
EURASIP Journal on Advances
in Signal Processing

Feng et al. EURASIP Journal on Advances in Signal

Processing (2021) 2021:36

https://doi.org/10.1186/s13634-021-00751-5

RESEARCH Open Access

Optimizing computation offloading
strategy in mobile edge computing based on
swarm intelligence algorithms
Siling Feng1* , Yinjie Chen1, Qianhao Zhai2, Mengxing Huang1,3* and Feng Shu1

*Correspondence:

fengsiling2008@163.com;

huangmx09@hainanu.edu.cn
1School of Information and

Communication Engineering,

Hainan University, No. 58 Renmin

Avenue, 570228 Haikou, China
3State Key Laboratory of Marine

Resource Utilization in the South

China Sea, Hainan University, No. 58

Renmin Avenue, 570228 Haikou,

China
Full list of author information is

available at the end of the article

Abstract

As the technology of the Internet of Things (IoT) and mobile edge computing (MEC)

develops, more and more tasks are offloaded to the edge servers to be computed. The

offloading strategy performs an essential role in the progress of computation

offloading. In a general scenario, the offloading strategy should consider enough

factors, and the strategy should be made as quickly as possible. While most of the

existing model only considers one or two factors, we investigated a model considering

three targets and improved it by normalizing each target in the model to eliminate the

influence of dimensions. Then, grey wolf optimizer (GWO) is introduced to solve the

improved model. To obtain better performance, we proposed an algorithm hybrid

whale optimization algorithm (WOA) with GWO named GWO-WOA. And the improved

algorithm is tested on our model. Finally, the results obtained by GWO-WOA, GWO,

WOA, particle swarm optimization (PSO), and genetic algorithm (GA) are discussed. The

results have shown the advantages of GWO-WOA.

Keywords: Mobile edge computing, Computation offloading, Grey wolf optimizer,

Whale optimization algorithm

1 Introduction

With the development of IoT technology, mobile devices (MDs) are commonly used to

collect data and process them. These devices are usually made to be small with limited

computing resources and energy supply. However, in some applications, the computation

tasks are so complicated that the processing unit on mobile devices may need a long time

to deal with, increasing concern about its high energy consumption. Mobile cloud com-

puting (MCC) is proposed to break through the barrier between the request for complex

applications and restricted resources. In general, MCC application scenarios, computa-

tion tasks are performed on the central cloud, which has enormous storage space and

rich computational resources [1]. Although MDs obtained the ability to process complex

computation tasks with locally low energy consumption through this method, MCC lacks

latency [2]. The centralized servers are usually remote from MDs. With the development

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-021-00751-5&domain=pdf
http://orcid.org/0000-0002-8627-2028
mailto: fengsiling2008@163.com
mailto: huangmx09@hainanu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 2 of 15

of the Internet and fifth-generation mobile networks (5G), more applications perform

real-time processes and require low latency for MCC.

The generation of MEC solves the problems. In MEC scenarios, edge servers are dis-

tributed nearly everywhere (commonly with the wireless base station in 5G networks). As

the servers are physically closer to MDs, it can effectively reduce latency and reduce the

energy consumption caused by data transmission. Compared with a centralized server

cluster, MEC servers do not have that rich resources. It is not a problem because MEC

servers only provide service to a specific area. The capacity can be flexibly adjusted to

suit the actual load. Besides, MDs may not always generate heavy computation tasks, and

it will cause a waste of resources if the tasks are always sent to be processed on servers,

no matter how much it is. With the feature of MEC, MDs are more flexible in dealing

with the tasks, with more optional choices on whether to offload the computation tasks

or not and howmuch to offload the computation tasks. The offloading decisions have sig-

nificant impacts on the quality of service (QoS). With the aforementioned backgrounds,

computation offloading decision is an essential branch of MEC, receiving more and more

attention.

The target of computation offloading can be comprehensive, including time, energy,

cost, etc. The time target aims to reduce the latency, while the energy target aims to reduce

the power consumption. The cost target can be considered as two sides. One is the cost

of transmitting the data, and the other is the cost of edge computation resources. Some

methods only consider a single target. For example, [3, 4] only consider the time target,

and [5, 6] only consider the energy target. Some methods consider two targets, like [7, 8].

The research that considers three or more targets does exist, but it is seldom compared

with those considering one or two targets. As a result, research on more than two targets

is desperately needed.

Once the model of computation offloading is proposed, the next step is to

find out the proper and effective method to obtain the computation offloading

decisions. The decisions obtained should get the best result of the model with

given conditions. Swarm intelligence is the collective intelligence behavior of self-

organized and decentralized systems [9]. Moreover, swarm intelligence algorithms are

a kind of algorithm that has attracted interest from many researchers in various

kinds of fields. The many researches and applications of swarm intelligence opti-

mization algorithms show that they can solve the defined computation offloading

model.

As the multi-target optimization problem is an NP-hard problem [10], an accurate

method is not rather than suitable. This kind of optimization problem is more suitable

to use a non-accurate method [11–13], such as evolution algorithms, swarm intelligence

algorithms, et cetera. In this paper, swarm intelligence algorithms are considered to be

used to solve the problem.

Deng et al. [14] present a computation offloading model with 0–1 planning and weight

improvement and solve the model with PSO algorithm. Pham et al. [15] study the com-

putation offloading in non-orthogonal multiple access (NOMA)-based multi-access edge

computing systems. Moreover, WOA is used to optimize the joint optimization problem

of offloading decision, subchannel assignment, transmit power, and computing resource

allocation. Pham et al. [16] present the adoption of WOA to solve various resource

allocation problems.

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 3 of 15

In works [14–16], none of them covers the problem with both multiple targets on com-

putation offloading problems and state-of-the-art optimization algorithms. The main

contribution of this paper can be summarized as follows. First, the computation offload-

ing model in this paper considers three targets, time delay, energy consumption, and

service price, and the model is improved by using normalization. Then, a swarm intelli-

gence algorithm named GWO is applied to solve the proposed model. Next, according to

the existing performance of WOA, an improvement that combines WOA with GWO is

proposed, and it is given the name GWO-WOA. The whale optimization algorithm has

only one leader solution when searching for the best solution in the set. This characteris-

tic ofWOA can cause it easily converge at the local optima.While GWOhas three leaders

during the searching process, it has less possibility to fall into local optima. We can use it

to improve the searching progress of WOA and improve the performance of the original

WOA. Finally, GWO-WOA is applied to solve the proposed model. The results show the

excellent performance of the proposed model and GWO-WOA.

The rest of this paper is organized as follows. In Section 2, some related works are repre-

sented and discussed. In Section 3, the system model are represented, including the local

computing model, edge computing model, service price model, and problem formulation.

In Section 4, two solutions to solve the model are represented in detail. In Section 5, the

results of experiments are shown in the form of tables and figures and are discussed. In

Section 6, the study has been concluded.

2 Related works

Both computation offloading strategies and swarm intelligence algorithms are attractive

research directions. Some excellent researches have been done in recent years.

To offload the computing task, computation offloading can be divided into binary com-

putation offloading and partial computation offloading. The former means MDs can only

fully offload computational tasks to the edge servers or compute them locally. The latter is

more flexible than the former, whichmeans tasks can be dealt with partly, not wholly. Zhu

et al. [17] have employed the game theory to optimize the multi-user binary computation

offloading problem. A Q-learning based method is applied to solve the binary computa-

tion offloading problem on the work of Jiang et al. [18]. Zhao et al. [19] proposed a partial

computation offloading strategy using reinforcement learning to reach the minimum cost

of the system.

For the number of objectives the computation offloading strategy involved, computa-

tion offloading can be divided into single objective computation offloading and many

objectives computation offloading. Miao et al. [20] propose a computation offloading

and task migration algorithm to reduce the processing time of applications. Jiang et al.

[21] studied computation-intensive and delay-sensitive task scheduling, where an effi-

cient task scheduling algorithm is developed to solve the optimization problem. Huang

et al. [22] use a multi-objective method to solve the problem considering time consump-

tion and energy consumption. Yan et al. [23] have worked on the joint task offloading and

resource allocation problem by considering both the energy consumption and execution

time.

As for the perspective of device amount considered in the model, computation offload-

ing can be separated as single-user and multi-users. Labidi et al. [24] discussed the

balance between shortening the execution time and extending the mobile device’s battery

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 4 of 15

life under single-user scenarios. And You et al. [25] solves the problem of computation

offloading in a multi-user scenario.

From the three perspectives, it can be known that the work in this paper, which uses a

swarm intelligence algorithm to solve multi-device three targets is necessary.

3 Methods

3.1 Systemmodel

This paper discusses the scenario that MDs in a particular area offload their compu-

tational tasks to specific edge servers. Each MDs has a computational-intensive task

need to be computed. The set of MDs can be denoted as N = {1, 2, . . . , n}. C =

{c1, c2, . . . , cn} is used to represent the CPU cycles needed to finish the task, and

D = {d1, d2, . . . , dn} is used to represent the data size of computational tasks, where i

is corresponding to the mobile device i in MDs set N. The combination of set C and set

D are to describe the tasks on each MD. Communication, including computational data

transmission between mobile devices and edge servers, is performed through the wireless

access point. It is assumed that each task can be partial or fully offload to the edge server.

The set X = {x1, x2, . . . , xn} is used to represent the offloading decisions, where xi

belongs to [0, 1]. If xi = 0, it means mobile devices i compute the task through its CPU

locally. On the contrary, the mobile device i completely offload its task to be computed at

the edge servers if xi = 1. If xi > 0 and xi < 1, it means MD i offloads xi × 100% of tasks

to be computed at the edge servers, and the rest (1 − xi) × 100% is computed at local. In

the scenario, the computation resource capacity on edge servers is considered. The com-

putation offloading model is a joint optimization of time delay, energy consumption, and

price for edge service.

3.1.1 Local computingmodel

For the situation that computes the task at local, the model can be described in this

section. We let tli as the local execution time, which only includes the processing time for

the local CPU and eli as the corresponding energy consumption of processing the task.

F l
i is denoted as the maximal CPU cycle frequency of device i due to its hardware. f li is

denoted as the current CPU cycles available for the task according to the run-time situa-

tion of mobile device i. When mobile device i process its task locally, the time delay tli can

be defined as:

tli =
ci

f li
(1)

And the energy consumption can be expressed as:

eli = κ

(

f li

)2
ci (2)

where κ means the effective switched capacitance that is determined by the chip

architecture, according to the reference [26], κ is set as 10−27 in this paper.

3.1.2 Edge computingmodel

The model can be described in this section for the situation that computes the task at the

edge server.

As the communication is through the wireless channel, the communication rate should

be considered. W is defined as the bandwidth of the wireless channel, assuming that it

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 5 of 15

would be equally allocated to mobile devices if more than one device chooses to offload

the task simultaneously. Under this setting, θi is the wireless channel bandwidth allocated

to mobile device i. The communication rate of mobile device i can be denoted as [14]:

Ri = riθi = W log

(

1 +
pihi

WN0

)

θi (3)

where pi represents the transmission power of mobile device i, hi represents the channel

gain of mobile device i, N0 denotes the background channel noise.

Under this circumstance, the time delay can be divided into two parts: transmission

time and process time. toi is used to represent the transmission time, and it can be defined

as:

toi =
di

Ri
(4)

The whole computing resources of the edge servers can be represented as F. And f ei
denotes the CPU cycle frequency allocated to the mobile device i to finish its task at the

edge server. tei denotes the processing time needed on the edge server for the task from

mobile device i. It can be defined as:

tei =
ci

f ei
(5)

The time for computation results to be transmitted back to the mobile device is ignored

due to the data size of the result is much smaller. The total time for the mobile device i to

complete its task fully through the edge server should be calculated by:

t
p
i = toi + tei (6)

And corresponding energy consumption e
p
i can be defined as:

e
p
i = Poi t

o
i + Pei t

e
i (7)

where Poi is the power needed to transmit data from mobile device i through the wireless

access point, and Pei is the power when the mobile device i is waiting for the result.

3.1.3 Edge service pricingmodel

The price of servicing charging mainly has two kinds of patterns. One is charging for the

usage of time, and the other is charging for the resource usage. In this model, charging

price based on resource usage is considered. In real life, the price is set on a certain unit.

So, the baseline CPU frequency cycles fbase is defined. And according to the baseline set,

the charge for the baseline Vbase is defined as 1. The cost incurred for the task of each

mobile device can be defined as:

ui = tei × Vbase ×
f ei
fbase

(8)

3.1.4 Problem formulation

In the problem, it is assumed that n mobile devices are included. Moreover, each device

has a different amount of tasks, which means that each device’s workload varies. The

decision set X is calculated according to the given set of computation complexity C and

data size D. The model should consider time delay, energy consumption, and pricing.

However, these three targets describe different metrics, and they can not be simply added

to form the final target function. Otherwise, it may cause problems. For example, the

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 6 of 15

quantity difference may force the target function only to focus on a specific target. To

solve the problem mentioned, normalization is applied in the model.

The total time latency can be calculated as:

T =

n
∑

i=1

[

(1 − xi) t
l
i + xit

p
i

]

− Tmin

Tmax − Tmin
(9)

where Tmin means the minimum time delay calculated in the mobile device set, and Tmax

means the maximum time delay calculated in the mobile device set.

The total energy consumption can be calculated as:

E =

n
∑

i=1

[

(1 − xi) e
l
i + xie

p
i

]

− Emin

Emax − Emin
(10)

where Emin means the minimum energy consumption calculated in the mobile device set,

and Emax means the maximum energy consumption calculated in the mobile device set.

The total price of edge service can be calculated as:

U =

n
∑

i=1

xiui − Umin

Umax − Umin
(11)

The improved calculation method has eliminated the influence of dimensions and

makes the objective function easier to reflect the change of the result when adjusting the

decision. As a consequence, the objective function can be expressed as below:

Q = T + ηE + γU

=

n
∑

i=1

[

(1 − xi) t
l
i + xit

p
i

]

− Tmin

Tmax − Tmin
+ η

n
∑

i=1

[

(1 − xi) e
l
i + xie

p
i

]

− Emin

Emax − Emin

+ γ

n
∑

i=1

xiui − Umin

Umax − Umin

(12)

where η and γ is used as the coefficients. The coefficients are used to adjust the rela-

tionship of the three targets, which can be seen as the weights of targets in the final

formulation. In the equation, the time latency target is regarded as a baseline whose coef-

ficient is 1. The coefficients of the other two targets are adjusted, and the proportion of

these three parts becomes different. In this way, the wanted weight consideration for the

three targets is achieved.

The optimization problem to be solved can be given by:

minxi,θi,f ei Q

s.t. 0 ≤ f ei ≤ xiF , ∀i ∈ N

n
∑

i=1

f ei ≤ F , ∀i ∈ N

0 ≤ θi ≤ xiL, ∀i ∈ N

n
∑

i=1

θi ≤ L, ∀i ∈ N

xi ∈[0, 1] , ∀i ∈ N

(13)

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 7 of 15

The optimization problem has three targets, including time latency, energy consump-

tion, and service price. The goal of the optimal problem is to reach the minimum value of

the Q function under limited conditions.

4 Problem solutions

4.1 Grey wolf optimizer

Grey wolf optimizer (GWO) [27] is a swarm intelligence algorithm inspired by the hunt-

ing pattern and the social hierarchy of grey wolves. Grey wolves mostly live in a pack

with a strict social dominant hierarchy. The pack of wolves can be categorized into four

groups: alpha, beta, delta, and omega. Alpha wolves are the leader of the pack of wolves;

beta wolves are subordinate wolves helping alphas; delta wolves are responsible for watch-

ing the boundaries of territory and warning for dangers; and omega wolves play the role

of scapegoat, which dominated by the other three groups of wolves. In the algorithm of

GWO, the fittest solution is considered as the alpha, while the second-best and the third-

best solutions are considered as beta and delta, respectively. The rest of the solutions are

regarded as omega. And the hunting behavior of grey wolves is abstracted to three stages

in the algorithm: encircling prey, hunting, attacking prey, and search for prey.

For the encircling stage, the positions of the wolves can be updated by [27]:

−→
D =

∣

∣

∣

−→
C ·

−→
Xp(t) −

−→
X (t)

∣

∣

∣
(14)

−→
X (t + 1) =

−→
Xp(t) −

−→
A ·

−→
D (15)

where t is the current iteration,
−→
X is the position vector of a grey wolf,

−→
Xp is the position

of the prey.
−→
A and

−→
C are coefficient vectors which can be calculated as:

−→
A = 2 ·

−→a ·
−→r1 −

−→a (16)

−→
C = 2 ·

−→r2 (17)

where the components of −→a are linearly decreased from 2 to 0 through the iterations and
−→r1 ,

−→r2 are two random vectors whose value is in [0, 1].

For the hunting stage, the positions of the wolves can be updated by [27]:

−→
Dα =

∣

∣

∣

−→
C1 ·

−→
Xα −

−→
X

∣

∣

∣
,
−→
Dβ =

∣

∣

∣

−→
C2 ·

−→
Xβ −

−→
X

∣

∣

∣
,
−→
Dδ =

∣

∣

∣

−→
C3 ·

−→
Xδ −

−→
X

∣

∣

∣
(18)

−→
X1 =

−→
Xα −

−→
A1 ·

−→
Dα ,

−→
X2 =

−→
Xβ −

−→
A2 ·

−→
Dβ ,

−→
X3 =

−→
Xδ −

−→
A3 ·

−→
Dδ (19)

−→
X (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(20)

With the existing applications of GWO, it has been proved to have superior exploitation,

good exploration ability, and high local optima avoidance. GWO shows the potential to

solve the optimization model proposed. The core pseudocode of the GWO algorithm can

be shown in Algorithm 1.

4.2 ImprovedWOAwith GWO

Similar to GWO, WOA is another kind of swarm intelligence algorithm [28], imitating

the hunting behavior of humpback whales. The process of a whale optimization algorithm

can be separated into three stages: encircling prey, bubble-net attacking, and searching for

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 8 of 15

Algorithm 1 Pseudocode of GWO algorithm

Initialize the grey wolf population Xi (i = 1, 2, . . . , n)

Initialize −→a ,
−→
A , and

−→
C

Calculate the fitness value of each search agent

Select Xα , Xβ , Xδ from solutions according to the fitness values

while t < Max iterations number do

for each search agent do

Update the position of the current search agent by using (20)

end for

Update −→a ,
−→
A , and

−→
C

Calculate the fitness values of each search agent

Update Xα , Xβ , Xδ

t = t + 1

end while

Return Xα

prey. There have many successful applications of WOA, solving problems in many fields.

It shows well balance between exploration and exploitation and has efficient performance

against standard algorithms. However, despite the good points of WOA, the algorithm

also appears to have some advantages in the application scenarios, like the low efficiency

in convergence caused by using a single parameter [29], the failure to jump out from local

optima [30]. So, an improvement for WOA is desperately needed.

Considering and comparing the thought and method of WOA with those of GWO,

the social hierarchy in GWO is introduced to WOA in this paper, with the purpose of

improving the ability to search for global optima and improving the avoidance of falling

into local optima. Correspondingly, the process for updating the position of the search

agents is modified to suit the introduction of hierarchy. The improved WOA is called

GWO-WOA.

The encircling stage of WOA is the same as GWO, while the bubble-net attacking

method of WOA is different from the hunting stage of GWO. The WOA has a random

mechanism with some random variables.
−→
A is a random vector that can be calculated

by Equation 16. p is a random number in [0, 1], and l is a random number in [−1, 1].

When p < 0.5 and
∣

∣

∣

−→
A

∣

∣

∣
≥ 1, the position of the search agents can be updated by using

Equation 15.When p < 0.5 and
∣

∣

∣

−→
A

∣

∣

∣
< 1, the updating method of the hunting stage of the

GWO algorithm is used, replacing the original method that only updates the single leader

search agent. When p ≥ 0.5, the position of the search agent can be updated by [28]:

−→
D

′

=

∣

∣

∣

−→
Xp(t) −

−→
X (t)

∣

∣

∣
(21)

−→
X (t + 1) =

−→
D

′

· ebl · cos(2π l) +
−→
Xp(t) (22)

The core pseudocode of GWO-WOA can be shown in Algorithm 2.

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 9 of 15

Algorithm 2 Pseudocode of GWO-WOA algorithm

Initialize the whale population Xi (i = 1, 2, . . . , n)

Calculate the fitness of each search agent

Initialize −→a ,
−→
A ,

−→
C , l, and p

Select Xα , Xβ , Xδ from solutions according to the fitness values

while (t < maximum number of iterations) do

for each search agent do

Update −→a ,
−→
A ,

−→
C , l, and p

if (p < 0.5) then

if (
∣

∣

∣

−→
A

∣

∣

∣
≥ 1) then

Update the position of the current search agent by using (15)

else

Update the position of Xα , Xβ , Xγ by using (18)(19)(20)

end if

else

Update the position of the current search agent by using (22)

end if

end for

Check if any search agent goes beyond the search space and amend it

Calculate the fitness of each search agent

Update Xα , Xβ , Xγ if there is a better solution

t=t+1

end while

5 Results and discussion

This section will carry out numerical experiments based on the system model above and

the algorithm proposed. The algorithms are coded in MATLAB 2021a, and all tests are

performed on a PC with a Windows 10 operating system and 8 GB of RAM.

There are edge servers in the center of the service area and some mobile devices whose

amount can be adjusted in the simulation scenario. Each mobile device is distributed

randomly in the service area. As for each mobile device, it has its own task need to be

computed, and the data size and the needed CPU cycles of the task are randomly gener-

ated, specifically di ∼ N(1000, 100) and ci ∼ N(400, 100). The computation resource of

the edge servers is F = 40 GHz, and the CPU frequency of the mobile device is randomly

from 0.5 to 1 GHz. The power when transmitting data Poi is set as 100 mW, and the power

when waiting for the result Pei is set as 10 mW. The baseline resource of the edge server

for charging is set as 1 GHz, and the price for the baseline is set as 1.

Under this setting, we need to perform some experiments to evaluate our algorithm.

The goal for our improvement on the algorithm is to propose an algorithm with better

performance in the application. As the multi-target problem is formulated into a sin-

gle target one, we should consider the performance from the convergence and stability.

Besides, some standard methods also should be included as comparisons.

The GWO applied is used as a method in the results. And the GWO-WOA is also used

to obtain the result.Moreover,WOA is also used to get the results to compare whether the

improved method is valid. PSO [31], one common swarm intelligence algorithm, and one

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 10 of 15

traditional evolution algorithm, GA [32], are included as comparisons for comprehensive

analysis.

We choose some indicators to evaluate the performance of these methods. The first

one is the value of the Q function, which is the final target, no doubt should be included.

The lower the value of the Q function is, the better the method is. The second one is the

processing time. In the scenario of computation offloading, offload decisions should be

made as quickly as possible, or it will lose significance. The third one is the stability of

results with the same inputs. Intelligence algorithms have uncertainty due to the principle

of these algorithms, and the results can be affected by this kind of uncertainty. However,

the influence of uncertainty on the results should be reduced as much as possible. It can

be seen that the algorithm is not stable if the result from the same input has a significant

difference each time. For the last, the convergence curve also should be investigated.

The values of the Q function obtained under different device amount settings are

not comparable because more mobile devices mean introducing more data, which some

values may large and cause normalization to become smaller.

From Table 1, we can know that our method GWO-WOA is the suboptimal value of

the function and also is suboptimal in processing time when the device amount is 60.

Although GA has the best value of the function, it is placed last in process time, which is

almost ten times longer than other methods, while the suboptimal value of the function

is just slightly worse than it. As it is known that offloading decisions should be made as

soon as possible, the disadvantage of GA in process time has covered the slight advantage

of GA in the optimized value of the function. It also can be obtained from Table 1 that

GWO has the third-lowest value of the function with the fourth-lowest process time, and

WOA has the fourth-lowest value of the function with the third-lowest in process time.

It can be summarized that GWO is lean on the speed of processing, and WOA is lean on

the result of processing. It is reasonable that GWO-WOA has included both advantages

of GWO andWOA. And the result of GWO-WOA has shown its success.

By analyzing the result when the device amount is 90 in Table 1, it can be known

that GWO-WOA takes the best optimized value of the function with the suboptimal

Table 1 The results of the algorithms on the proposed model

Device amount Algorithm
Value of function Processing time (unit:s)

Min Mean Max Min Mean Max

60

GWO-WOA 13.0440 14.5241 16.6638 0.1236 0.1336 0.1499

GWO 14.1564 14.9303 15.8786 0.1320 0.1390 0.1739

WOA 13.6214 15.5889 17.9665 0.0934 0.1021 0.1150

PSO 15.5270 17.1228 18.7959 0.2721 0.2887 0.3250

GA 13.5747 14.2749 15.4485 2.2403 2.3562 2.5156

90

GWO-WOA 8.3972 9.5985 10.6434 0.1722 0.1839 0.2046

GWO 9.0704 9.7819 10.4810 0.1898 0.2001 0.2238

WOA 9.1978 10.8786 11.9473 0.1278 0.1376 0.1571

PSO 10.4215 11.7541 12.7919 0.2829 0.3032 0.3460

GA 10.3010 11.3086 12.6800 2.2827 2.4174 2.6159

120

GWO-WOA 8.9841 9.7230 10.5497 0.2336 0.2477 0.2779

GWO 9.0264 9.8471 10.4858 0.2473 0.2618 0.2957

WOA 9.5342 10.5831 11.8731 0.1697 0.1855 0.2351

PSO 10.4320 11.5799 12.6505 0.2978 0.3209 0.3583

GA 10.5280 11.4742 12.4000 2.3348 2.4785 2.7344

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 11 of 15

Fig. 1 Convergence curve of algorithms when device number is 60

performance in the processing time. ThoughWOA has the best processing time, it shows

worse performance in the value of the function. The results of both GWO and WOA are

worse than those of GWO-WOA. GA has lost its advantage on the value of the function

when the device amount is 90.

When the device amount is set to 120, the results obtained by these algorithms are

similar to the scenario when the device amount is 90.

Figures 1 and 2 can know that GWO-WOA is the suboptimal algorithm in the perspec-

tive of convergence. GA has the best value of the function when the device number is 60.

Although the result of GA is better than GWO-WOA, Fig. 1 shows that GWO-WOA con-

verges quicker than GA at the previous iterations. Besides, the message can be obtained

that GWO has a quicker convergence speed than WOA. And Fig. 2 shows that GWO is

more stable than WOA. As GWO-WOA is improved, it represents reasonable stability,

better than the original WOA.

Figure 3 shows that GWO-WOA gets the best result comparing with the other

algorithms. Furthermore, the following performance orders are GWO, WOA, GA, and

PSO. The advantage of GA has disappeared, as the device number is increased from 60

Fig. 2 The results of each run time of algorithms when device number is 60

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 12 of 15

Fig. 3 Convergence curve of algorithms when device number is 90

to 90. The reason may be that the increase in dimensions caused the increase in device

numbers. Figure 4 shows that GWO-WOA has good stability and keeps the best results

at most times when the algorithms are run. The line of GWO in Fig. 4 shows its stability,

which indicates the well performance in avoiding falling into local optima. In comparison,

the line of WOA in Fig. 4 fiercely fluctuates, which means it falls into local optima many

times.

Figure 5 shows that GWO-WOA takes the place of the best results. While the orders of

the function results are the same as Fig. 3 in the situation of the device number is 90, it

can conclude that the performance of these algorithms may be sure that even the device

number continues to increase, the result will be the same. Figure 6 shows that GWO-

WOA has good stability and is the best one in most cases the algorithms run. The stability

of GWO is still the best, but we can obtain from Fig. 6 that the gap between GWO-WOA

andGWO is reduced.Moreover, in some parts of the figure, the stability of GWO-WOA is

better than GWO. It represents that the algorithm improved can well keep the advantage

of the original algorithm.

Fig. 4 The results of each run time of algorithms when device number is 90

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 13 of 15

Fig. 5 Convergence curve of algorithms when device number is 120

In general, with the increase of device amount, GWO-WOA performs better than other

algorithms in convergence and stability. The algorithm is more suitable for the scenario

that with more devices.

6 Conclusions

In this work, we analyzed a computation offloading model with time optimization, energy

optimization and price optimization on computation offloading in MEC. Then, normal-

ization is proposed to be used in the model with the purpose of improving the model and

eliminating the effects of dimensions. The goal of the model is to get the minimum value.

A swarm intelligence algorithm named GWO has been applied to solve the problem.

The GWO-WOA algorithm is proposed to search for better solutions for the pro-

posed model. The experiment results show the advantage of GWO-WOA among these

algorithms. However, the algorithm proposed still has improvements that can be made. It

may not be suitable for the scenario with low dimensions, and its processing time is not

the best in the experiments.

Fig. 6 The results of each run time of algorithms when device number is 120

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 14 of 15

In future works, we will continue to refine the computation offloading model based on

real-world scenarios. Furthermore, we will also investigate how to optimize the offload-

ing strategy by using multi-objective swarm intelligence algorithms and explore more

possible methods that can be used.

Abbreviations

IoT: Internet of Things; MEC: Mobile edge computing; GWO: Grey wolf optimizer; WOA: whale optimization algorithm;

PSO: Particle swarm optimization; GA: Genetic algorithm; MD: Mobile device; MCC: Mobile cloud computing; 5G:

Fifth-generation mobile networks; QoS: Quality of service; NOMA: Non-orthogonal multiple access

Acknowledgements

The authors appreciate help from other colleagues at the Hainan Key Laboratory of Big Data and Smart Services and

Hainan Green smart Island Collaborative Innovation Center.

Authors’ contributions

Conceptualization: SF, QZ, and YC; data curation: YC; formal analysis: YC; funding acquisition: MH; investigation: YC and

QZ; methodology: SF, YC, and QZ; project administration: SF, MH, and FS; resources: YC and QZ; software: YC and QZ;

Supervision: SF, MH, and FS; validation: YC; visualization: YC; writing – original draft: YC; writing – review and editing: YC,

SF, MH, and FS. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Key Research and Development Program of China under Grant 2018YFB1404400

and Grant2018YFB1703403 and the Hainan Provincial Natural Science Foundation of China under Grant 2019CXTD400,

Hainan Key R&D Program under Grant ZDYF2019115, the National Natural Science Foundation of China under Grant

61865005, the Open Project Program of Wuhan National Laboratory for Optoelectronics under Grant 2020WNLOKF001,

Key R&D Project of Hainan province under Grant ZDYF2019020, National Natural Science Foundation of China under

Grant 62062030 , and the Education Department of Hainan Province under Grant Hnky2019-22.

Availability of data andmaterials

Not applicable.

Declarations

Competing interests

The authors declare that they have no competing interest.

Author details
1School of Information and Communication Engineering, Hainan University, No. 58 Renmin Avenue, 570228 Haikou,

China. 2School of Sciences, Hainan University, No. 58 Renmin Avenue, 570228 Haikou, China. 3State Key Laboratory of

Marine Resource Utilization in the South China Sea, Hainan University, No. 58 Renmin Avenue, 570228 Haikou, China.

Received: 3 May 2021 Accepted: 21 June 2021

References

1. S. Meng, Y. Wang, Z. Miao, K. Sun, Joint optimization of wireless bandwidth and computing resource in

cloudlet-based mobile cloud computing environment. Peer-to-Peer Netw. Appl. 11, 462–472 (2018). https://doi.org/

10.1007/s12083-017-0544-x

2. H. T. Dinh, C. Lee, D. Niyato, P. Wang, A survey of mobile cloud computing: Architecture, applications, and

approaches. Wirel. Commun. Mob. Comput. 13, 1587–1611 (2013). https://doi.org/10.1002/wcm.1203

3. G. Yang, L. Hou, X. He, D. He, S. Chan, M. Guizani, Offloading time optimization via Markov decision process in

mobile-edge computing. IEEE Internet Things J. 8, 2483–2493 (2021). https://doi.org/10.1109/JIOT.2020.3033285

4. H. Zhang, Y. Yang, X. Huang, C. Fang, P. Zhang, Ultra-low latency multi-task offloading in mobile edge computing.

IEEE Access. 9, 32569–32581 (2021). https://doi.org/10.1109/ACCESS.2021.3061105

5. Z. Li, V. Chang, J. Ge, L. Pan, H. Hu, B. Huang, Energy-aware task offloading with deadline constraint in mobile edge

computing. EURASIP J. Wirel. Commun. Netw. 2021, 32569–32581 (2021). https://doi.org/10.1186/s13638-021-

01941-3

6. J. Bi, H. Yuan, S. Duanmu, M. Zhou, A. Abusorrah, Energy-optimized partial computation offloading in mobile-edge

computing with genetic simulated-annealing-based particle swarm optimization. IEEE Internet Things J. 8,

3774–3785 (2021). https://doi.org/10.1109/JIOT.2020.3024223

7. K. Li, Heuristic computation offloading algorithms for mobile users in fog computing. ACM Trans. Embed. Comput.

Syst. 20, 1–28 (2021). https://doi.org/10.1145/3426852

8. Y. Hmimz, T. Chanyour, M. E. Ghmary, M. O. C. Malki, Bi-objective optimization for multi-task offloading in latency and

radio resources constrained mobile edge computing networks. Multimed. Tools Appl. 80, 17129–17166 (2021).

https://doi.org/10.1007/s11042-020-09365-9

9. M. N. A. Wahab, S. Nefti-Meziani, A. Atyabi, A comprehensive review of swarm optimization algorithms. PLoS ONE.

10, 1–36 (2015). https://doi.org/10.1371/journal.pone.0122827

https://doi.org/10.1007/s12083-017-0544-x
https://doi.org/10.1007/s12083-017-0544-x
https://doi.org/10.1002/wcm.1203
https://doi.org/10.1109/JIOT.2020.3033285
https://doi.org/10.1109/ACCESS.2021.3061105
https://doi.org/10.1186/s13638-021-01941-3
https://doi.org/10.1186/s13638-021-01941-3
https://doi.org/10.1109/JIOT.2020.3024223
https://doi.org/10.1145/3426852
https://doi.org/10.1007/s11042-020-09365-9
https://doi.org/10.1371/journal.pone.0122827

Feng et al. EURASIP Journal on Advances in Signal Processing (2021) 2021:36 Page 15 of 15

10. H. Mazouzi, K. Boussetta, N. Achir, Maximizing mobiles energy saving through tasks optimal offloading placement in

two-tier cloud: A theoretical and an experimental study. Comput. Commun. 144, 132–148 (2019). https://doi.org/10.

1016/j.comcom.2019.05.017

11. Y. Zhang, U. Nauman, Deep learning trends driven by temes: A philosophical perspective. IEEE Access. 8,

196587–196599 (2020). https://doi.org/10.1109/ACCESS.2020.3032143

12. X. Qian, S. Lin, G. Cheng, X. Yao, H. Ren, W. Wang, Object detection in remote sensing images based on improved

bounding box regression and multi-level features fusion. Remote Sens. 12(1) (2020). https://doi.org/10.3390/

rs12010143

13. Y. Wu, J. Cao, Q. Li, A. Alsaedi, F. E. Alsaadi, Finite-time synchronization of uncertain coupled switched neural networks

under asynchronous switching. Neural Netw. 85, 128–139 (2017). https://doi.org/10.1016/j.neunet.2016.10.007

14. X. Deng, Z. Sun, D. Li, J. Luo, S. Wan, User-centric computation offloading for edge computing. IEEE Internet Things J.

(2021). https://doi.org/10.1109/JIOT.2021.3057694

15. H. G. T. Pham, Q. V. Pham, A. T. Pham, C. T. Nguyen, Joint task offloading and resource management in NOMA-based

MEC systems: A swarm intelligence approach. IEEE Access. 8, 190463–190474 (2020). https://doi.org/10.1109/

ACCESS.2020.3031614

16. Q. V. Pham, S. Mirjalili, N. Kumar, M. Alazab, W. J. Hwang, Whale optimization algorithm with applications to resource

allocation in wireless networks. IEEE Trans. Veh. Technol. 69, 4285–4297 (2020). https://doi.org/10.1109/TVT.2020.

2973294

17. S. Zhu, W. Xu, L. Fan, K. Wang, G. K. Karagiannidis, A novel cross entropy approach for offloading learning in mobile

edge computing. IEEE Wirel. Commun. Lett. 9, 402–405 (2020). https://doi.org/10.1109/LWC.2019.2957743

18. K. Jiang, H. Zhou, D. Li, X. Liu, S. Xu, in 2020 29th International Conference on Computer Communications and Networks

(ICCCN), A Q-learning based method for energy-efficient computation offloading in mobile edge computing, (2020),

pp. 1–7. https://doi.org/10.1109/ICCCN49398.2020.9209738

19. R. Zhao, X. Wang, J. Xia, L. Fan, Deep reinforcement learning based mobile edge computing for intelligent internet

of things. Phys. Commun. 43 (2020). https://doi.org/10.1016/j.phycom.2020.101184

20. Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, M. S. Hossain, Intelligent task prediction and computation

offloading based on mobile-edge cloud computing. Futur. Gener. Comput. Syst. 102, 925–931 (2020). https://doi.

org/10.1016/j.future.2019.09.035

21. Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, F. Yang, Dependency-aware task scheduling in vehicular edge

computing. IEEE Internet Things J. 7, 4961–4971 (2020). https://doi.org/10.1109/JIOT.2020.2972041

22. M. Huang, Q. Zhai, Y. Chen, S. Feng, F. Shu, Multi-objective whale optimization algorithm for computation offloading

optimization in mobile edge computing. Sensors. 21 (2021). https://doi.org/10.3390/s21082628

23. J. Yan, S. Bi, Y. J. Zhang, M. Tao, Optimal task offloading and resource allocation in mobile-edge computing with

inter-user task dependency. IEEE Trans. Wirel. Commun. 19, 235–250 (2020). https://doi.org/10.1109/TWC.2019.

2943563

24. W. Labidi, M. Sarkiss, M. Kamoun, in 2015 22nd International Conference on Telecommunications, ICT 2015,

Energy-optimal resource scheduling and computation offloading in small cell networks (Institute of Electrical and

Electronics Engineers Inc., Sydney, Australia, 2015), pp. 313–318. https://doi.org/10.1109/ICT.2015.7124703

25. C. You, K. Huang, H. Chae, B. H. Kim, Energy-efficient resource allocation for mobile-edge computation offloading.

IEEE Trans. Wirel. Commun. 16, 1397–1411 (2017). https://doi.org/10.1109/TWC.2016.2633522

26. A. P. Miettinen, J. K. Nurminen, in 2nd USENIXWorkshop on Hot Topics in Cloud Computing (HotCloud 10), Energy

efficiency of mobile clients in cloud computing (USENIX Association, Boston, MA, 2010). https://www.usenix.org/

conference/hotcloud-10/energy-efficiency-mobile-clients-cloud-computing

27. S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.

advengsoft.2013.12.007

28. S. Mirjalili, A. Lewis, The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.

advengsoft.2016.01.008

29. R. K. Saidala, N. Devarakonda, in Data Engineering and Intelligent Computing, Improved whale optimization algorithm

case study: Clinical data of anaemic pregnant woman (Springer, Singapore, 2018), pp. 271–281

30. M. Abdel-Basset, D. El-Shahat, I. El-henawy, A. K. Sangaiah, S. H. Ahmed, A novel whale optimization algorithm for

cryptanalysis in Merkle-Hellman cryptosystem. 23, 723–733 (2018). https://doi.org/10.1007/s11036-018-1005-3

31. J. Kennedy, R. Eberhart, in Proceedings of ICNN’95 - International Conference on Neural Networks, Particle swarm

optimization, vol. 4, (1995), pp. 1942–19484. https://doi.org/10.1109/ICNN.1995.488968

32. A. Lambora, K. Gupta, K. Chopra, in 2019 International Conference onMachine Learning, Big Data, Cloud and Parallel

Computing (COMITCon), Genetic algorithm- a literature review, (2019), pp. 380–384. https://doi.org/10.1109/

COMITCon.2019.8862255

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.comcom.2019.05.017
https://doi.org/10.1016/j.comcom.2019.05.017
https://doi.org/10.1109/ACCESS.2020.3032143
https://doi.org/10.3390/rs12010143
https://doi.org/10.3390/rs12010143
https://doi.org/10.1016/j.neunet.2016.10.007
https://doi.org/10.1109/JIOT.2021.3057694
https://doi.org/10.1109/ACCESS.2020.3031614
https://doi.org/10.1109/ACCESS.2020.3031614
https://doi.org/10.1109/TVT.2020.2973294
https://doi.org/10.1109/TVT.2020.2973294
https://doi.org/10.1109/LWC.2019.2957743
https://doi.org/10.1109/ICCCN49398.2020.9209738
https://doi.org/10.1016/j.phycom.2020.101184
https://doi.org/10.1016/j.future.2019.09.035
https://doi.org/10.1016/j.future.2019.09.035
https://doi.org/10.1109/JIOT.2020.2972041
https://doi.org/10.3390/s21082628
https://doi.org/10.1109/TWC.2019.2943563
https://doi.org/10.1109/TWC.2019.2943563
https://doi.org/10.1109/ICT.2015.7124703
https://doi.org/10.1109/TWC.2016.2633522
https://www.usenix.org/conference/hotcloud-10/energy-efficiency-mobile-clients-cloud-computing
https://www.usenix.org/conference/hotcloud-10/energy-efficiency-mobile-clients-cloud-computing
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1007/s11036-018-1005-3
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/COMITCon.2019.8862255
https://doi.org/10.1109/COMITCon.2019.8862255

	Abstract
	Keywords

	Introduction
	Related works
	Methods
	System model
	Local computing model
	Edge computing model
	Edge service pricing model
	Problem formulation

	Problem solutions
	Grey wolf optimizer
	Improved WOA with GWO

	Results and discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

