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Assistance to Promote Neurorehabilitation
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Abstract—Based on evidence from recent experiments in motor
learning and neurorehabilitation, we hypothesize that three desir-
able features for a controller for robot-aided movement training
following stroke are high mechanical compliance, the ability to
assist patients in completing desired movements, and the ability
to provide only the minimum assistance necessary. This paper
presents a novel controller that successfully exhibits these char-
acteristics. The controller uses a standard model-based, adaptive
control approach in order to learn the patient’s abilities and
assist in completing movements while remaining compliant. Assis-
tance-as-needed is achieved by adding a novel force reducing term
to the adaptive control law, which decays the force output from
the robot when errors in task execution are small. Several tests
are presented using the upper extremity robotic therapy device
named Pneu-WREX to evaluate the performance of the adaptive,
“assist-as-needed” controller with people who have suffered a
stroke. The results of these experiments illustrate the “slacking”
behavior of human motor control: given the opportunity, the
human patient will reduce his or her output, letting the robotic
device do the work for it. The experiments also demonstrate how
including the “assist-as-needed” modification in the controller
increases participation from the motor system.

Index Terms—Assist-as-needed, motor control, nonlinear adap-
tive control, rehabilitation robotics.

I. INTRODUCTION

NEUROLOGICAL injury is a leading cause of permanent
disability in the United States. A primary cause of neuro-

logical injury is stroke, which is suffered by over 700 000 people
each year [1]. About 80% of these individuals suffer a loss of
control of the arm and hand. Due to the age-related risk factors
of stroke, the prevalence of stroke is expected to rise as the popu-
lation ages. Traditional physical therapy can enhance functional
recovery after stroke [2], [3], but is labor-intensive, expensive,
and likely dosage dependant [2]. In response to this problem, the
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past two decades have seen an increase in research aimed at cre-
ating and controlling robotic devices [4]–[7] for rehabilitation
following a neurological injury such as stroke. These devices
attach to the limbs of patients and assist them in completing
movements such as walking, reaching, and grasping.

One approach to controlling such devices is to use a rela-
tively stiff controller to move the patient’s limbs along a de-
sired trajectory [8]. A potential problem with this approach is
that using a stiff controller limits kinematic error, a key signal
that drives human motor learning [9]–[11]. In addition, a stiff
controller can complete the movements without active partici-
pation from the patient, which may limit the therapeutic effect of
the training [12]. In order to allow some kinematic error, several
devices use impedance control, notably the MIT-MANUS [13].
The compliant interaction with patients provided by impedance
control better preserves the causal relationship between effort
and error that is important for motor learning [14]. However, a
key, unsolved problem with this approach is that it is limited in
its ability to create accurate movements when it is necessary to
apply large forces to a patient’s limb to complete movements,
such as with spatial arm motions against gravity, or situations in
which the patient’s limb exhibits substantial tone. More recent
upper extremity devices, such as the spatial extension to MIT-
MANUS [15] and ARMin [16] address the problem of moving
the arm compliantly against gravity by adding an offset term
proportional to the weight of the subject’s extremity. This ap-
proach, however, does not address the configuration-dependent
nature of gravitational forces or the large forces required to over-
come abnormal muscle tone. Further, the amount of force a pa-
tient can contribute to a movement varies widely across patients
at different impairment levels, and also within a single patient
as recovery progresses and previous approaches have not sys-
tematically accounted for these variations.

Another approach to providing assistance for movement is
to allow the patient to first attempt the movement, and then pro-
vide robot assistance to complete the movement, either automat-
ically or initiated by a therapist, after a certain amount of time
or lack of progress is noted, or when a desired movement falls
outside of a window [17]–[21]. The goal of this “triggered” as-
sistance approach is to provide “assistance-as-needed” by pro-
viding assistance only when the subject is unable to complete
the movement, thereby increasing the muscle activity of the pa-
tient in order to encourage neural plasticity [22]. This approach
was extended in [23] and [24] to include changes to controller
parameters based on the previous trials. The discrete event na-
ture of these approaches, however, requires decision either by a
programmed rule set or by an observing therapist. Also, while
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simple, this approach essentially breaks the movement into two
parts, a subject-driven part, and a robot-driven part, rather than
providing a seamless level of robot assistance to subject-driven
motion. Further, for the robot driven part, typically relatively
stiff controllers have been used to achieve the necessary assis-
tance, so that the patient is not in a compliant environment when
assistance is being provided.

Initial clinical results of robotic therapy devices have shown
that gains in functional recovery for patients with stroke,
although modest, are significant when patients receive extra
training with robotic devices [7], [25], [26]. While it remains
to be demonstrated, it is possible that these gains might be in-
creased by using more advanced robotic systems for movement
training. One way to advance a robotic therapy device is to
develop a controller that seamlessly optimizes the interaction
between the robotic device and the recovering patient in order
to provide the patient with as much therapeutic benefit as
possible. Specifically, we hypothesize that a controller that
maximally promotes patient involvement, while also providing
enough assistance so that patients complete desired movements,
will increase therapeutic benefit within the robotic assistance
paradigm.

In this paper, we present a general Lyapunov-based control
framework that is capable of compliantly assisting patients
only “as needed” in completing reaching movements. The
foundation for this control framework is an adaptive controller
that learns in real time a dynamic model of the patient’s arm
as well as a model of the patient’s ability and effort. Use of
a model-based controller allows impedance and assistance to
be controlled separately, so that the device can simultaneously
be highly compliant and be able to provide enough assistance
force to complete arbitrary spatial movements. Portions of
this work have been previously published in conference paper
format [27]–[30].

II. METHODS

A. Experimental Apparatus

The robotic orthosis used for this work is called “Pneu-
WREX” [27], [28] (Fig. 1). It is a 4 degrees-of-freedom robot
based on a passive arm support called WREX, developed for
children by [31]. WREX uses elastic bands to balance the
weight the arm. Pneu-WREX is a larger version of WREX
that uses a spring to balance its own weight, and incorporates
pneumatic actuators to generate active forces. The develop-
ment of the force controller for the pneumatic controller is
described in [29]. Essentially, Pneu-WREX is a lightweight
exoskeleton that allows a wide range-of-motion of the arm in
3-D space and can apply relatively large forces (upwards of
40 N) to the arm with a bandwidth of about 6 Hz. Pneu-WREX
also includes multiple redundant hardware and software safety
features.

The adaptive controller that we designed to assist patients in
moving is a Lyapunov based algorithm using the sliding surface
developed in [32]. The full Lyapunov function candidate used
for the Pneu-WREX orthosis contains terms necessary for both

Fig. 1. Pneu-WREX: A four degree-of-freedom pneumatically actuated upper
extremity orthosis for robot-aided movement training.

the orthosis dynamics and the force dynamics of the pneumatic
actuators (see [29] for details). The following section briefly
describes the model based adaptive controller and the adaptation
to make it provide “assistance-as-needed.”

B. Assist-as-Needed Controller

During robot-aided movement training the adaptive con-
troller applies an vector of assistance forces in spatial
coordinates at the location of the interface between the
subject and the robot. is determined using a model based
adaptive control law, as in [32] and defined

(1)

where and are vectors of the actual and desired lo-
cation of the hand, respectively, and are symmetric,
constant, positive definite gain matrices, is a matrix
of known functions of , , , , and and is an
vector of estimates of the real system parameters . The desired
trajectory of the hand is generated from an interactive com-
puter game and displayed as a cursor on a monitor, as shown in
Fig. 2.

In (1), and are proportional feedback terms
and is feedforward model of the dynamics of the robot or-
thosis and human arm combination including the output of the
subject. The values of and used in experimental testing
with Pneu-WREX are given in Fig. 2. These values were chosen
by trial-and-error experimentally, such that the orthosis had a
soft, slightly under-damped feel.

The regressor matrix is typically derived using classical
dynamic modeling techniques. For robot-aided movement
training, however, a more general modeling approach is needed
because the arm dynamics and movement ability of a person
who has suffered a stroke vary widely based on the location of
the subject’s hand in task space and from subject to subject.
The goal, then, is to design the regressor matrix so that it
fully spans the impairment space of subjects who have im-
pairment due to stroke. To do this, we implemented a general
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Fig. 2. Controller diagram. The “assist-as-needed” force decay term continuously reduces the feedforward assistance when errors are small. Feedforward assis-
tance is a learned model of the subject’s abilities and effort using radial basis functions. Gains of the controller are given in the figure. The effective integral,
proportional, and derivative gains, taking into account the adaptive action of the controller, are derived in the Appendix.

representation of a patient’s ability and tone using Gaussian
radial basis functions so that

...
...

. . .
(2)

where is a vector of radial basis functions with .
With this selection for , the parameter vector becomes a
vector of amplitudes of the basis functions that determines how
they are blended to produce the feedforward estimate of force.
The radial basis functions are distributed evenly in a spatial grid
that spans the workspace of the orthosis. Each spatial grid point
contributes to the assistive force output based on the location
of the orthosis in task space. Details of the implementation for
Pneu-WREX are given in the Appendix.

In order to limit computational complexity, the current im-
plementation of Pneu-WREX does not include inertia compo-
nents in the regressor matrix . This also avoids potential in-
stabilities from unmodeled dynamics (as present in all real sys-
tems) that can be triggered from imperfect velocity and acceler-
ation signals. The effect of the omission of inertia components
is minor because movement speeds for robot-aided movement
training are relatively low. Future implementations could imple-
ment inertia components by adding additional dimensions to the
Gaussian radial basis functions.

To allow the controller to adapt to the patient, the modified
parameter estimates are updated according to

(3)

where and are symmetric, constant, positive def-
inite, gain matrices and is the time constant for the decay of

the force output. determines the overall error based adaptation
rate and specifies the ratio of position error adaptation to ve-
locity error adaptation. For Pneu-WREX, and .
Although in theory and can be any positive value, in practice
the presence of unmodeled dynamics limits the stable range of
these parameters. For Pneu-WREX, the values for and were
chosen experimentally and are given in Fig. 2.

The first and second terms on the right side (3) create an
adaptive controller with competing interests, with the first term
attempting to reduce effort and the second term attempting
to reduce error. The second term on the right side of (3),

is the standard adaptive control law, as in
[32], and is required for the Lyapunov stability analysis pre-
sented in the Appendix. This second term adapts the parameters
based on trajectory tracking error.

The first term on the right side of (3)

is the “assist-as-needed”
modification to the standard adaptive control law. This novel
term decays the force output with a time constant of . The

matrix limits the change in the parameter
estimates to those with the largest current influence on the
output force. This keeps the parameter decay local with respect
to the state of the regressor matrix . For the implementation
in Pneu-WREX, this means that the force decay affects the
parameter estimates associated with radial basis functions that
are spatially close to the position of the hand of the subject,
with the parameter decay decreasing as the distance from the
hand to the associated radial basis function increases. The
derivation of this term is given in the Appendix.

A Lyapunov stability analysis (see the Appendix) of the con-
troller defined by (1) and (3) shows stability of the system in
the sense of uniform ultimate boundedness. This bound is a
function of the time constant and the adaptation matrix .
In practice, the forgetting rate weighs the balance between
tracking error and robotic assistance and can be set based on ex-
perimental observation, as described below.
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Fig. 3. Computer-aided design model and coordinate axes for Pneu-WREX.
Origin of the coordinate system is located in the center of the subject’s impaired
side shoulder.

C. Experimental Methods

We tested the adaptive, assist-as-needed controller with 11
volunteer subjects who have upper extremity movement impair-
ment due to chronic (six months post) stroke. All experiments
were approved by the Institutional Review Board of the Uni-
versity of California, Irvine, and subjects provided informed
consent.

Two separate experiments, named the spatial tracking ex-
periment and the side-to-side experiment were used to eval-
uate the effectiveness of the controller. The primary goal of
the spatial tracking experiment was to validate that the device
had the ability to help subjects to complete desired movements
across a wide workspace even when they were severely im-
paired. The goal of the side-to-side experiment was to rigor-
ously test whether the assist-as-needed modification increased
the contributions of the subjects to reaching movements.

During these experiments the patients were seated in a chair
with their impaired arm attached to the orthosis with a forearm
cuff. Straps were not used to restrain the trunk. We have found
that subjects sometimes use such straps for leverage by leaning
into them, and are better reminded to just use the arm to move
by verbal cueing.

D. Spatial Tracking Experiment Protocol

In the spatial tracking experiment, the subjects controlled the
location of a cursor on a computer screen by changing the lo-
cation of their hand in task space. The subjects were instructed
to track a target cursor on the computer screen as it moved back
and forth from a central home position to seven spatially located
targets. The target moved in the frontal plane of the subjects,
with positive to the subject’s right and positive in the up-
ward vertical direction, as shown in Fig. 3. The origin of the
workspace frame was the center of the subject’s impaired side
shoulder. The range of motion of the target in the direction

was 55 cm and in the direction was 13 cm. The movement
of the hand away from the subject in the (forward–backward)
direction was not controlled, so subjects moved to a naturally
comfortable position in the direction. Note that the vertical
force required from the robot to support the arm does not de-
pend on elbow flexion angle, due to use of a four-bar mecha-
nism at the shoulder [31]. The target cursor followed a minimum
jerk trajectory in the – plane with a peak velocity of 0.12 m/s
to and from each target. The seven targets were presented in a
fixed order, starting with the bottom left target, followed by the
bottom right target, then to the second lowest left target, and so
on until the seventh target located directly above the home posi-
tion. The tracking for all seven targets was repeated three times.

This experiment was repeated for two conditions. In the first
condition (without assistance condition), the subjects attempted
to track the target without assistance from the robot. During this
condition, the robot operated in “backdrive” mode, with the de-
sired output force set to zero. In this mode, the orthosis balanced
its own weight, and the net force on the subjects, excluding the
inertia effects of the orthosis, was approximately zero. Because
this task was very difficult for these substantially impaired sub-
jects, each subject was only asked to move to each target one
time. For the second condition (with assistance condition), the
robot assisted the subjects in tracking the target using the adap-
tive, assist-as-needed controller, as described in the previous
sections. For this condition, the subjects reached to all seven tar-
gets three times. This condition was evaluated with a forgetting
rate equal to 0.1 (or ), as well as without a forget-
ting rate ( or ). The value of was
chosen based on trial-and-error in pilot experiments so that the
orthosis would successfully reach the targets (which were spher-
ical with a diameter of 2.5 cm) even if the subject was passive in
the orthosis. Specifically, several pilot subjects were instructed
to remain passive, and was slowly increased until the con-
troller could no longer move the arm into the target. The value
for that still allowed the orthosis to move into the target was
used for subsequent experiments.

E. Side-to-Side Experiment Protocol

In the second experiment (side-to-side experiment), the sub-
jects were instructed to track the target cursor back and forth
between two targets. As in the first experiment, the subjects con-
trolled a cursor on the computer screen by changing the location
of their hand in task space while attempting to track the target
cursor as it moved from side to side in the direction. The two
targets were spaced 30 cm apart at chest level in the – plane
and had a size of 2.5 cm. The target cursor followed a minimum
jerk trajectory between the two targets with a peak velocity of
0.12 m/s. As in the previous experiment, the reach of the hand
away from the subject in the direction was not controlled, so
subjects’ moved to a naturally comfortable position in the di-
rection. The subjects tracked the target cursor back and forth
between the two targets a total of 20 times. For this experiment,
the adaptive, assist-as-needed controller was always used to help
the subjects move back and forth between the two targets, but
we measured performance of the controller without forgetting,
and with the forgetting rate set to 0.1.
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Fig. 4. Subject tracking performance and controller output for the spatial tracking experiment for mildly (Fugl-Meyer arm score = 53, left column), moderately
(FM = 30, middle column), and severely (FM = 16, right column) impaired subjects (using the Fugl-Meyer arm assessment score, 0 = total impairment, 66 =
no impairment). Top row shows results for the without assistance condition, where the orthosis was in backdrive mode (for all three subjects combined the mean
output force magnitude from the device in this mode was 0.46 N with a standard deviation of 0.46 N). Bottom two rows show the results for the with assistance
condition, with forgetting (� = 10, middle row), and without forgetting (� = 1, bottom row). For the without assistance condition, the trajectories are plotted
from a single repetition of all seven targets (without assistance, the task was too difficult for the subjects to repeat). For the with assistance condition, the results
are from the third repetition of all seven targets. Targets are shown as circles and the central home position is shown as a cross. Mean of the controller output force
magnitude during the shown movements is represented by the bar graph in the bottom left corner of each plot. This force is a rough indicator of the assistance
provided to the subjects during the movements.

This second experiment was repeated for two conditions. In
each condition, the forgetting rate was set to 0 and 0.1 on
two different trials. For the first condition (always active con-
dition), the subjects were instructed to track the target cursor
back and forth between the two targets 20 times. The purpose
of this condition was to see if the adaptive, assist-as-needed con-
troller could learn the forces necessary to assist the subjects in
achieving the desired back and forth movements while allowing
the subjects to remain as actively involved in the movements as
possible.

In the second condition (relaxed to active condition), the sub-
jects were instructed to relax their arms for the first five back
and forth motions of the target cursor, letting the robot complete
the movements for them. During these first five movements, the
adaptive controller learned a model of the forces necessary to
lift the subject’s (“passive”) arm and move it back and forth
between the targets. After the completion of the fifth back and
forth motion, the subjects were instructed to actively track the
target cursor. The goal of this condition was to determine if the
controller would reduce its force output to allow the subject to
complete as much of the task as possible on his or her own.

F. Data Collection and Analysis

Sensor data from the robot for both the spatial tracking and
side-to-side experiment were collected at 1 kHz. In both exper-

iments, position and velocity in the horizontal and vertical (
and directions) were recorded. Additionally, the spatial force
applied to the subject’s arm by the robot in the horizontal and
vertical ( and directions) were also recorded, as mea-
sured by pressure transducers in the orthosis actuators.

III. RESULTS

We designed a controller for a robotic therapy device that
learns a model of the subject’s movement ability in real time
using a radial-basis function representation, and then uses this
model to provide compliant assistance for desired movements.
We included a novel forgetting term in the controller so that it
would optimize its assistance levels to the subjects’ ability. Two
experiments were performed to evaluate the effectiveness of this
adaptive, assist-as-needed controller. The primary goal of the
first experiment was to determine if the compliant, adaptive con-
troller could assist subjects in completing desired movements
across a wide range of the workspace, and the primary goal of
the second experiment was to determine whether the addition
of the forgetting term improved the ability of the controller to
provide assistance-as-needed.

A. Spatial Tracking Experiment

Example data from the spatial tracking experiment are shown
in Fig. 4. The controller successfully assisted subjects with
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Fig. 5. Vertical assistance force and vertical tracking error during the side-to-side experiment for subjects with mild (FM = 53, left main column), moderate
(FM = 30, center main column), and severe (FM = 16, right main column) impairment. Each main column shows results from a single subject for both relaxed
to active (left subcolumn) and always active (right subcolumn) conditions. Dotted line marks the end of the fifth side to side movement for the relaxed to active
condition.

various impairment levels in performing spatial movements to
seven widely-spaced targets (Fig. 4 bottom two rows). Indeed,
the controller successfully allowed all 11 subjects to reach all of
the spatial targets. While doing so, the adaptive, assist-as-needed
controller remained compliant, allowing variations in the actual
movement trajectories regardless of assistance level (see exam-
ples in Fig. 4). Including the forgetting term in the controller also
decreased the force output from the robotic orthosis during these
movements, compared to when forgetting was excluded (com-
pare bars in middle row to bottom row in Fig. 4), a phenomenon
that we quantified more precisely in the next experiment.

B. Side-to-Side Experiment

We next asked subjects to reach repeatedly between only two
targets in order to more precisely quantify the effect of for-
getting and the real-time development of the robotic assistance
force. The forces required to move the arm in the left–right hor-
izontal direction were relatively low and a signif-
icant difference was not seen in the effects of forgetting in that
direction. However, in the vertical direction, where the weight
of the subject’s arm (typically ) needed to be overcome,
the effects of forgetting were evident. The vertical assistance
force and vertical tracking error from the side-to-side experi-
ment for a mildly impaired subject, a moderately impaired sub-
ject, and a severely impaired subject are shown in Fig. 5. For the
relaxed to active condition the adaptive, assist-as-needed con-
troller quickly learned the vertical force required to support the
subject’s relaxed arm during the side-to-side movements, both
when the controller included forgetting and when it did not. The
vertical tracking error was slightly larger cm when the
forgetting term was included (consistent with in the Appendix,
which predicts tracking error to be proportional to the weight of
the subject’s arm.) Once the subject began to actively participate
in the movements, the force output of the controller depended
strongly on whether the forgetting term was present. With a for-
getting term included, the controller reduced its force output

while keeping the tracking errors small, producing a larger ef-
fort level from the subject. The amount of force reduction from
the controller once the subject began to try to move depended
on the ability of the subject, which can be seen by comparing
the relaxed to active plots of Fig. 5 for each subject and ob-
serving that the force output from the controller decreased with
the decreasing level of the subject’s movement impairment. In
contrast, when forgetting was omitted, the force output from the
controller remained high regardless of the ability level of the
subject, indicating that the subjects relied on the robotic orthosis
for most of the vertical support needed during the side-to-side
movements.

A similar pattern of assistive force was present in the always
active condition (Fig. 5, right side subcolumns). In this condi-
tion, the subjects actively participated in all of the side-to-side
movements from the beginning. When a forgetting term was
included, the robot assistance force increased from its initial-
ized zero value, by an amount depending on the impairment
severity of the subject, to the level necessary to keep tracking
errors small. Conversely, when the forgetting term was not in-
cluded, the output force slowly increased to a level equivalent to
that necessary for when the subjects relaxed their arms during
the relaxed to active condition. Thus, without forgetting, the
robot essentially “took over” the task of arm support during the
side-to-side movements.

For both relaxed to active and always active conditions, the
final vertical assistance force from the controller converged to
a steady state value that depended on both the forgetting rate

and the impairment severity of the subject. To quantify
this steady state value more precisely, Fig. 6 shows the mean
vertical assistance and mean error for the last two side-to-side
movements of the always active Condition from all 11 sub-
jects plotted versus arm impairment score (quantified using the
Fugl–Meyer arm assessment). Incorporating a forgetting factor
into the adaptive controller caused it to provide a steady state as-
sistance force that varied linearly with arm impairment (circles
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Fig. 6. Mean vertical robotic assistance force and mean tracking error during
side-to-side reaching experiment. Average force (as a percentage of arm weight)
and average error for the last two movements of the always active condition for
the side-to-side experiment are plotted for each subject versus arm impairment
(using the Fugl-Meyer arm assessment score, 0 = total impairment, 66 = no
impairment.) A regression line of the assistance force is plotted for the case of
� = 10.

in the top plot of Fig. 6, , ). Thus, the con-
troller required less impaired subjects to do more of the work of
lifting their arms themselves, and thus more fully engaged the
subjects in the movement task. Note that when forgetting was
included, the tracking error was larger than without forgetting,
but still relatively small (under 2 cm.)

When forgetting was not included, however, the controller
provided a significantly larger amount of assistance (paired
-test, ). The assistance level was nearly 100% of

the weight of the arm, regardless of the subject’s impairment
level. Thus, the standard adaptive controller (i.e., the controller
without forgetting) essentially “took-over” the task for the
subject, reducing the participation level of the subject.

IV. DISCUSSION AND CONCLUSION

We developed a controller that exhibits the characteristics that
we hypothesize are important for maximizing the therapeutic
benefit of robot-assisted movement training. The controller is
theoretically stable, as shown using a Lyapunov-based analysis.
It is capable of compliantly assisting patients with a force tai-
lored to their impairment level, as shown experimentally. The
foundation for this control framework is an adaptive controller
that learns in real time a model of the patient’s ability and effort.
The controller uses tracking error to drive model formation, and
therefore learns quickly on a patient-specific, session-specific,
manner with only simple, kinematic information about patient
performance. The developed controller adapts in real time, re-
moving the need to change parameters from patient to patient
and/or from therapy session to therapy session, or when the abil-
ities of a patient change. The model based component of the
controller continuously adapts, assisting more when errors are

large and letting the subject do more when errors are small. The
controller compliance is independent of the model based assis-
tance, and can therefore be kept high. Because of this high com-
pliance, patients subjectively reported that they “felt in control”
during movement training.

Use of adaptive control techniques for robotic therapy has
been previously suggested [6], [33], but to our knowledge a
controller that forms a real-time model of the patient’s force
producing capability has not previously been achieved. Such a
controller likely mimics what a human therapist does as he or
she assists a patient. That is, it is well established that humans
learn to move in novel but predictable dynamic environments by
adaptively forming an internal model of the environment, rather
than relying on stiff position control (for review, see [26]). To an
assisting therapist, the patient’s limbs are a novel dynamic envi-
ronment. Therefore, therapists almost certainly adaptively form
internal models of the patients’ limbs to assist them in achieving
desired movements, and the controller proposed here mimics
that process.

An important finding in the present study within the context
of this model-based paradigm is that the human motor control
system takes advantage of a standard, model-based adaptive
controller to reduce its own effort, letting the controller “take
over” most of the physical effort required to complete the
movement. This observation of human “slacking” is consistent
with a large body of research that suggests that the human
motor system optimizes effort [36]. Recent results from our
laboratory indicate how the unimpaired motor system achieves
this optimization, at a computational level, for the task of
adapting to a novel dynamic environment [37]. The human
motor system slacks (i.e., minimizes effort) by incorporating
a forgetting factor similar to the one we incorporated into
the adaptive controller. The finding of human slacking in the
present study is also consistent with the recent finding that
spinal cord injured patients expended 60% less energy during
walking on a treadmill when assisted by a stiff, nonadaptive
robotic gait training machine, when compared to a compliant,
adaptive group of human therapists [22].

If one accepts the premise that patient participation and effort
are important for provoking neural plasticity during rehabilita-
tion therapy, a standard, model-based adaptive controller would
therefore be suboptimal for movement training, even though it
successfully allows patients to complete desired movements.
As shown here, a solution to this problem is to include a for-
getting rate that decays the forces applied to the patient’s ex-
tremity when errors are small. The inclusion of the forgetting
rate makes the robot minimize force in a way analogous to the
way that humans apparently do (including rehabilitation thera-
pists, of course) [9]. The resulting controller forms a model of
the patient’s movement ability while encouraging patient effort
by providing a form of “assistance-as-needed.”

Comparing the performance of the presented controller
with other “assist-as-needed” control approaches highlights
its advantages. For example, in comparison with a stan-
dard impedance controller without a feedforward term, the
present controller achieves much better tracking across a 3-D
workspace than normally would be possible with a low level
of impedance. For example, the adaptive controller used here
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had an effective proportional position gain of 109 N/m (see
the Appendix for effective gain calculation). Given that it
took about 40 N for the robot to lift a patient’s relaxed arm
to a target (Fig. 5), then an impedance controller without a
feedforward term would have a tracking error of 0.37 m in the
vertical direction, clearly unacceptable. Tracking error could be
reduced by increasing the stiffness of an impedance controller
considerably, but then the robot would rigidly drive patient
movements, losing the hypothesized benefits of compliant
assistance for neural plasticity. Tracking error could also be
reduced by adding a feedforward term to an impedance con-
troller to help compensate for the weight of the arm (such as
by adding a constant offset equal to the weight of the arm [15],
or a fixed model of the weight of the arm [16], [38]). However,
this approach requires manually adjusting the feedforward term
for each patient. More importantly, this approach fails to take
into account that patients can contribute to lifting their arms
themselves, increasingly so as they recover. The controller
presented here provides a means to both automatically create
the feedforward term across a wide workspace in real-time, and
then to automatically reduce it as the patient recovers.

Previous attempts to implement assistance-as-needed for
robotic therapy have also taken the approach of adapting con-
trol parameters such as the stiffness of the robot [23], [41], the
shape [42], or timing [20], [23], [43] of the desired trajectory,
or parameters of a viscous force field that assists in movement
[24] from trial-to-trial based on ongoing measurement of per-
formance error. The controller presented here is different in that
it adapts the amount of force assistance provided by the robot
by adjusting a model of the patient’s weakness from movement
to moment based on tracking error. Again, this allows the
robot to remain compliant as explained above, which is an
advantage over these previous performance-based adaptive
approaches. We had previously developed a simple version of
such a model-based, assist-as-needed controller for the task
of adapting to a robotic force field during walking, providing
conceptual guidance for the present study [37]. Here, however,
we showed for the first time how to achieve model-based,
“assistance-as-needed” for arbitrary spatial movements, in-
cluding ones that are common to upper extremity rehabilitation
paradigms, and confirmed the presence of human slacking
during model-based assistance of such rehabilitation-type
movements. We are working to develop models that explain the
neurocomputational dynamics at play [30].

An adaptive controller with some of the same features as the
one proposed here was recently proposed by Mihelj et al. [39].
This controller automatically adjusts a vertical support force
based on tracking error, and includes a forgetting factor so that
the support force decreases when vertical tracking error is small.
The present controller is different, however, in that it forms a
model of the support forces needed in all directions, as a func-
tion of the arm state. In addition, the model is updated in a way in
which stability can be proven, as shown here. Further, we show
here experimentally that the forgetting factor is a necessary ad-
dition, otherwise the patient slacks.

The adaptive controller presented here adapts quickly to the
patient’s abilities—within the course of an ongoing movement.
In contrast, the changes in movement ability associated with

recovery take place over a much longer time constant—across
days. Thus, the quasi real-time adaptation of the present con-
troller is likely quicker than is necessary to adjust for ongoing
motor recovery. However, such fast adaptation is not a disad-
vantage with respect to accommodating motor recovery, and has
the advantage that it also enables the device to compensate for
changes in motor output that occur on a faster time scale, such
as those due to moment-to-moment changes in muscle tone or
fatigue.

We did not test the therapeutic efficacy of the proposed,
model-based, assist-as-needed controller here, and the ultimate
validation of the controller will be such testing. We note that the
results presented here lay the groundwork for a rigorous test of
the role of patient effort in rehabilitation efficacy. Specifically,
the control framework developed here allows patients to com-
plete desired movements with ostensibly equivalent kinematics,
but while contributing different levels of force to the task,
depending on how the forgetting rate is set. By studying two
groups of patients that train with two different forgetting rates
(and thus two different levels of effort), one should, therefore,
be able to test the role of effort in recovery, in isolation from
the confounding changes in movement repetition or kinematics
that are usually associated with changes in effort. This possi-
bility highlights the role that robotic therapy devices will likely
increasingly play in progressing rehabilitation science. The
ability to program robotic therapy devices to algorithmically
isolate and manipulate key aspects of motor training will allow
rigorous testing of whether, and how much, those aspects
influence motor plasticity.

APPENDIX

MATHEMATICAL DETAILS OF ADAPTIVE CONTROL ALGORITHM

A. Combined Orthosis and Arm Dynamics

The rigid body dynamics of a robotic orthosis when con-
nected to a human subject can be defined in task coordinates
as

(4)

where is a vector of task space coordinates specifying
the position and orientation of the hand (for Pneu-WREX
and ), is an vector of forces
applied by the robot actuators which is mapped by the Jacobian
to the interface location, is an vector of forces the
patient can contribute to the desired movement, is the
generalized inertia matrix, is the Coriolis matrix, and
is an vector of external forces acting on the robotic orthosis
and human arm combination, including gravity and static forces
arising from tone, and viscous and friction forces.

B. Adaptive Controller for Movement Training

The adaptive controller design uses the sliding surface and
reference trajectory as in [32]. and are defined as

(5)
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where and are vectors of the actual and desired lo-
cation of the hand, respectively, and is an symmetric,
constant, positive definite, gain matrix. For actuators with negli-
gible dynamics, such as electric motors, the desired robot force

equals the actual robot force . Therefore, the control law
for this method is

(6)

where and are symmetric, constant, positive definite
gain matrices and is a model of the system dynamics and
human force output and is defined as

(7)

where , , and are estimates of the dynamics of the robotic
orthosis and human arm combination, is a matrix of
known functions of , , , and , and is an vector
of estimates of the real system parameters, . In effect, is
feedforward model of the dynamics of the robot orthosis and
human arm combination including the ability and effort of the
subject.

For the current implementation of Pneu-WREX the regressor
matrix is comprised of spatially dependent Gaussian radial
basis functions, defined as

(8)

where is the th radial basis function, is the current location
of the patient’s hand, is the location of the th radial basis
function, and is effectively a scalar smoothing constant that
determines the width of the basis function. For Pneu-WREX,
we have implemented a three-dimensional grid of radial basis
functions, with eight grid divisions left to right ( to ),
five grid divisions in and out ( to ), and three grid di-
visions down to up ( to ) across the workspace of the
robot, and with cm. The grid divisions are evenly
spaced at 10 cm apart. The value of changes the width of each
radial basis function so it must be determined in conjunction
with the grid spacing, so that there is sufficient overlap in the
radial basis functions to achieve good function approximation.
The grid spacing was chosen to be small enough to get reason-
able spatial variance in the function approximation but without
adding excessive computational expensive for real-time control.
The vector of all of the Gaussian radial basis functions is defined

(9)

We combine this vector of Gaussian radial basis functions to
define the regressor matrix as

(10)

The parameter estimate vector is, therefore, a 360 1
vector, with the parameters representing the amount of force
the subject is unable to provide to hold their arm at a particular
location in space. Including more parameters (e.g., more basis
functions) is possible and would allow the model to represent
more complicated impairment, but would also increase the
computational expense. The standard parameter estimate up-
date law for this method is

(11)

where is a symmetric, positive definite gain matrix. When all
of the inertial and gravitational terms of (7) are included, and
the force output from the human subject remains time indepen-
dent, the controller defined by (6) and (11) is globally asymptot-
ically stable, following an analysis similar to [44]. For the im-
plementation with Pneu-WREX used here, however, the inertial
components of the dynamic model were omitted for simplicity,
and because the movements of interest were relatively slow. In
addition, the output force from the human subject is most cer-
tainly time dependent. Thus, the resulting system is not glob-
ally asymptotically stable. However, it is possible to show that
the system does exhibit uniform ultimate boundedness, with the
tracking errors limited by the bounds of the system dynamics
and by the bounds of the force output from the human subject.
We have found experimentally that a controller that uses (11)
without inertial components will converge to small steady state
tracking errors.

C. Assist-as-Needed Controller Modification

We modified the parameter update law (11) in order to re-
duce the forces applied to the subject when errors are small.
This modification decays the force applied by the robotic or-
thosis when the subject is able to complete movements without
assistance. In order to achieve this decay, we specify that the
partial derivative of the robot assistance force with respect to
time should, when error is zero, behave according to

(12)

where is the model based feedforward force applied to the
subject’s arm by the adaptive controller, and is the forget-
ting rate of the robot ( time constant). Using the partial
derivative of in (12) limits the change in so that it is not a
function of changes in the regressor matrix , which is depen-
dent on the state (position, velocity, and acceleration) and de-
sired state of the end-effector. This allows information learned
from previous motions to remain in the parameter vector so
that when the patient returns to similar motions later in time, the
assistance learned from previous trials is still available.

In general, is an matrix with and rank .
Thus, there are an infinite number of solutions for that sat-
isfy (12). By seeking the minimum norm solution for , the pa-
rameters that change are those that have the most influence in
the force output at a given location. At the same time, parame-
ters learned during other different motions remain unchanged.
This allows the controller to learn a model of the neuromus-
cular weakness and patient effort as a general function of desired
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position, velocity, and acceleration of the hand in task space.
The minimum norm solution for is found by solving the con-
strained minimization problem

(13)

The minimizing solution to (13) is

(14)

This term is added to the right side of (11) to create the mod-
ified parameter update law

(15)

A Lyapunov stability analysis of the system with the modified
parameter estimate update law is given in Appendix E.

D. Effective Controller Gains

The effective gains of the assist-as-needed adaptive controller
can be determined by first taking the derivative of (6) to get

(16)

Next, we substitute (3) into (16), which produces

(17)
We can now replace in (17) using (6) and rearrange terms

so that we have

(18)

where , , and are the effective integral, proportional,
and derivative gains of the system. For Pneu-WREX is a
unitless 3 3 gain matrix defined by the spacing between radial
basis functions and the smoothing parameter, . Because the
grid points are evenly spaced, (for Pneu-WREX,

). The even grid spacing has the same effect on the
effective gains, so that

(19)

Of the other two terms in (18), only is a function of state
(in this case, position). This term reflects how the learned as-
sistance model changes the robot output force. Assuming this
term is small, the effective gain values given (19) most accu-
rately describe the impedance of the controller as experienced
by the subject.

E. Lyapunov Stability Analysis

Stability is an important consideration for a machine that
physically interacts with a human. This section details the Lya-
punov stability analysis for the adaptive, assist-as-needed con-
troller. The analysis builds on the adaptive algorithms developed
by Slotine and by Spong [32], [44]. We consider the Lyapunov
function candidate

(20)

where , , , , , , and are as defined in the previous
sections and is a parameter estimate error defined as

(21)

where is an estimate of the parameters, , as previously de-
fined. Taking the derivative of (20) along system trajectories
yields

(22)
Using the sliding surface and reference trajectories de-

fined in (5), the system dynamics in (4) can be redefined as

(23)

Substituting for from (23) and for from (21) into (22)
gives

(24)

Using the fact that is skew symmetric we have

(25)

Inserting the control law (7) and the modified parameter esti-
mate update law (15) into (25) gives

(26)
Because the last term in (26) may be positive, the system is

not asymptotically stable. However, the system is stable in the
sense of uniform ultimate boundedness. To determine the stable
boundary of the system, we first rewrite (26) as

(27)



296 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 16, NO. 3, JUNE 2008

where

and

we see now that when

(28)

which occurs whenever

(29)

where is the minimum eigenvalue of . The max-
imum of is occurs when

(30)

Substituting (30) into (29) and solving for using the
above definition of gives

(31)

Equation (31) defines the maximum error for and
thus represents the boundary of the closed loop system.
Larger magnitudes of will have and the
closed-loop human–robot system will therefore converge
to this boundary. We see that the magnitude of the error
will be small when the robot forgetting rate is small. In
other words, as the adaptive controller remembers all
it has learned about the parameters so that . Because

, (31) can be written

(32)

which shows that the kinematic tracking error bound is propor-
tional to the actual parameters of the system.

ACKNOWLEDGMENT

The authors would like to thank V. Le for programming as-
sistance and also thank S. Cramer, M.D., Ph.D. for medical su-
pervision and helpful comments.

REFERENCES

[1] W. Rosamond, K. Flegal, G. Friday, K. Furie, A. Go, K. Greenlund, N.
Haase, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones, M.
McDermott, J. Meigs, C. Moy, G. Nichol, C. J. O’Donnell, V. Roger, J.
Rumsfeld, P. Sorlie, J. Steinberger, T. Thom, S. Wasserthiel-Smoller,
and Y. Hong, “Heart disease and stroke statistics—2007 update: A re-
port from the american heart association statistics committee and stroke
statistics subcommittee,” Circulation, vol. 115, pp. 69–171, 2007.

[2] B. H. Dobkin, “Strategies for stroke rehabilitation,” Lancet Neurol.,
vol. 3, pp. 528–536, Sep. 2004.

[3] G. Kwakkel, “Impact of intensity of practice after stroke: Issues for
consideration,” Disability Rehabil., vol. 28, pp. 823–830, 2006.

[4] P. Lum, “Robotic devices for movement therapy after stroke: Current
status and challenges to clinical acceptance,” Topics Stroke Rehabil.,
vol. 8, pp. 40–53, 2002.

[5] S. Hesse, H. Schmidt, C. Werner, and A. Bardeleben, “Upper and lower
extremity robotic devices for rehabilitation and for studying motor con-
trol,” Current Opinion Neurol., vol. 16, no. 6, pp. 705–710, 2003.

[6] R. Riener, T. Nef, and G. Colombo, “Robot-aided neurorehabilitation
of the upper extremities,” Med. Biol. Eng. Comput., vol. 43, pp. 2–10,
2005.

[7] B. T. Volpe, M. Ferraro, D. Lynch, P. Christos, J. Krol, C. Trudell, H. I.
Krebs, and N. Hogan, “Robotics and other devices in the treatment of
patients recovering from stroke,” Current Neurol. Neurosci. Rep., vol.
5, p. 465, 2005.

[8] P. Lum, C. Burgar, M. V. d. Loos, P. C. Shor, O. T. R. M. Majmundar,
and R. Yap, “MIME robotic device for upper-limb neurorehabilitation
in subacute stroke subjects: A follow-up study,” J. Rehabil. Res. De-
velopment, vol. 43, pp. 631–642, 2006.

[9] J. L. Emken and D. J. Reinkensmeyer, “Human-robot cooperative
movement training: Learning a novel sensory motor transformation
during walking with robotic assistance-as-needed,” J. Neuroeng.
Rehabil., 2007.

[10] J. L. Emken and D. J. Reinkensmeyer, “Robot-enhanced motor
learning: Accelerating internal model formation during locomotion by
transient dynamic amplification,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 13, pp. 33–39, 2005.

[11] J. L. Patton, M. E. Stoykov, M. Kovic, and F. A. Mussa-Ivaldi, “Eval-
uation of robotic training forces that either enhance or reduce error in
chronic hemiparetic stroke survivors,” Exp. Brain Res., vol. 168, pp.
368–383, 2006.

[12] N. Hogan, H. I. Krebs, B. Rohrer, J. J. Palazzolo, L. Dipietro, S. E. Fa-
soli, J. Stein, R. Hughes, W. R. Frontera, D. Lynch, and B. T. Volpe,
“Motions or muscles? Some behavioral factors underlying robotic as-
sistance of motor recovery,” J. Rehabilitation Res. Dev., vol. 43, pp.
605–618, Sep./Oct. 2006.

[13] H. I. Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe, “Robot-aided neu-
rorehabilitation,” IEEE Trans. Rehabil. Eng., vol. 6, no. 1, pp. 75–87,
Mar. 1998.

[14] R. A. Schmidt, Motor Control and Learning: A Behavioral Em-
phasis. Champaign, IL: Human Kinetics, 2005.

[15] H. I. Krebs, B. T. Volpe, D. Lynch, and N. Hogan, “Stroke rehabilita-
tion: An argument in favor of a robotic gym,” in 2005 IEEE 9th Int.
Conf. Rehabil. Robot., Chicago, IL, 2005, pp. 219–222.

[16] T. Nef, M. Mihelj, and R. Riener, “ARMin: A robot for patient-coop-
erative arm therapy,” Med. Biol. Eng. Comput., vol. 45, pp. 887–900,
2007.

[17] J. He, E. J. Koeneman, R. S. Schultz, D. E. Herring, J. Wanberg, H.
Huang, T. Sugar, R. Herman, and J. B. Koeneman, “RUPERT: A device
for robotic upper extremity repetitive therapy,” in IEEE-EMBS 27th
Annu. Int. Conf. Eng. Medi. Biol. Soc., 2005, pp. 6844–6847.

[18] D. J. Reinkensmeyer, L. E. Kahn, M. Averbuch, A. McKenna-Cole,
B. D. Schmit, and W. Z. Rymer, “Understanding and treating arm
movement impairment after chronic brain injury: Progress with the arm
guide,” J. Rehabil. Res. Develop., vol. 37, pp. 653–662, 2000.

[19] C. D. Takahashi, L. Der-Yeghiaian, V. H. Le, and S. C. Cramer, “A
robotic device for hand motor therapy after stroke,” rehabilitation
robotics, 2005,” in ICORR 2005. 9th Int. Conf., 2005, pp. 17–20.

[20] R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M. C.
Carrozza, P. Dario, and G. Minuco, “Robotic techniques for upper limb
evaluation and rehabilitation of stroke patients,” neural systems and
rehabilitation engineering,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 13, no. 3, pp. 311–324, Sep. 2005.

[21] L. L. Cai, A. J. Fong, C. K. Otoshi, Y. Liang, J. W. Burdick, R. R.
Roy, and V. R. Edgerton, “Implications of assist-as-needed robotic step
training after a complete spinal cord injury on intrinsic strategies of
motor learning.,” J. Neurosci., vol. 26, pp. 10564–10568, 2006.

[22] J. F. Israel, D. D. Campbell, J. H. Kahn, and T. G. Hornby, “Metabolic
costs and muscle activity patterns during robotic- and therapist-assisted
treadmill walking in individuals with incomplete spinal cord injury,”
Phys. Therapy, vol. 86, pp. 1466–1478, Nov. 2006.

[23] H. I. Krebs, J. J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Ran-
nekleiv, B. T. Volpe, and N. Hogan, “Rehabilitation robotics: Perfor-
mance-Based progressive robot-assisted therapy,” Auton. Robot, vol.
15, no. 1, pp. 7–20, 2003.



WOLBRECHT et al.: OPTIMIZING COMPLIANT, MODEL-BASED ROBOTIC ASSISTANCE TO PROMOTE NEUROREHABILITATION 297

[24] L. E. Kahn, W. Z. Rymer, and D. J. Reinkensmeyer, “Adaptive assis-
tance for guided force training in chronic stroke,” in Proc. 26th EMBC
Annu. Int. Conf. Eng. Medicine Biol. Soc., San Francisco, CA, 2004,
vol. 1, pp. 2722–2725.

[25] P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. V. d.
Loos, “Robot-assisted movement training compared with conventional
therapy techniques for the rehabilitation of upper limb motor function
following stroke,” Arch. Phys. Med. Rehab. , vol. 83, pp. 952–959,
2002.

[26] D. J. Reinkensmeyer, J. L. Emken, and S. C. Cramer, “Robotics, motor
learning, and neurologic recovery,” Annu. Rev. Biomed. Eng., vol. 6,
pp. 497–525, 2004.

[27] R. J. Sanchez, E. Wolbrecht, R. Smith, J. Liu, S. Rao, S. Cramer,
T. Rahman, J. E. Bobrow, and D. J. Reinkensmeyer, “A pneumatic
robot for re-training arm movement after stroke: Rationale and
mechanical design,” in Proc. IEEE Int. Conf. Rehab. Robot., 2005,
pp. 500–504.

[28] E. T. Wolbrecht, J. Leavitt, D. J. Reinkensmeyer, and J. E. Bobrow,
“Control of a pneumatic orthosis for upper extremity stroke rehabili-
tation,” in 28th Annu. Int. Conf. IEEE Eng. Medicine Biol. Soc. , New
York, 28th, 2006, pp. 2687–2693.

[29] E. T. Wolbrecht, Adaptive, assist-as-needed control of a pneumatic or-
thosis for optimizing robotic movement training following stroke Dept.
Mechan. Aerospace Eng., Univ. California, Irvine, 2007.

[30] D. J. Reinkensmeyer, E. T. Wolbrecht, and J. Bobrow, “A computa-
tional model of human-robot load sharing during robot-assisted arm
movement training after stroke,” presented at the 28th Annu. Int. Conf.
IEEE Eng. Medicine Biol. Soc., Lyon, France, 2007.

[31] T. Rahman, W. Sample, and R. Seliktar, “Design and testing of
WREX,” in Advances in Rehabilitation Robotics. New York:
Springer, 2004, pp. 243–250.

[32] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Upper Saddle
River, NJ: Prentice-Hall, 1991.

[33] D. Erol, V. Mallapragada, N. Sarkar, G. Uswatte, and E. Taub, “A new
control approach to robot assisted rehabilitation,” in 2005 IEEE 9th Int.
Conf. Rehabil. Robotics, Chicago, IL, 2005, pp. 323–328.

[34] L. E. Kahn, M. L. Zygman, W. Z. Rymer, and D. J. Reinkensmeyer,
“Robot-assisted reaching exercise promotes arm movement recovery
in chronic hemiparetic stroke: A randomized controlled pilot study,” J.
Neuroeng. Rehabil., vol. 3, p. 12, 2006.

[35] N. Hogan, “Interactive robots for neuro-rehabilitation,” Restor. Neurol.
Neurosci., vol. 22, no. 3-5, pp. 349–358, 2004.

[36] E. Todorov, “Optimality principles in sensorimotor control (review),”
Nature Neurosci., pp. 907–915, 2004.

[37] J. L. Emken, R. Benitez, A. Sideris, J. E. Bobrow, and D. J. Reinkens-
meyer, “Motor adaptation as a greedy optimization of error and effort,”
J. Neurophysiol., pp. 3997–4006, Mar. 2007.

[38] T. Nef and R. Riener, “ARMin-Design of a novel arm rehabilitation
robot,” in Proc. IEEE 9th Int. Conf. Rehabil. Robotics, 2005, pp. 57–60.

[39] M. Mihelj, T. Nef, and R. Riener, “A novel paradigm for patient-coop-
erative control of upper-limb rehabilitation robots,” Adv. Robotics, vol.
21, pp. 843–867, 2007.

[40] A. Montagner, A. Frisoli, L. Borelli, C. Procopio, M. Bergamasco, M.
Carboncini, and B. Rossi, “A pilot clinical study on robotic assisted
rehabilitation in VR with an arm exoskeleton device,” presented at the
Virutal Rehabil. Conf., Venice, Italy, 2007.

[41] J. L. Emken, J. Beres-Jones, S. J. Harkem, C. Ferreira, and D. J.
Reinkensmeyer, “Feasibility of manual teach-and-replay and con-
tinuous impedance shaping for robotic locomotor training following
spinal cord injury,” IEEE Trans. Biomed. Eng., vol. 55, no. 1, pp.
322–334, Jan. 2008.

[42] R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo,
and V. Dietz, “Patient-cooperative strategies for robot-aided treadmill
training: First experimental results,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 13, no. 3, pp. 380–394, Sep. 2005.

[43] D. Aoyagi, W. E. Ichinose, S. J. Harkema, D. J. Reinkensmeyer, and
J. E. Bobrow, “A robot and control algorithm that can synchronously
assist in naturalistic motion during body-weight-supported gait training
following neurologic injury,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 15, no. 3, pp. 387–400, Sep. 2007.

[44] M. W. Spong and M. Midyasagar, Robot Dynamics and Control.
New York: Wiley, 1989.

Eric T. Wolbrecht (M’06) received the B.S. degree in mechanical engineering
from Valparaiso University, Valparaiso, IN, in 1996, the M.S. degree in me-
chanical engineering from Oregon State University, Corvallis, in 1998, and the
Ph.D. degree in mechanical and aerospace engineering from the University of
California, Irvine, in 2007.

He is currently an Assistant Professor in the Department of Mechanical En-
gineering at the University of Idaho, Moscow. His research interests include
robotics, nonlinear and adaptive control, compliant actuation, motor learning,
and neurorehabilitation.

Dr. Wolbrecht is a member of the American Society of Mechanical
Engineering.

Vicky Chan received the B.S. degree in human biology (Magna Cum Laude) and
the M.S. degree in physical therapy from Texas Woman’s University, Denton.

She worked at Kindred Hospital, Dallas, TX, for four years treating mostly
ventilator dependent patients. Currently, she is the Primary Physical Therapist
for the Acute Rehabilitation Unit at the University of California, Irvine.

David J. Reinkensmeyer (S’93–M’93) received the B.S. degree in electrical en-
gineering from the Massachusetts Institute of Technology, Cambridge, in 1988,
and the M.S. and Ph.D. degrees in electrical engineering from the University of
California, Berkeley, in 1991 and 1993, respectively.

He was a Research Associate at the Rehabilitation Institute of Chicago and
Northwestern University Medical School from 1994 to 1997. He is currently a
Professor in the Department of Mechanical and Aerospace Engineering and the
Department of Biomedical Engineering at the University of California, Irvine.
His research interests are in neuromuscular control, motor learning, robotics,
and neurorehabilitation.

Dr. Reinkensmeyer is an Associate Editor of the IEEE TRANSACTIONS ON

NEURAL SYSTEMS AND REHABILITATION ENGINEERING.

James E. Bobrow (M’84) received the Ph.D. degree from the University of
California, Los Angeles, in 1983.

After graduate school, he was a Senior Programmer Analyst at McDonnell
Douglas Automation Company, where he developed CAM software for the Un-
igraphics system. He joined the University of California, Irvine (UCI), as an
Assistant Professor in 1984. He is currently a Professor of Mechanical and
Aerospace Engineering at UCI. While at UCI, his research interests have in-
cluded optimal control and motion planning for robots, design of pneumatic
actuators and sensors for automation systems, robots for rehabilitation, and ma-
chine learning systems. He has also been a Visiting Professor in Computer Sci-
ence at Stanford University, Stanford, CA, and in Mechanical Engineering at the
Massachusetts Institute of Technology, Cambridge, and he has created robots
and automation devices for several startup companies, including Robomedica,
Inc., Irvine, CA, and Cobra Technologies, Smyrna, GA. He has served on the
program committees or organizing committees of the leading conferences in
control systems and robotics. He is currently on the Engineering steering com-
mittee for Robomedica, Inc.

Dr. Bobrow is an Associate Editor of the IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS—PART B: CYBERNETICS.


