relatively aligned with each others.

3To understand the applicability of this scheme, it is crit-
ical to realize that “shifting left” and “shifting right” are
data reorganizations that operate on a stream of consecu-
tive registers, not the traditional logical or arithmetical shift
operation.
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Figure 5: Simdization of a[i+2]=b[i+1]+c[i+3] with
minimum data reorganizations.

More details on shift placement policies, code genera-
tion for stream shifts such as handling runtime stream
shifts, SIMD prologue/epilogue code generation for mis-
aligned stores, and alignment handling in the presence of
data conversion can be found elsewhere [9, 10].

5.3 SIMD Code Generation
Since extraction of SIMD parallelism and alignment han-

dling both operate on generic vector operations, they are
common to VMX and SPE simdization. In the SIMD code
generation phase, generic vector operations are translated
into SIMD intrinsics for specific platforms, which will be
further optimized by the back-end compiler.

This phase also handles arbitrary length vectors. Recall
that during loop-level simdization, the loop is often blocked
to ensure all vectors be of multiple of 16 bytes. In this
phase, operations on vectors that are multiple of 16 bytes
are mapped to multiple operations on vectors of 16 bytes.
The others are reverted back into multiple scalar operations.

6. GENERATION OF MIMD CODE
In this section, we describe compiler generation of parallel

codes for the CELL processor. Guided by user directives, the
compiler distributes loop iterations across the multiple SPE
processors of the CELL. In some respect, we are applying
and extending existing techniques in a novel environment,
but it is our approach to managing the hybrid memory sub-
system of the CELL architecture which enables us to do this.
As such, a key component of our parallelization approach is
the presentation of a Single Shared Memory abstraction.

6.1 User-Directed Parallelization
Programming the SPE processor is significantly enhanced

by the availability of an optimizing compiler which supports
SIMD intrinsics and automatic simdization. However, pro-
gramming the CELL Processor, the PPE and its 8 SPEs,
is a much more complex task, requiring partitioning of an
application to accommodate the limited local memory con-
straints of the SPE, parallelization across the multiple SPEs,
orchestration of the data transfer through insertion of DMA
commands, and compiling for two distinct ISAs.



We present an approach wherein the compiler manages
this complexity while still enabling the significant perfor-
mance potential of the machine. We refer to this as Single
Source compilation to denote the fact that the user need only
code a single program or set of programs targetting a CELL
processor, without regard for the underlying architectural
heterogeneity.

Our parallel implementation currently uses OpenMP [11,
12] pragmas to guide parallelization decisions. Making use of
the existing parallelization infrastructure of the underlying
IBM XL compiler, we outline4 parallel code sections, in the
first pass of the optimizer, and apply machine independent
optimizations to the outlined functions. In the second pass
of optimization, these outlined functions and their contained
subgraphs are cloned and optimized codes are generated for
both the SPE and the PPE processors. The Master Thread
runs on the PPE processor and partakes in all work sharing
constructs. Since there is no operating system (OS) support
on the SPE, this thread also handles all OS service requests.
Since cloning of the call graph occurs in the second pass
of optimization, after interprocedural analysis, the compiler
can generate versions of all library codes as appropriate for
both the SPE and the PPE.

Since the limited size local memory of the SPE must ac-
commodate both code and data, there is always a possibil-
ity that a single SPE object will be too large to fit. With
our parallelization approach, since the unit of SPE compi-
lation is a user defined parallel region, most often a loop
nest, the extent to which we encounter very large SPE ex-
ecutables is greatly reduced. In a later section, we will de-
scribe our technique for handling very large SPE executa-
bles. This is fully integrated with our shared memory paral-
lelization, such that we never encounter outlined SPE exe-
cutables which are too large for a single SPE local memory.

6.2 Single Shared Memory Abstraction
Although a common mode of programming the CELL con-

sists of manually partitioning code and data into PPE and
SPE portions as well as explicitly managing the transfers
of code and data between system memory and local store,
we believe that, in many instances, this imposes too great
a burden on the programmer. In particular, it is usual for
a programmer to view a computer system as possessing a
single addressable memory, and for all the program data to
reside in this space.

In the CELL processor, the local stores, which alone are
directly addressable by their respective SPEs, are memo-
ries separate from the vastly larger system memory. Each
SPE possesses the capability to transfer data, by means of
the DMA engine, between its local store and the system
memory. The compiler, under certain conditions, can un-
dertake the task of orchestrating this data transfer between
the system memory and the local memory of the SPEs by ex-
plicitly inserting DMA commands. Moreover, there are, as
we describe later, many optimizations that the compiler can
perform to optimize these data transfers, especially when
memory references are regular. In our approach, we attempt
to abstract the concept of separate memories by allocating
SPE program data in system memory and having the com-
piler automatically manage the movement of this data be-

4Outlining refers to the process of creating a new function
for a particular section of code and replacing the original
code section with a call to that newly created function.

tween its home location and a temporary location in the local
store. When this movement is done to satisfy the demands
of an executing SPE program, and the resulting buffers are
organized in such a way as to permit reuse, we refer to the
mechanism employed as a Software Cache.

Compiler-Controlled Software Cache
In our initial implementation of the Software Cache, a sep-
arate directory is maintained in each SPE. The compiler,
using interprocedural analysis, replaces a subset of load and
store instructions with instructions that explicitly look up
the effective address of the datum in a directory. If the line
containing the datum is present in the directory, the address
of the requested variable is computed and the load or store
continues using this local store location. Otherwise, a sub-
routine, the miss handler, is invoked and the requested data
is transferred from system memory. As is usual in hardware
caches, the directory is updated, and typically another line
is selected for eviction in order to make room for the new
element. Our current implementation provides a 4-way asso-
ciative cache, and all 4 ways are probed inline, exploiting the
SIMD parallelism of the instruction set. Our cache imple-
mentation can optionally be used either for a serial program,
or a parallel program. There is some additional cost involved
in supporting parallel execution, since we must keep track
of which bytes in a cache line have been modified, in order
to support multiple writers of the same line.

In the current version of our compiler, the software cache
has 4 sets of 128 lines, each of which is 128-byte long. The
line length was chosen based on consideration of efficiency of
DMA transfer. Clearly many other choices could be made,
and we intend in the future to evaluate some of the tradeoffs
inherent in these choices. Given a particular set of choices,
the code required to perform a cache lookup can be deter-
mined. In order to effect the lookup, we proceed in the
following fashion. Initially, having decided that a particular
variable is to be allocated in system memory, the compiler
flags that variable as requiring a cache access. The inter-
mediate code for accesses to both cached and non-cached
variables initially looks the same, with load and store op-
erations for each reference as appropriate. This allows the
optimizer to operate on all accesses equally, thereby elimi-
nating many redundant memory references. Late in the op-
timization phase of our compiler, the remaining loads and
stores to the cached references are expanded by inserting
inline the instructions which lookup the cache directory. In
keeping with the spirit of caching, the expanded code as-
sumes a hit, so the branch to the misshandler is treated by
the rest of the compiler as an atomic operation, rather than
a subroutine call. This means that the expected path is not
impacted by the need to follow the normal calling conven-
tions. Because of this, each reference requires a separate
out-of-line miss “stub” which saves registers and explicitly
branches back to the missing load or store upon return from
the handler. Our current implementation takes no care to
optimize these stubs, thus, in codes with a high miss rate
we suffer a higher penalty than needed.

The lookup code itself is fairly straightforward, and the
operations it performs are modeled on those of a hardware
cache. It is first necessary to compute the address of the da-
tum in system memory. The load or store that we are replac-
ing will usually have the address expressed as a base register
plus either a displacement or an index register. These we



add to produce the value that is to be looked up (this add
would normally be implicitly performed by the load/store
unit in hardware). From the result we extract a 7 bit index
field, which is used directly to index into the cache direc-
tory. The directory entry thus indexed contains a set of 4
tags, followed by 4 corresponding line addresses. The upper
25 bits of the address are compared in SIMD with the 4 tag
fields, and if any of the 4 compare equal, the line address
in the same slot is combined with the lower 7 bits of the
address and used as the byte offset in local memory of the
required datum. If no tag value is equal, the miss handler is
invoked and, when it returns, the address of the datum will
be available as above. In the miss handler, a line is chosen
for eviction and DMA operations are initiated to store back
the evicted line if required, and to bring in the requested
line. The appropriate slot in the directory entry is updated,
and control returns to the point of the miss. The DMA op-
erations in the miss handler take several hundreds of cycles,
but this delay is roughly commensurate with L2 miss times
on the PPE side of the CELL processor. The performance
impact of the Software Cache is dominated by the cost of
the cache probes, not by the miss cost.

As mentioned earlier, our current implementation sup-
ports two variants of the Software Cache. One variant sup-
ports only single-threaded code. In this version no attempt
is made to keep track of which lines have been modified, and
the miss handler perforce must write to system memory the
whole of any evicted line, whether it has changed or not. It
is probable that further compile-time analysis could amelio-
rate this situation, and we will be investigating this in the
future. The second variant supports multi-threaded shared
memory programs. In order to do this we must keep track
in the cache directory on each SPE, which bytes have been
written since the line was brought in from system memory.
Then, when a line is to be evicted, either in support of a miss
or to implement explicit flushes required for conformance
with memory consistency rules, only the modified bytes are
written by the DMA engine. Keeping track of dirty bytes
requires that we insert additional code inline for each store
operation, in addition to the lookup code discussed above.
To accomplish this, the directory entry is extended by the
addition of 4 quadwords, one for each set, which each con-
tain 128 “dirty bits” allowing each byte in the line to be
monitored.

Since the compiler must deal with the potential for aliases
between cached data and data obtained by other means (for
example via explicit prefetch in the tiler), the miss handler
is required to take more care in choosing a line to be evicted
than is normally the case with a hardware implementation.

Static Data Buffering
Of course, the naive approach of replacing loads and stores
with the longer instruction sequences required for cache
lookup has the effect of slowing program execution. We em-
ploy several techniques to mitigate this performance degra-
dation. At the simplest level, we recognize that, in general,
scalar data and small structured variables do not represent a
large fraction of the space requirements of a program.These
can often be directly allocated in the local stores, if it can
be determined that they are not used to communicate be-
tween parallel tasks. In particular, the local, stack allocated
variables of a function often fall into this class. Of course,
difficulties arise when pointer usage causes aliasing between

local and global variables, and it may also be problematic if
large local arrays are used. It is also possible, although we
have not yet implemented this, to explicitly allocate space in
each local store for small shared variables, and additionally
to allocate a home location in system memory. These vari-
ables can then be prefetched, and the home location be kept
current by respecting the appropriate memory consistency
model. In OpenMP, this would entail updating the home
location at each explicit or implicit flush, and re-fetching
the data at the appropriate acquire points.

For large arrays, if they are accessed in loops using affine
expressions involving the loop induction variables, it is possi-
ble to use well known program restructuring techniques, [13,
14] such as loop blocking, to allow multiple elements to be
explicitly fetched in a single operation. Further restructur-
ing can effectively “software pipeline” the blocking loop, so
that data movement and computation are overlapped, essen-
tially prefetching the data. As is the case when compiling for
more traditional memory hierarchies, for multi-dimensional
loop nests the compiler can also use loop restructuring trans-
formations such as blocking and interchange to increase lo-
cality [15, 16]. This is referred to as tiling; it requires le-
gality checks based on the array dependence information
and thus may not always be possible. Both prefetching and
tiling in our environment cause the original variables to be
replaced by references to much smaller temporary arrays,
and this implies the rewriting of the indexing expressions
also. Although tiling and prefetching techniques, as men-
tioned above, have been applied for cache memories pre-
viously, their use in the context of the SPE is somewhat
different. Since explicit DMA operations are used, more
care is required in the storage management. For many of
the cases mentioned here, a further optimization is to try to
combine data transfers using special DMA list commands,
or in the case of multiple contiguous requests, by simply fus-
ing several DMA operations into one. This has the effect of
reducing the setup cost for DMA operations. To increase
the opportunities for combining DMA operations, the com-
piler can reorder variables with respect to each other, includ-
ing breaking up or combining structures, at link time. Our
compiler already performs such transformations for other
reasons, but we have not yet explored this additional use of
that optimization.

For all of the foregoing techniques, when they can be used,
the effect is to eliminate the need for cache lookup. Ul-
timately, it should only be necessary to use the cache to
ensure correctness for references which are irregular, or un-
known at compile time. Clearly to the extent that this can
be accomplished, it requires substantial compile time analy-
sis and the work is still in progress. We see very encouraging
results with what we have implemented so far.

Code Partitioning
We propose a code partitioning technique to reduce the
impact of the local storage limitations of the SPE on the
program code segment; the scheme we describe can be used
in a stand-alone manner with the SPE compiler, or by users
choosing to manually partition their applications. In the
Single Source compilation context our code partitioning
approach is integrated with the data software cache to allow
for the execution of large outlined functions with large data
to run seamlessly across multiple SPEs.
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Figure 6: SPE optimizations.

In our code partitioning approach, the SPE program is
divided into multiple partitions by the compiler. The home
locations of code partitions, just as with data in our Software
Cache approach, is system memory. When the compiler en-
counters such compilations it reserves a small portion of the
SPE local storage for the code partition manager. The re-
served memory is divided into two segments: one to hold
the continuously resident partition manager, while the other
holds the current active code partition. The partition man-
ager is responsible for loading partitions from their home
location in system memory into local storage when neces-
sary, normally during an inter-partition function call or an
inter-partition return. The compiler modifies the original
SPE program to replace each inter-partition call with a call
to the partition manager. Thus, the partition manager is
able to take over control and handle the transition from the
current partition to the target partition. The partition man-
ager also makes sure an inter-partition return will return to
the partition manager first.

Currently, the partitioning algorithm is a call graph based
one, which means the basic unit of partitioning is a func-
tion. The compiler transforms the call graph into an affinity
graph, with edge weight representing call edge frequency,
and then applies a maximum spanning tree algorithm un-
der a certain resource limit, typically the (adjustable) code
buffer size.

In the code partitioning, currently we see respectable per-
formance when executing partitioned functions on a single
SPE relative to execution on the PPE. In the automotive
suite of the EEMBC benchmark, across a single SPE, we
see a slowdown of between 2 - 10 %. CJPEG, with code and
data sizes of 1M, slows down 2.7 times, with both software
cache and code partitioning enabled. Given the preliminary
nature of this work, these results are encouraging.

There are several opportunities which we are currently
exploring to improve the overall performance of our code
partitioning algorithm. Effectively the algorithm largely de-
pends on the accuracy of the affinity (call edge frequency).
To achieve the best results, profiling can be used instead
of static estimation. Also, using the actual partition size
rather than the size estimated in the compiler conserva-
tively could improve the utilization of local code buffer sig-
nificantly. Prefetching is of course the most promising opti-
mization and has the potential to hide the latency incurred
when fetching partitions from main memory. But prefetch-
ing requires multiple buffers implying a much smaller par-
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Figure 7: Simdization speedups.

tition size limit. The net effect depends on the prefetching
algorithm and the accuracy of the cost model applied.

7. MEASUREMENTS
We first evaluate the optimized SPE code generation tech-

niques presented in Section 4 using a cycle-accurate simula-
tor. Figure 6 presents the reduction in program execution
time for each optimization, relative to the performance of
the original compiler (standard optimizations at O3 level,
scheduled for the SPE resource and latency model). We re-
port an average reduction of 22%, ranging from 11 to 51%.

The benchmark programs used here are highly optimized,
simdized kernels representative of typical workloads execut-
ing on the SPEs. Kernels include a variable length decod-
ing (VLD) from MPEG decoding, a Huffman compression
and decompression, an IDEA encryption, and a ray tracing
(OnerayXY). Numerical kernels include an FFT, a 7x7 short
integer convolution, a 64x64 float matrix multiply, a Saxpy,
an LU decomposition, and a solver kernel of Linpack.

Bundling for dual issue results in an 11% average reduc-
tion in execution time, ranging from 2 to 22%. Large reduc-
tion percentages indicate benchmarks with large amounts of
instruction-level parallelism and no lucky instruction align-
ment (where random instruction layout did not satisfy the
dual-issue constraint).

Hinting predictable branches results in a further 9% av-
erage reduction in execution time, ranging from 0 to 26%.
Large reduction percentages indicate predictable branches
with a sufficient amount of work to hide the hint latency.
Some of the small reduction percentages (such as 0% for ma-
trix multiply) indicate such tight loops that hinting is not
beneficial without jointly addressing the instruction starva-
tion issue.

Generating explicit instruction fetches results in a further
2% average reduction in execution time, with peak impact
for very tight loops such as the 20% reduction for matrix
multiply.

We now evaluate the automatic simdization techniques
presented in Section 5 targeting a single SPE, also using
the SPE cycle-accurate simulator. Figure 7 presents the
speedup factors achieved when automatically simdizing se-
quential code kernels. Comparisons are performed at the
same optimization level, which includes high-level, interpro-
cedural optimizations in addition to all of the SPE optimiza-
tions presented in Section 4. We report an average speedup
factor of 9.9, ranging from 2.4 to 26.2.
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Figure 8: Speedups of parallelization.

The benchmark programs include video, numerical, and
telecommunication applications. Kernels include a full Lin-
pack solver, a short integer finite impulse response (FIR), an
auto-correlation kernel, an integer dot-product, a TCP/IP
checksum routine, and an alpha blending kernel. Two ker-
nels are from the previous benchmarks, namely Saxpy and
Matrix Multiply.

There are two tiers of benchmarks. The four leftmost ker-
nels in Figure 7get respectable speedups (2.4 to 2.9) but
below average. For Linpack, approximately 27% of the time
is spent in a non-simdized part. The simdized part is analo-
gous to Saxpy but has decreasing trip counts (from N to 1)
that results in a higher loop overhead. For Swim, we believe
that constant subexpression elimination does not currently
address simdized references as well as scalar ones. For FIR
and Autocor, we believe that there are data-type conversion
issues that result in excessive overhead.

The rightmost 5 kernels get significant speedup (7.5 to
26.2). Both Dot Product and Checksum are performing
a reduction which is not natively supported by the SPE’s
instruction set. This introduces some overhead which, in
these two cases, can be efficiently hidden using partial sum
reductions. Alpha Blending has data type conversions that
are efficiently handled. Both Saxpy and Matrix Multiply
exhibit peak performance due to perfect alignment and no
data conversion overheads. Note that super-inear speedups
are possible, e.g., 26.2 on a single SPE, because the simdized
version of the code not only computes multiple useful results
per SIMD instructions, but also avoids all the overhead of
running scalar code on SIMD units otherwise incurred on
non-simdized code.

We now consider the parallelization techniques discussed
in Section 6. The experiments described here were run on
actual hardware. We first show, in Figure 8, results for
parallel execution using only software cache. The experi-
ment was conducted with SPEC OpenMP 2001 benchmark
suite [17] with the three Fortran90 benchmarks excluded.
The measurements are ratios of the execution times when
running the sequential part on PPE and the parallel loops
on various number of SPE processors, to those when run-
ning on the PPE processor alone. It may be more intuitive
to use the execution time on one SPE as the baseline. How-
ever, these benchmarks are too large to be directly run on
an SPE processor, without our code partitioning technique
which does in itself incur some performance penalty. We
reduce the data size of several kernels to get a rough idea
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Figure 9: Speedups of parallelization with optimiza-
tion.

of the relative speed of PPE and SPE processors. The mea-
surements discussed do not consider the simdization of the
parallelized benchmarks because the integration of these two
optimizations is not yet complete. For the purpose of these
measurement discussions, without simdization enabled, one
SPE is approximately 2 times faster than the PPE processor.

In the eight OMP2001 benchmarks, Equake, Mgrid and
Swim have notable speedup because they have high coverage
of the parallel part and plenty of data reuse in the innermost
loops. The long cache line used in the software cache can
effectively capture such spatial reuse. Mgrid also has data
reuse across the outer loops that can be exploited by the
software cache. Other benchmarks suffer, to some extent,
for the following reasons:

• Poor data locality. Data accesses are so scattered and
discontinuous that numerous DMA operations are invoked

• Frequent cache flush. Some benchmarks, for instance,
ammp and applu, require frequent cache flush. Cache
flush is a very expensive operation in our implementation.
Cache flush can be further optimized.

• Some optimizations turned off. In order to generate
smaller code for the SPE processor, some optimizations,
such as loop unrolling and procedure inlining, have to be
turned off.

• Lower coverage of parallel parts. Since the currently avail-
able hardware has limited virtual memory space. Smaller
data sets have to be used, reducing the coverage in some
benchmarks.

The performance based purely on software cache can be
enhanced by techniques discussed in Section 6. Figure 9
reports the improvement compared with the pure software
cache approach. Eight SPE processors are used to execute
the parallel loops. All but the matrix multiplication are dra-
matically improved. The code generation for DMA opera-
tions in cases of jumping data access needs further tuning.

8. RELATED WORK
We are not aware of any related work on generating scalar

codes exclusively on SIMD units such as the ones found on
the SPEs. But underlying techniques that minimize the
performance impact of scalar codes on SIMD units are well
known, such as data padding for predictable alignment [18]
and aggressive register allocation to eliminate local variables
in memory.



Compiler optimizations that reduce the number of taken-
branches have been intensively researched such as code
transformations to co-locate consecutively executed basic
blocks [19], if-conversion, or combination of both [20]. Build-
ing on prior work, we focus on eliminating taken-branches
and disregard the locality enhancing aspect of prior work
since the SPEs have no cache. Similarly, our if-conversion
scheme currently focuses on eliminating small if-then-else
branch structures since our SPE’s hardware support is lim-
ited to select instructions.

Compiler assisted branch hints and instruction fetch
mechanisms have also been actively researched [21], espe-
cially the interaction of instruction fetches and cache pol-
lution [22]. Since SPEs have no cache and have only very
limited number of instruction fetch buffers, we insert hints
very conservatively compared to prior work. Branch hints on
SPEs are also different than those on the Itanium 2 [23], as
our hints both prefetch instructions and impact the branch
prediction policy. SPEs’ hint and instruction fetch timing
is also tighter than the timing on a cache-based system, as
we are dealing here with the contention between data and
instructions through a single memory port.

The bundling of instructions has also been studied in the
literature [24], e.g., for Itanium [23]. On the SPE, however,
bundling is strictly a performance issue since the hardware
is fully capable of detecting parallel instructions. Unlike
in Itanium, there are no stop bit; thus dual-issue bundling
rules are enforced by adding nop instructions. As a result,
the main issue faced by the SPE compiler is the interac-
tion between code size increases (due to additional nop) and
instruction fetch issues.

Prior work on automatic SIMD code generation falls gen-
erally into two categories, a loop-based approach [25, 26, 27]
and an unroll-and-pack approach [8, 28]. Our approach [9,
10, 5] uses a combination of both.

In terms of alignment handling, one technique is to peel
the loop until all accesses are fully aligned or fall into a
known, compile-time pattern [18, 26]. Our approach is to
peel a full simdized loop iteration and conditionally execute
it, on a per statement-basis. This technique is general, as
it effectively support distinct compile-time/ runtime align-
ments for each statement. It is also faster on SPEs because
even the peeled iterations are executed in SIMD mode.

The direct handling of misaligned references in loops has
also been discussed in prior work [25, 26, 27]. To our knowl-
edge, prior work shifts all relatively misaligned data to slot
zero (i.e., the zero-shift policy). Our approach attempts
to systematically minimize the number of shifts by lazily
shifting relatively misaligned input streams directly to the
alignment of the output stream (i.e., the lazy-shift policy).
We do so with compile-time and runtime alignment, with
multiple misaligned statements, unknown loop bounds, and
in presence of data conversion, reductions, induction, and
private variables.

Prior work on supporting parallel shared-memory applica-
tions on multiple processors includes work related to UPC,
OpenMP, HPF, and distributed shared memory systems [29,
30, 31, 32]. They are similar to ours in that they dis-
tribute work among multiple processors, determine memory
accesses in parallel regions that are shared by multiple pro-
cessors, and explicitly transfer data for these accesses and
attempt to optimize them. However, our work is different
in that it considers heterogeneous cores with different pro-

cessing capabilities and restrictions on what the SPEs can
execute. Also, in our case the processor cores are on the
same chip, and even though the SPEs rely on DMA trans-
fers, all cores use the same virtual memory space to address
shared data. In effect, the cost model for data access and
synchronization is different in the CELL processor context.

There has been substantial work on providing caching in
software, including [33, 34, 35, 36]. Most of the previous
work focuses on caching data and providing coherence for
a software implementation of distributed shared memory in
a network of processors. In our implementation, software
caching is done within a CELL chip and is designed to work
efficiently using architectural features specific to the CELL.
Also, our software cache needs to be aware of compiler opti-
mizations that buffer data in SPE local stores, and it works
in tandem with such optimizations.

The concept of memory overlays is well-known in the con-
text of operating systems [37]. We use the same basic idea
when partitioning large SPE code sections. However, we
perform code partitioning entirely in software, using the
compiler to optimize the choice of what codes to be placed
in a partition.

In many embedded or reconfigurable systems, the hard-
ware/software co-design process iteratively refines a series of
hardware designs, trading off a set of design parameters such
as space, power, and performance. This iterative process is
driven mostly by synthesis tools [38, 39, 40] and/or opti-
mizing compilers [41, 42]. Like other embedded designs, the
SPEs have reduced hardware supports, e.g., strict memory
alignment, no branch prediction, simple instruction fetch,
for higher clock rate, lower power consumption, and smaller
floor plan. The SPE compiler is optimized to provide higher
level functionality and performance using the simpler primi-
tives (compared to general-purpose processors) provided by
the SPE.

9. CONCLUSIONS
Developed for multimedia, game applications, and other

numerically intensive workloads, the first generation CELL
processor implements on a single chip a Power Processor El-
ement (PPE) and eight attached Synergistic Processor El-
ements (SPEs). In addition to processor-level parallelism,
each processing element has multiple SIMD units that can
each process from 2 double-precision floating points up to 16
bytes per instruction. In this paper, we have presented our
compiler approach to support the heterogeneous parallelism
found in the CELL architecture.

Our CELL compiler implements SPE-specific optimiza-
tions including support for compiler assisted memory re-
alignment, branch prediction, and instruction fetch. It ad-
dresses fine-grained SIMD parallelization as well as more
general OpenMP task-level parallelization, presenting the
user with a single shared memory image through compiler
mediated partitioning of code and data and the automatic
orchestration of the data movement implied by this parti-
tioning.

Using benchmarks suitable to this platform, we demon-
strate average speedup factors of 1.3 for the SPE-specific
optimizations, 9.9 for the simdization, and 7.1 for the task-
level parallelization.

We are working on integrating and refining current tech-
niques and further exploiting opportunities available on the
CELL architecture for our target workloads.



10. REFERENCES
[1] Dac Pham et al. The Design and Implementation of a First-

Generation CELL Processor. In Proceedings of the IEEE In-
ternational Solid-State Circuits Conference, 2005.

[2] IBM Corporation. PowerPC Microprocessor Family: AltiVec
Technology Programming Environments Manual, 2004.

[3] Brian Flachs et al. The Microarchitecture of the Streaming
Processor for a CELL Processor. In Proceedings of the IEEE
International Solid-State Circuits Conference, 2005.

[4] Michael Gschwind, Peter Hofstee, Brian Flachs, Martin Hop-
kins, Yukio Watanabe, and Takeshi Yamazaki. A Novel
SIMD Architecture for the CELL Heterogeneous Chip-
Multiprocessor. In Hot Chips 17, 2005.

[5] Peng Wu, Alexandre E. Eichenberger, Amy Wang, and Peng
Zhao. An Integrated Simdization Framework Using Virtual
Vectors. In Proceedings of the International Conference on
Supercomputing, 2005.

[6] John Randal Allen and Ken Kennedy. Automatic Transla-
tion of Fortran Programs to Vector Form. ACM Transac-
tions on Programming Languages and Systems, (4):491–542,
October 1987.

[7] Hans Zima and Barbara Chapman. Supercompilers for Par-
allel and Vector Computers. ACM Press, 1990.

[8] Samuel Larsen and Saman Amarasinghe. Exploiting Super-
word Level Parallelism with Multimedia Instruction Sets. In
Proceedings of the Conference on Programming Language
Design and Implementation, 2000.

[9] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien.
Vectorization for SIMD Architectures with Alignment Con-
straints. In Proceedings of the Conference on Programming
Language Design and Implementation, 2004.

[10] Peng Wu, Alexandre E. Eichenberger, and Amy Wang. Ef-
ficient SIMD Code Generation for Runtime Alignment and
Length Conversion. In Proceedings of the International Sym-
posium on Code Generation and Optimization, 2005.

[11] Official OpenMP specifications. http://www.openmp.org
/specs/mp-documents/cspec20.pdf.

[12] Official OpenMP specifications. http://www.openmp.org
/specs/mp-documents/fspec20.pdf.

[13] Todd C. Mowry. Tolerating Latency through Software Con-
trolled Data Prefetching. PhD Thesis Stanford University,
March 1994.

[14] Michael E. Wolf and Monica S. Lam. A Data Locality Opti-
mization. In Proceedings of the Conference on Programming
Language Design and Implementation, 1991.

[15] Gabriel Rivera and Chau-Wen Tseng. Tiling Optimizations
for 3D Scientific Computation. In Proceedings of Interna-
tional Conference on Supercomputing, 2000.

[16] Abdel-Hameed A. Badawy, Aneesh Aggarwal, Donald Ye-
ung, and Chau-Wen Tseng. Evaluating the Impact of Mem-
ory System Performance on Software Prefetching and Local-
ity Optimizations. In Proceedings of the International Con-
ference on Supercomputing, 2001.

[17] SPEC OMP2001 Description. http://www.spec.org/omp/.
[18] Samuel Larsen, Emmett Witchel, and Saman Amarasinghe.

Increasing and Detecting Memory Address Congruence. In
Proceedings of the International Conference on Parallel Ar-
chitectures and Compilation Techniques, 2002.

[19] Karl Pettis and Robert C. Hansen. Profile guided code po-
sitioning. In Proceedings of the Conference on Programming
language design and implementation, 1990.

[20] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E.
Hank, and Roger A. Bringmann. Effective Compiler Support
for Predicated Execution using the Hyperblock. In Proceed-
ings of the International Symposium on Microarchitecture,
1992.

[21] Arthur Bright, Jason Fritts, and Michael Gschwind. A De-
coupled Fetch-Execute Engine with Static Branch Prediction
Support. IBM Research Report RC23261, 1999.

[22] Chi-Keung Luk and Todd C. Mowry. Cooperative Prefetch-
ing: Compiler and Hardware Support for Effective Instruc-

tion Prefetching in Modern Processors. In Proceedings of the
International Symposium on Microarchitecture, 1998.

[23] Intel Itanium 2 Processor Reference Manual for Software De-
velopment and Optimization. In Intel, 2003.

[24] Daniel Kaestner and Sebastian Winkel. ILP-based Instruc-
tion Scheduling for IA-64. In Proceedings of the Workshop on
Languages, compilers and tools for embedded systems, 2001.

[25] Gerald Cheong and Monica S. Lam. An Optimizer for Multi-
media Instruction Sets. In Second SUIF Compiler Workshop,
1997.

[26] Aart Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian.
Automatic Intra-Register Vectorization for the Intel Ar-
chitecture. International Journal of Parallel Programming,
(2):65–98, April 2002.

[27] Crescent Bay Software. VAST-F/AltiVec: Auto-
matic Fortran Vectorizer for PowerPC Vector Unit.
http://www.psrv.com/vast altivec.html, 2004.

[28] Jaewook Shin, Mary W. Hall, and Jacqueline Chame.
Superword-Level Parallelism in the Presence of Control
Flow. In Proceedings of the International Symposium on
Code Generation and Optimization, 2005.

[29] Wei-Yu Chen, Costin Iancu, and Katherine Yelick. Commu-
nication Optimizations for Fine-grained UPC Applications.
In Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques, 2005.

[30] Seung-Jai Min, Ayon Basumallik, and Rudolf Eigenmann.
Optimizing OpenMP Programs on Software Distributed
Shared Memory Systems. International Journal of Parallel
Programming, 31(3):225–249, 2003.

[31] Vikram Adve, Guohua Jin, John Mellor-Crummey, and Qing
Yi. High Performance Fortran Compilation Techniques for
Parallelizing Scientific Codes. In Proceedings of the Interna-
tional Conference on Supercomputing, 1998.

[32] Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel.
An Integrated Compile-Time/Run-Time Software Dis-
tributed Shared Memory System. In Proceedings of the
Symposium on Architectural Support for Programming Lan-
guages and Operating Systems, 1996.

[33] Zoran Radovic and Erik Hagersten. Removing the Overhead
from Software-Based Shared Memory. In Proceedings of In-
ternational Conference on Supercomputing, 2001.

[34] Sandhya Dwarkadas, Kourosh Gharachorloo, Leonidas Kon-
tothanassis, Daniel J. Scales, Michael L. Scott, and Robert
Stets. Comparative Evaluation of Fine- and Coarse-Grain
Approaches for Software Distributed Shared Memory. In
Proceedings of the International Symposium on High Per-
formance Computer Architecture, 1999.

[35] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A.
Wallach. CRL: High-Performance All-Software Distributed
Shared Memory. In ACM Operating Systems Review, 1995.

[36] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K.
Reinhardt, James R. Larus, and David A. Wood. Fine-Grain
Access Control for Distributed Shared Memory. ACM SIG-
PLAN Notices, 29(11):297–306, 1994.

[37] R. J. Pankhurst. Operating Systems: Program Overlay Tech-
niques. volume 11, pages 119–125, 1968.

[38] Mentor Graphics Inc. Monet R44 User’s Manual R44, 2002.

[39] Synopsys Inc. Behavioral compiler user’s guide,
1999. http://www.synopsys.com/products/beh syn/
beh syn br.html.

[40] Synopsys Inc. Cocentric data sheet, 2002.
http://www.synopsys.com/products/cocentric studio/
cocentric studio.html.

[41] Vinod Kathail, Shail Aditya, Robert Schreiber, B. Ra-
makrishna Rau, Darren C. Cronquist, and Mukund Sivara-
man. PICO: Automatically Designing Custom Computers.
In IEEE Computer, pages 39–47, September 2002.

[42] Byoungro So, Mary W. Hall, and Pedro C. Diniz. A Compiler
Approach to Fast Hardware Design Space Exploration in
FPGA-based Systems. In Proceedings of the Conference on
Programming Language Design and Implementation, 2002.


